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Abstract

This paper presents Mask-aware Intersection-over-Union (maIoU) for assigning an-
chor boxes as positives and negatives during training of instance segmentation meth-
ods. Unlike conventional IoU or its variants, which only considers the proximity of
two boxes; maIoU consistently measures the proximity of an anchor box with not only
a ground truth box but also its associated ground truth mask. Thus, additionally con-
sidering the mask, which, in fact, represents the shape of the object, maIoU enables
a more accurate supervision during training. We present the effectiveness of maIoU
on a state-of-the-art (SOTA) assigner, ATSS, by replacing IoU operation by our maIoU
and training YOLACT, a SOTA real-time instance segmentation method. Using ATSS
with maIoU consistently outperforms (i) ATSS with IoU by ∼ 1 mask AP, (ii) baseline
YOLACT with fixed IoU threshold assigner by ∼ 2 mask AP over different image sizes
and (iii) decreases the inference time by 25% owing to using less anchors. Then, exploit-
ing this efficiency, we devise maYOLACT, a faster and +6 AP more accurate detector
than YOLACT. Our best model achieves 37.7 mask AP at 25 fps on COCO test-dev es-
tablishing a new state-of-the-art for real-time instance segmentation. Code is available at
https://github.com/kemaloksuz/Mask-aware-IoU.

1 Introduction
Instance segmentation is a visual detection problem which aims to classify and locate each
object in an image by pixel-level masks. To be able to handle objects of different numbers,
locations and scales; SOTA methods [3, 14, 35] employ a dense set of object hypotheses, gen-
erally represented by boxes or points, and ensure a maximum coverage of the objects. This
coverage necessitates a large number of object hypotheses (∼ 20k per image in YOLACT
[3] for images of size 550×550) to be assigned to ground truths boxes; generally known as
the assignment problem [17, 42].

This assignment problem is commonly tackled by employing heuristic rules. One com-
mon rule to assign object hypotheses represented by boxes (i.e. anchors) is using a “fixed IoU
threshold” [3, 11, 14], in which an anchor, B̂, can be assigned with a ground truth (i.e pos-
itive), B, when their Intersection-over-Union (IoU), defined as IoU(B̂,B) = |B̂∩B|/|B̂∪B|,
exceeds a pre-determined threshold, τ . If anchor B̂ cannot be assigned to any ground-truth
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IoU: 0.63
maIoU: 0.31

Anchors with low IoU but including 
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IoU: 0.44
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Figure 1: Sample cases illustrating the need for mask-aware IoU (maIoU). Green boxes
denote ground truth, red boxes are real anchors produced during the training. Left panel
shows cases where the anchor covers a significant part of the object pixels but IoU is low (i.e.
less than positive threshold of 0.50 for YOLACT). maIoU is higher than IoU for these cases,
potentially correcting the assignment. Right panel shows cases where the anchor covers only
a small part of the object pixels but IoU is high (so, anchors are positive). maIoU is lower
than IoU, potentially correcting the assignment. Images are from COCO [19].

B (i.e. IoU(B̂,B) < τ, ∀B), then B̂ is assumed to be a background (i.e. negative) example.
A different set of recent methods showed for object detection [17, 18, 42] that assigning
the anchors using an “adaptive IoU threshold” determined for each ground truth improves
the performance. Still, assignment methods heavily rely on IoU as the de facto proximity
measure between ground truths and anchors.

Despite its popularity, IoU has a certain drawback: The IoU between an anchor box and
a ground truth box solely depends on their areas, thereby ignoring the shape of the object,
e.g. as provided by a segmentation mask. This may give rise to undesirable assignments
due to counter-intuitively lower or higher IoU scores. For example, the IoU might be high,
implying a positive anchor, but only a small part of the object is included in the anchor; or the
IoU may be low, implying a negative anchor, but a large part of the object is included in the
anchor. Fig. 1 presents examples for such cases, arising due to objects with unconventional
poses, occlusion and objects with articulated or thin parts. We will show (in Section 3.1, Fig.
3) that such examples tend to produce larger loss values and adversely affect training.

In this paper, we introduce mask-aware IoU (maIoU), a novel IoU measure for anchor
assignment in instance segmentation by exploiting the ground truth masks of the objects,
normally used only for supervision. Specifically, unlike IoU, which equally weights all
pixels, maIoU yields a proximity measure between 0 and 1 among an anchor box, a ground
truth box and a ground truth mask by promoting the pixels on the masks, thereby providing
a more consistent assignment (Fig. 1). Since a naive computation of maIoU is impractical,
we present an efficient algorithm with training time similar to the baseline. YOLACT with
maIoU-based ATSS assigner consistently improves ATSS assigner with IoU by ∼ 1 mask
AP and standard YOLACT (i.e. fixed IoU threshold) by ∼ 2 mask AP, and also decreases
inference time of YOLACT. Finally, utilizing this efficiency gap, we build maYOLACT
detector reaching 37.7 mask AP at 25 fps and outperforming all real-time counterparts.
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Table 1: IoU Variants, their inputs and primary purposes. IoU variants assign a proximity measure
based on the properties (prop.) of two inputs (Input 1 and Input 2). In practice, existing variants
compare the inputs wrt. the same properties (i.e. either boxes or masks). Our Mask-aware IoU (maIoU)
can uniquely compare a box with a box and a mask. With this, maIoU compares anchors (i.e. only
box) with ground truths (box and mask) in order to provide better anchor assignment. *: GIoU is also
used as a performance measure.

IoU Variant
Input 1 prop. Input 2 prop. Primary purpose as
Box Mask Box Mask proposed in the paper

Mask IoU [8, 19] 7 3 7 3 Performance measure
Boundary IoU [7] 7 3 7 3 Performance measure

Generalized IoU [29] 3 7 3 7 Loss function*
Distance IoU [43] 3 7 3 7 Loss function
Complete IoU [44] 3 7 3 7 Loss function

Mask-aware IoU (Ours) 3 3 3 7 Assigner

2 Related Work
Deep Instance Segmentation. In general, deep instance segmentation methods have fol-
lowed object detection literature. The pioneering Mask R-CNN model [14] and its variations
[15, 26] extended Faster R-CNN [28] by incorporating a mask prediction branch into the two-
stage detection pipeline. Similarly, anchor-based one-stage methods were also adapted for
instance segmentation by using an additional mask prediction branch, e.g. YOLACT [3] and
YOLACT++ [4] employed a YOLO-like architecture; and PolarMask [39] and PolarMask++
[40], both anchor-free methods, adapted FCOS [30] for instance segmentation. Differently,
SOLO variants [34, 35] classify the pixels based on location and size of each instance.
Anchor Assignment in Instance Segmentation. Deep instance segmentation methods us-
ing anchors as object hypotheses label anchors based on “fixed IoU threshold” assignment
rule: The anchors with IoU larger than τ+ with a ground truth box are assigned as positive;
while the anchors whose maximum IoU with ground truths is less than τ− are assigned as
negatives; and the remaining anchors whose maximum IoU is between τ− and τ+ are sim-
ply ignored during training. To illustrate, YOLACT variants [3, 4] and RetinaMask [11] use
τ− = 0.40 and τ+ = 0.50; while the first stage of Mask R-CNN (i.e. region proposal network
[28]) sets τ− = 0.30 and τ+ = 0.70; and finally its second stage [14] uses τ− = τ+ = 0.50.
Adaptive Anchor Assignment Methods in Object Detection. Recently, adaptive anchor
assignment strategies are shown to perform better than fixed IoU threshold in object detec-
tion: ATSS [42] uses top-k anchors wrt. IoU to determine an adaptive IoU threshold for
each ground truth (Section 3.4 provides more details on ATSS.) and PAA [17] computes a
score of each anchor including Generalized IoU and fits the distribution of these scores to
a two-dimensional Gaussian Mixture Model to split positives and negatives for each ground
truth. Similarly, Ke et al. [16] and Li et al. [18] identify positives and negatives by using
different scoring functions of the predictions. However, these methods are devised and tested
for object detection, and thus, do not utilize object masks.
Other IoU Variants. Over the years, many IoU variants have been proposed – see Table
1 for a comparative summary. One of the most related IoU variants is Mask IoU, which
is used to measure the detection mask quality with respect to (wrt.) the ground truth mask
during evaluation [8, 19]. Similarly, Boundary IoU [7] evaluates detection masks by giving
higher weights to the pixels closer to the boundaries. Note that these IoU variants compare
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Figure 2: (a,b) Mean and standard deviation of loss values of negative anchors (a) and positive (b)
anchors with similar IoUs (IoU between [0.30− 0.50] for negatives and [0.50− 0.70] for positives)
over different MOB ratios for a trained YOLACT on COCO minival. Red lines denote the standard
deviation. Note that when the MOB ratio increases, the loss values increase for negatives; however,
the loss values of all three sub-tasks (Cls.: classification, Segm.: segmentation, Reg.: regression) tend
to decrease for positives. (c) The number of anchors for each MOB ratio is in the order of thousands.

only two masks, and unlike our maIoU, they cannot compare a box with another box and
its associated mask. The other IoU variants are all devised to measure the proximity of two
boxes: Generalized IoU (GIoU) [29] uses the minimum enclosing box in order to measure
the proximity of boxes when boxes do not intersect (i.e. their IoU is 0); Distance IoU [43]
adds a penalty parameter based on the minimum enclosing box and the distance between the
centers of boxes; Complete IoU [44] additionally considers aspect ratio differences of the
boxes. These IoU-variants compute the overlap at the box level and neglect object shape; and
also, they are mainly used as loss functions, not as a positive-negative assignment criterion.
Comparative Summary. By measuring the proximity of an anchor box with a ground truth,
our maIoU is designed for anchor-based models, which have been using a fixed IoU threshold
for assigning anchors as the dominant approach, thereby ignoring object shape. We first
show that ATSS [42], an adaptive anchor assigner, yields better performance on YOLACT
[3]. Then, we propose maIoU, as the first IoU variant that can measure the proximity of an
anchor box with a ground truth box and ground truth mask (Table 1). Replacing IoU of ATSS
by our maIoU improves the performance of this strong baseline. We also investigate GIoU
and DIoU for anchor assignment. Since they rely only on boxes, our maIoU provides more
discriminative information then these IoU variants. Finally, besides our maIoU, adopting
recently proposed improvements into YOLACT detector, we build maYOLACT detector,
which outperforms its counterparts while being more efficient as well (Section 4).

3 Methodology
This section first presents an analysis on fixed-threshold IoU assigner in Section 3.1. Then,
Section 3.2 defines maIoU and Section 3.3 provides an efficient algorithm to compute maIoU.
Finally, Section 3.4 incorporates our maIoU into the SOTA ATSS assigner [42] to label an-
chors during the training of instance segmentation methods.

3.1 The Mask-over-box Ratio
Our analysis is based on an intuitive measure to represent the rate of the ground truth mask
in a box, defined as the Mask-over-box (MOB) ratio as follows.
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Definition 1. Mask-over-box (MOB) ratio of a box (i.e. anchor or ground truth), B̄, on a
ground truth mask, M, is the ratio of (i) the area of the intersection of the mask and the box,
and (ii) the area of B̄ itself:

MOB(B̄,M) =
|B̄∩M|
|B̄|

. (1)

MOB(B̄,M)∈ [0,1] and less object pixels from M in B̄ implies a lower MOB ratio. When
B̄ is the ground truth box of M (i.e. B̄ = B), |M∩B|= |M|, and thus MOB(B,M) = |M|/|B|.

We now analyse how losses on a trained standard YOLACT model (with ResNet-50
backbone), a SOTA instance segmentation method, and the number of anchors change wrt.
MOB ratio (Fig. 2) and make the following crucial observations:
(1) The loss value (i.e. error) of a trained YOLACT for an anchor is related to the
amount of mask pixels covered by that anchor (i.e. MOB ratio), which is ignored by
the standard fixed IoU threshold assigner. Fig. 2(a,b) present that the average and standard
deviation of the loss values of anchors that are close to the IoU assignment threshold (i.e.
the anchors with IoU between [0.30− 0.50] for negatives and [0.50− 0.70] for positives;
hence, anchors with similar IoUs) increase in all tasks (for negatives, it is only classification;
for positives, we look at all tasks – i.e. classification, box regression and segmentation)
as MOB ratio decreases/increases (i.e. implying covering less/more on-mask pixels) for
positive/negative anchors. Also, the numbers of anchors with larger losses are in the order
of thousands in all cases (Fig. 2(c)).
(2) Similar to anchors, MOB ratios of the ground truth boxes also vary significantly.
We observe in Fig. 3(a) that there exists a significant amount of ground truth boxes with low
MOB ratios (i.e. for 30 % of the ground truths, MOB ratio is less than 0.50.

Our observations suggest that IoU does not discriminate anchors with more on-mask
pixels from those with less on-mask pixels, which appears naturally due to varying MOB
ratios of the ground truths; and thus using IoU for the assignment of the anchors may not be
the best method.

3.2 Mask-aware Intersection-over-Union (maIoU)
Intuition. The main intuition behind mask-aware IoU (maIoU) is to reweigh the pixels
within the ground truth box, B, such that on-mask pixels are promoted (in a way, the con-
tribution of off-mask pixels are reduced) by preserving the total energy of B (i.e. |B|). We
simply achieve this by distributing the contributions of the off-mask pixels uniformly over
the on-mask pixels in B. Finally, maIoU is computed as an intersection-over-union between
B̂ (i.e. anchor box) and B with the new pixel weights in B (Fig. 3(b)).
Derivation. To facilitate derivation, we first reformulate intersection I between B and B̂
in a weighted form as follows (wm,wm: the contributions of on-mask and off-mask pixels
respectively):

I(B, B̂) = ∑
i ∈ B∩B̂

w = ∑
i ∈ B̂∩M

wm + ∑
i ∈ (B̂∩B−B̂∩M)

wm, (2)

which effectively does not make use of the mask M since w = wm = wm = 1 for IoU.
In maIoU, we discard the contribution of an off-mask pixel: wm = 0, and in order to

preserve the total energy, the reduced contribution from all off-mask pixels, which equals
|B| − |M|, is distributed to the on-mask pixels uniformly. This will increase wm by (|B| −
|M|)/|M|: wm = 1+(|B|− |M|)/|M|= 1+ |B|/|M|− |M|/|M|= |B|/|M|= 1/MOB(B,M).
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Figure 3: (a) The distribution of MOB ratios of the ground truths on COCO training set. (b)
How IoU and maIoU weights the pixels in ground truth box (see Fig. 1 top-left example
for the image of this example). While IoU does not differentiate among on-mask (wm) and
off-mask (wm) pixels, our maIoU sets wm = 0 and weights each on-mask pixel by inverse
MOB ratio considering object mask M. (c) Anchor count distribution (in log-scale) of IoU
vs maIoU. While IoU & high-maIoU positively correlate, there are quite a few examples
with low-IoU & high-maIoU and vice versa.

With these weights, the mask-aware intersection, maI is defined by extending Eq. 2:

maI(B̂,B,M) = ∑
i ∈ B̂∩M

wm +

���
���

��:0
∑

i ∈ (B̂∩B−B̂∩M)

wm = wm|B̂∩M|= 1
MOB(B,M)

|B̂∩M|. (3)

Extending the definition of union (i.e. |B|+ |B̂|− |B∩ B̂|) with this intersection concept:

maU(B̂,B,M) = |B|+(|B̂|− |B̂∩B|+maI(B̂,B,M))−maI(B̂,B,M) = |B̂∪B|, (4)

which is equal to the conventional union. This is not surprising since our formulation pre-
serves ground truth area (i.e. |B|). With the updated definitions, mask-aware IoU is simply
mask-aware intersection over mask-aware union:

maIoU(B̂,B,M) =
maI(B̂,B,M)

maU(B̂,B,M)
=

1
MOB(B,M)

|B̂∩M|
|B̂∪B|

, (5)

which, in effect, is the ratio of covered on-mask pixels by the anchor (|B̂∩M|) in the union
of boxes (|B̂∪B|), normalized by on-mask pixel density in B (i.e. MOB(B,M)).
Interpretation. Similar to IoU, maIoU(B̂,B,M) ∈ [0,1] and a larger value implies a better
localisation considering not only the boxes but also the ground truth mask (Fig. 3(b)). We
visualize the anchor count distribution (in log-scale) of YOLACT on COCO minival on
the space spanned by IoU and maIoU (Fig. 3(c)): While IoU and maIoU are positively
correlated, there are quite a number of examples with low-IoU & high-maIoU and vice versa,
hence the assignment rules based on maIoU is quite different than those based on IoU.

3.3 Computation of maIoU
Compared to IoU, computing maIoU involves two additional terms (Eq. 5): (i) |M|, the
total number of mask-pixels (since calculating |B| for MOB(B,M)=|M|/|B| is trivial), and
(ii) |B̂∩M|, the number of mask-pixels in the intersection. While the masks are included
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in the datasets and computing these two quantities is straightforward; it is impractical to
compute them naively (i.e. brute force, see Table 3) considering the large number of anchors
covering the image. For this reason, we employ integral images [9] on the binary ground
truth masks, M. More specifically, for M covering an image of size m× n, we compute
its integral image ΘM , an (m+ 1)× (n+ 1) matrix that encodes the total number of mask
pixels above and to the left of each pixel. Accordingly, denoting the (i, j)th element of ΘM

by ΘM
i, j, the last element of ΘM stores |M|, i.e. |M| = ΘM

m+1,n+1. As for the second term,
assuming B̂ is represented by a top-left point (x1,y1) and a bottom-right point (x2,y2) such
that x2 > x1 and y2 > y1, |B̂∩M| involves only four look-up operations, i.e. |B̂∩M| =
ΘM

x2+1,y2+1+ΘM
x1,y1
−ΘM

x2+1,y1
−ΘM

x1,y2+1. The overall algorithm to compute maIoU(B̂,B,M)
is presented in Alg. 1.

Algorithm 1 The algorithm for efficiently calculating mask-Aware IoU.
1: procedure MASKAWAREIOU(B̂,B,M)
2: Compute |B|, |B̂∪B| and ΘM as integral image of M such that ΘM

i, j is (i, j)th element of ΘM

3: Set |M|= ΘM
m+1,n+1 and |B̂∩M|= ΘM

x2+1,y2+1 +ΘM
x1,y1
−ΘM

x2+1,y1
−ΘM

x1,y2+1.
4: Compute MOB(B,M) = |M|/|B| for ground truth B
5: return maIoU(B̂,B,M) (Eq. 5)
6: end procedure

3.4 Incorporating maIoU into ATSS Assigner
ATSS assigner [42] is a SOTA assignment method used for object detection, yielding better
performance than a fixed-threshold IoU assigner and simplifying the anchor design by using
a single anchor per pixel unlike its predecessors with up to nine anchors per pixel [21]. ATSS
assigner comprises three steps: (i) selecting top-k (i.e. conventionally k = 9) anchors (B̂) wrt.
the distance of the centers between B and B̂ for each ground truth (B) on each FPN level as
“candidates”, (ii) filtering out the candidates using an adaptive IoU threshold, computed
based on the statistics of these candidates for each B, and (iii) filtering out the candidates,
whose centers lie out of B. The surviving candidates after steps (ii) and (iii) are the positive
examples and the remaining examples are the negatives. Using our maIoU with ATSS (or
any IoU-based assigner) is straightforward: In step (ii), we just replace IoU-based adaptive
thresholding by maIoU-based adaptive thresholding.

4 Experiments
Dataset. We train all models on the COCO trainval set [19] (115K images), test them on the
COCO minival set (5k images) unless otherwise stated.
Performance Measures. We mainly report AP-based performance metrics: COCO-style
AP (AP, in short), APs where true positives are validated from IoUs of 0.50 and 0.75 (AP50
and AP75), and APs for small, medium and large objects (APS, APM and APL respectively).
Furthermore, we also exploit the recent optimal Localisation Recall Precision (oLRP) Error
[24, 25]. While AP is a higher-is-better measure, oLRP is a lower-is-better metric.
Implementation Details. We conduct our experiments on YOLACT [3], an anchor-based
real-time instance segmentation method, using the mmdetection framework [5]. Following
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Table 2: Comparison of different assigners and IoU variants on YOLACT. Considering the
shapes of the objects, our ATSS w. our maIoU consistently outperforms its counterparts.

Scale Assigner AP ↑ AP50 ↑ AP75 ↑ APS ↑ APM ↑ APL ↑ oLRP ↓

400

fixed IoU threshold 24.8 42.4 25.0 7.3 26.0 42.0 78.3
ATSS w. IoU 25.3 43.5 25.5 6.8 27.3 43.8 77.7

ATSS w. DIoU 25.4 43.6 25.2 7.2 27.1 43.4 77.7
ATSS w. GIoU 25.1 42.7 25.3 7.0 26.8 41.8 78.0

ATSS w. maIoU (Ours) 26.1 44.3 26.3 7.2 28.0 44.3 77.1

550

fixed IoU threshold 28.5 47.9 29.4 11.7 31.8 43.0 75.2
ATSS w. IoU 29.3 49.2 30.2 11.1 33.0 44.5 74.5

ATSS w. DIoU 29.5 49.5 30.1 11.7 33.2 44.9 74.4
ATSS w. GIoU 29.1 48.6 30.0 12.0 32.2 43.3 74.7

ATSS w. maIoU (Ours) 30.4 50.3 31.4 11.5 33.9 46.3 73.7

700

fixed IoU threshold 29.7 50.0 30.4 14.2 32.8 43.7 74.3
ATSS w. IoU 30.8 51.8 31.2 14.1 35.0 44.0 73.3

ATSS w. DIoU 30.9 51.9 31.7 14.0 35.4 44.0 73.3
ATSS w. GIoU 30.1 50.7 31.0 14.0 33.8 43.1 74.0

ATSS w. maIoU (Ours) 31.8 52.8 32.8 14.7 35.6 45.7 72.5

Zhang et al. [42], when we use ATSS assigner, we keep k = 9 (Section 3.4) and simplify the
anchor configuration by placing a single anchor on each pixel with an aspect ratio of 1 : 1
and a base scale of 4 unless otherwise stated. Also, with ATSS (with IoU, DIoU [43], GIoU
[29] or our maIoU), we keep classification and box regression loss weights as they are (1.0
and 1.5 respectively), and increase mask prediction loss weight from 6.125 to 8. When we
replace the assigner, note that it affects the examples in all branches (i.e. classification, box
regression, semantic and instance mask predictions). We train all models with 32 images
distributed on 4 GPUs (8 images/GPU). The remaining design choices of YOLACT [3] are
kept. We adopt ResNet-50 [13] as the backbone and resize the images during training and
inference to S×S where S can be either 400, 550 or 700 following Bolya et al. [3].

4.1 Ablation Experiments
In this section, we demonstrate that our maIoU improves upon other assigners based on IoU
variants consistently and our Alg. 1 makes computation of maIoU feasible during training.
Using ATSS with IoU. We first replace the fixed IoU threshold assigner of YOLACT by
ATSS with (w.) IoU and have a stronger baseline for our maIoU: ATSS w. IoU improves
fixed IoU assigner by 0.5−1.1 mask AP over different scales (Table 2).
Replacing IoU of ATSS with maIoU. Replacing IoU in ATSS by our maIoU (Table 2) (i)
improves fixed IoU assigner by 1.3, 1.9 and 2.1 mask APs for 400, 550 and 700 scales
respectively, (ii) outperforms ATSS w. IoU by ∼ 1.0 mask AP in all scales, (iii) performs
also better than other IoU variants (i.e. ATSS w. GIoU and ATSS w. DIoU). We note that
the contribution of maIoU (i) on models trained by images with larger scales (700 vs. 400 in
Table 2) and (ii) on larger objects (APL vs. APS) are more significant. This is intuitive since
the shape of the object gets more precise as the object gets larger.
Computing maIoU Efficiently. Computing maIoU for every anchor-ground truth pair dur-
ing training by brute force is infeasible, i.e. it would take ∼ 3 months to train a single model
with 41.89 sec/iteration (Table 3). Using Alg. 1, we reduce the average iteration time by
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Table 3: Avg. iteration time (t)
of assigners. While brute force
maIoU computation is inefficient
(Alg. 1 is 7); our Alg. 1 decreases
t by ∼ 70× and has similar t with
Fixed IoU Thr. and ATSS w. IoU.

Assigner Alg. 1 t (sec.)
Fixed IoU Thr. N/A 0.51
ATSS w. IoU N/A 0.57

ATSS w. maIoU 7 41.89
ATSS w. maIoU 3 0.59

Table 4: ATSS w. maIoU (underlined) makes YOLACT
more accurate and∼ 25% faster mainly owing to less an-
chors. Thanks to this efficiency, we build maYOLACT-
550 with 34.8 AP and still larger fps than YOLACT.

Method AP APbox fps Anchor #

m
aY

O
L

A
C

T-
55

0 YOLACT-550 28.5 30.7 27 ∼ 19.2K
+ ATSS w. maIoU 30.4 32.5 33 ∼ 6.4K
+ Carafe FPN [32] 31.4 33.3 32 ∼ 6.4K

+ DCNv2 [46] 33.2 35.8 31 ∼ 6.4K
+ more anchors 33.5 36.3 30 ∼ 12.8K

+ cosine annealing [22] 34.8 37.9 30 ∼ 12.8K

∼ 70× to 0.59 sec/iteration, which is similar to other standard assigners (Table 3).

4.2 maYOLACT Detector: Faster and Stronger
Thanks to using fewer number of anchors, YOLACT trained with our ATSS w. maIoU
assigner (underlined in Table 4) is ∼ 25% faster than baseline YOLACT (33 vs. 27 fps1),
pointing out the importance of anchor design for the efficiency of real-time systems as well2.
Exploiting this run-time gap; our aim in this section is to extend the standard YOLACT
using our maIoU and the recent improvements in order to make it competitive with the
recent methods also by keeping the resulting detector to process images in real-time3. To
achieve that, we use (i) carafe [32] as the upsampling operation of FPN [20], (ii) deformable
convolutions [46] in the backbone, (ii) two anchors with base scales 4 and 8 on each pixel,
and (iv) cosine annealing with an initial learning rate of 0.008 by replacing the step learning
rate decay. Effect of these improvements are presented in Table 4 and the resulting detector
with these improvements is coined as maYOLACT. Note that our maYOLACT-550 detector
is still faster than baseline YOLACT-550 and improves it by +6.3 mask AP and +7.2 box
AP reaching 34.8 mask AP and 37.9 box AP (Table 4).

4.3 Comparison with State-of-the-art (SOTA)
Table 5 compares our maYOLACT with state-of-the-art methods on COCO test-dev.
Comparison with YOLACT variants. Achieving 35.2 mask AP, our maYOLACT-550
outperforms all YOLACT variants including the ones with larger backbones (e.g. YOLACT-
550++ with ResNet-101) and larger scales (e.g. YOLACT-700). Besides, different from
YOLACT++ [4], which is∼ 25% slower than YOLACT (see Table 6 in Bolya et al. [4]), our
maYOLACT-550 is faster than YOLACT-550 (Table 4), and still keep 7 mask AP gain also
on COCO test-dev reaching 35.2 mask AP (Table 5).
Comparison with real-time methods. Without multi-scale training as in Solov2 [35] or
specially designed backbone as in CenterMask [36]; our maYOLACT-700 reaches 37.7
mask AP at 25fps and outperforms existing real-time counterparts. Besides, our best model

1For all models, we follow and report the results on the mmdetection framework [5] on a single Tesla V100
GPU. Mmdetection’s YOLACT is slower than the official implementation by Bolya et al. [3], who reported 45fps.

2Note that more efficient models can be obtained by using better anchor design methods [12, 23, 41, 45]
3We use 25fps as the cut-off for “real-time” following the common video signal standards (e.g. PAL [37] and

SECAM [38]) and existing methods [10, 27, 31, 33].
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Table 5: Comparison with SOTA on COCO test-dev. Our maYOLACT-700 establishes a
new SOTA for real-time instance segmentation. ∗ implies our implementation for YOLACT
with ATSS w.IoU. When a paper does not report a performance measure, N/A is assigned
and we reproduce the performance using its repository for completeness (shown by †).

Methods Backbone AP AP50 AP75 APS APM APL Reference

fp
s
<

25

YOLACT-700 [3] ResNet-101 31.2 50.6 32.8 12.1 33.3 47.1 ICCV 19
PolarMask [39] ResNet-101 32.1 53.7 33.1 14.7 33.8 45.3 CVPR 20

PolarMask++ [40] ResNet-101 33.8 57.5 34.6 16.6 35.8 46.2 TPAMI 21
RetinaMask [11] ResNet-101 34.7 55.4 36.9 14.3 36.7 50.5 Preprint
Mask R-CNN [6] ResNet-50 36.8 59.2 39.3 17.1 38.7 52.1 ICCV 17
TensorMask [6] ResNet-101 37.1 59.3 39.4 17.4 39.1 51.6 ICCV 19

fp
s
≥

25

YOLACT-550 [3] ResNet-50 28.2 46.6 29.2 9.2 29.3 44.8 ICCV 19
YOLACT-550∗ ResNet-50 29.7 49.9 30.7 11.9 32.4 42.7 Baseline
Solov2-448 [35] ResNet-50 34.0 54.0 36.1 N/A N/A N/A NeurIPS 20
Solov2-448† [2] ResNet-50 34.0 54.0 36.0 10.3 36.3 53.8 NeurIPS 20

YOLACT-550++ [4] ResNet-50 34.1 53.3 36.2 11.7 36.1 53.6 TPAMI 20
YOLACT-550++ [4] ResNet-101 34.6 53.8 36.9 11.9 36.8 55.1 TPAMI 20
CenterMask-Lite† [1] VoVNetV2-39 35.7 56.7 37.9 18.4 37.8 47.3 CVPR 20
CenterMask-Lite [36] VoVNetV2-39 36.3 N/A N/A 15.6 38.1 53.1 CVPR 20

Solov2-512† [2] ResNet-50 36.9 57.5 39.4 12.8 39.7 57.1 NeurIPS 20
Solov2-512 [35] ResNet-50 37.1 57.7 39.7 N/A N/A N/A NeurIPS 20

maYOLACT-550 (Ours) ResNet-50 35.2 56.2 37.1 14.7 38.0 51.4
maYOLACT-700 (Ours) ResNet-50 37.7 59.4 39.9 18.1 40.8 52.5

achieves 59.4 wrt. common AP50 metric with a gap of 1.7 AP50 points compared to its
closest real time counterpart (i.e. SOLOv2-512).
Comparison with other methods. Our maYOLACT is also competitive against slower
methods (Table 5): It outperforms PolarMask++ [40], RetinaMask [11], Mask R-CNN [14]
and TensorMask [6] while being faster. To illustrate, on Tesla V100 GPU, our maYOLACT-
700 (i) has ∼ 2× more throughput with 25fps and nearly 4 mask AP gain (37.7 AP - Table
5) compared to PolarMask++ on ResNet-101 with 14 fps test time; and (ii) is ∼ 8× faster
than TensorMask on ResNet-101 (i.e. ∼ 3fps) with similar performance.

5 Conclusion

We presented maIoU to assign a proximity value for an anchor compared to both a ground
truth box and its mask. Using maIoU to assign anchors as positive or negative for training
instance segmentation methods, we utilised the shape of objects as provided by the ground-
truth segmentation masks. We showed that ATSS with our maIoU also improves throughput
of the model. Exploiting this efficiency, we improved the performance further and reached
SOTA results in real-time.
Acknowledgements: This work was supported by the Scientific and Technological Research
Council of Turkey (TÜBİTAK) (under grants 117E054 and 120E494). We also gratefully
acknowledge the computational resources kindly provided by TÜBİTAK ULAKBIM High
Performance and Grid Computing Center (TRUBA) and Roketsan Missiles Inc. Dr. Kalkan
is supported by the BAGEP Award of the Science Academy, Turkey.
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