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Abstract

With the emergence of service robots and surveillance cameras, dynamic face recog-
nition (DFR) in wild has received much attention in recent years. Face detection and
head pose estimation are two important steps for DFR. Very often, the pose is estimated
after the face detection. However, such sequential computations lead to higher latency.
In this paper, we propose a low latency and lightweight network for simultaneous face
detection, landmark localization and head pose estimation. Inspired by the observation
that it is more challenging to locate the facial landmarks for faces with large angles, a
pose loss is proposed to constrain the learning. Moreover, we also propose an uncer-
tainty multi-task loss to learn the weights of individual tasks automatically. Another
challenge is that robots often use low computational units like ARM based computing
core and we often need to use lightweight networks instead of the heavy ones, which
lead to performance drop especially for small and hard faces. In this paper, we propose
online feedback sampling to augment the training samples across different scales, which
increases the diversity of training data automatically. Through validation in commonly
used WIDER FACE, AFLW and AFLW2000 datasets, the results show that the proposed
method achieves the state-of-the-art performance in low computational resources.

1 Introduction
With the popularization of service robots and surveillance cameras, dynamic face recognition
(DFR) in the wild has become widely used. DFR is different from static face recognition
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(SFR). In SFR such as Apple face ID, the aim is to recognize faces within a specific area
or range with relatively high requirements for the angle, distance, and position, which often
requires human cooperation. However, in DFR applications such as surveillance, the aim is
to automatically recognize persons walking in natural forms, generally requiring no human
cooperation. The traditional pipeline for DFR is to: 1) face detection and tracking; 2) head
pose estimation and face image quality evaluation; 3) image selection based on the head pose
and quality; 4) face identity comparison. The face recognition can be deployed on device
with low computing power or cloud side. However, cloud service is often interrupted by
unstable network connection and limited bandwidth. Therefore, real-time face detection and
head pose estimation in mobile side become necessary for DFR in the wild.

Face detection is a prerequisite step of facial image analysis such as facial attribute, e.g.,
expression [43], age [31] and face identity [7, 26, 36]. With the recent development of
deep learning, significant improvements have been achieved in face detection by utilizing
CNN-based object detectors. Among these methods, single-stage based deep learning meth-
ods have shown to be promising [30, 38, 46, 47]. The single-stage methods detect the faces
of different scales without significant increment of time-consumption even when there is an
increased number of faces in the images. These methods densely sample face locations and
scales on feature pyramids [23, 25], demonstrating promising performance and yielding
high speed. Very often, the five facial landmarks are localized simultaneously [9]. However,
landmark localization is still insufficient for pose estimation in DFR due to poor accuracy
for face with large angles. In this work, we propose a novel low latency and lightweight
framework for real-time face detection, landmark localization and pose estimation. To avoid
a large increment in computation, we propose to detect face, locate the landmarks and esti-
mate the head pose simultaneously.

There are three major challenges. Firstly, it is not an easy task to learn face detection,
facial landmark localization and head pose estimation simultaneously and get accurate re-
sults for all tasks with low computational resources [9, 32]. Secondly, the existing datasets
for face detection, facial landmark localization and head pose estimation are non-unified and
inconsistent of the scales for joint training while it is difficult to obtain accurate pose annota-
tions, especially for small faces [53]. Lastly, false positive in face detection affects the user
experience and it is very challenging to reduce it with low computational resources.

Intuitively, attention area by pose estimation shall be consistent with that by face clas-
sification. Therefore, we train a multi-task network and utilize the feature maps to validate
our assumption visually. The result shows that the attention area for pose estimation and
classification are highly overlapped. This motivates us to integrate the pose estimation into
face detection such that it may maintain or even improve the accuracy while reducing ex-
tra step for pose estimation. In addition, we observe that the landmark localization is more
difficult in faces with large angles and propose an additional constraint called pose loss to
regularize the training. In order to train a model for simultaneous face detection and head
pose estimation, we further label the pose of each face for the WIDER FACE dataset, which
will be released.

The main contributions are summarized as follows:

1. We propose a low latency and lightweight architecture for face detection, facial land-
mark localization and head pose estimation simultaneously.

2. We propose uncertainty multi-task loss to make the face detection, landmark localiza-
tion and head pose estimation more accurate.
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Figure 1: Overview of the proposed method. MOS adopts the feature pyramid from P3 to
P5 followed by SSH context head module and a multi-task head module. A cross stitch unit
(n× c, n denotes task number and c denotes channel number) is used in the multi-task head
to combine the feature maps linearly for face detection, landmark localization and head pose
estimation.

3. We propose an online data-feedback augmentation strategy, which improves the data
balance in face detection.

4. The results show that our method outperforms other lightweight methods, especially
for the hard subset.

2 Related Work
Face detection: Face detection [17, 40] has been a hot topic in the past decades. Earlier
methods [39] for face detection are mostly based on hand-crafted features. Existing methods
are divided into two categories: two-stage methods (e.g. Faster R-CNN [33]) and single-
stage methods (e.g. SSD [25]). Single-stage methods have great advantages in inference
speed, though these detectors often lead to higher false positive. There are some methods
[4, 27] that reduce the false positive detection by improving the quality of the matching box.
Another problem is how to detect small faces. S3FD [46] used multiple strategies to improve
the performance of small faces. ProgressFace [50] proposed a novel scale-aware progressive
training mechanism to address large scale variations across faces.

Head pose estimation: Head pose estimation has been widely studied. Early method
uses the facial landmarks [3, 18, 21, 52] to estimate the head pose. The methods based
on facial landmarks and Perspective-n-Point (PnP) [10] are very popular because there is
no need to include a pose estimation model. However, the error in landmark localization
will be propagated. Recently, CNN based methods for direct pose estimation made some
progress. Hopenet [34] combined ResNet50 with a multi-loss function, which is composed
of a classification loss and regression loss. FSAnet [41] proposed to learn a fine grained
structure mapping for spatially grouping features before aggregation. Although some of
these methods [6, 16, 49] achieve excellent results on pose estimation, none of them is
combined with face detection.

Multi-task learning: The recent progress in multi-task learning mainly focuses on the
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shared network architecture [29] and the loss function weights of the tasks [19]. In MTAN
[24], Liu et al. proposed a new network based on SegNet [2] and obtained the state-of-the-
art performance on the tasks of semantic segmentation and depth estimation on the outdoor
CityScapes dataset [5]. There are some methods attempting to solve the problem of face
detection and alignment in one model. In MTCNN [44], Zhang et al. used a cascaded ar-
chitecture with three stages of shallow networks to predict face and landmark locations in a
coarse-to-fine manner. In RetinaFace [8], Deng et al. manually annotated five facial land-
marks on the WIDER FACE dataset and observed significant improvement in hard subset
with the assistance of this extra supervision. There are also some efforts to include head
pose estimation and other face attributes [32, 48]. Ranjan et al. [32] presented an algorithm
for simultaneous face detection, landmark localization, head pose estimation and gender
recognition, which shows that the multi-task learning can get better results. However, these
methods use hard parameter connection, which limits the feature sharing among different
tasks.

3 Method
In this paper, we propose a low latency and lightweight framework including the following
sub-tasks: face classification, bounding box regression, landmark regression and head pose
estimation. Fig. 1 shows the overview of the proposed method.

3.1 Multi-Task Head

Most of the multi-task branches of face detection [9, 32, 44] are forked from the last layer
directly, and therefore these sub-tasks actually share all the previous features. Fig. 2(a)
shows the baseline head module [9, 32] with hard parameter connection. Although some
correlation exists between them, there are still many differences among the sub-tasks. For
example, landmark regression pays more attention to the location of each landmark while
bounding box regression pays more attention to the edge of face area [53].

Inspired by the above, we propose a novel head sharing unit called multi-task head
(MTH). The MTH units try to find the best shared representations for multi-task learning.
Different heads share representations through linear combinations and learn the optimal com-
binations for these tasks. Fig. 2(a) shows the structure of MTH Different from the baseline
head module [9, 32] with hard parameter connection, we further include a cross stitch unit
size of n× c in Fig. 2(a), where n denotes the number of tasks and c denotes the number
of channels. It computes a linear combination of feature maps followed by additional 1×1
convolutions. It shall be noted that the cross stitch unit here is different from that in [29].
In our unit, we use channel-wise weights in each channel while shared values were used in
[29].

3.2 Multi-task Loss

3.2.1 Loss functions used for the tasks

The classification loss is a softmax loss for binary classification denoted as Lcls(pi, p∗i ),
where pi is the predicted probability of anchor i being a face and p∗i is 1 for the positive
anchor and 0 for the negative anchor.
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(a) The different connection method of head
modules

(b) The pipeline of online feedback sampling

Figure 2: (a) The top figure is the baseline head module with hard parameters connection;
The bottom is the proposed MTH module with cross-connection. (b) Online Feedback Sam-
pling: Compute Ls

box for faces no larger than 25× 25 and apply stitching accordingly after
every iteration, and value T is set to 0.35; Update the set S after every epoch. The yellow and
red boxes in the test image refer to false detection and correct detection respectively. The
images will be added into the set S according to the number of false detection boxes.

The bounding box regression loss is a Smooth `1 loss [11] denoted as Lbox(ti, t∗i ),
where ti = (tx, ty, tw, th) and t∗i = (t∗x , t

∗
y , t
∗
w, t
∗
h ) represent the coordinates of the predicted box

and ground-truth box associated with the positive anchors respectively.
The landmark regression loss Lpts(li, l∗i ) is also based on Smooth `1, where li =

{lx1 , ly1 , · · · , lx5 , ly5} and l∗i = {l∗x1
, l∗y1

, · · · , l∗x5
, l∗y5
} represent the predicted landmarks and ground

truth with the positive anchors respectively.
Head Pose estimate loss: Previously, a regression loss Lpose based on cross entropy and

mean square error is used for pose estimation [34].

Lpose = H(a, â)+β ·MSE(a, â), (1)

where H(a, â) denotes the cross entropy, MSE denotes the mean square error, a and â denote
the annotated bins and the predict bins. Similar to that in [34], we use 66 bins, β is set to
0.001.

3.2.2 Uncertainty Multi-task Loss

The weights in multi-task learning are set empirically in RetinaFace [9] and MTCNN [44].
Recently, some work utilizes the uncertainty to estimate the output in the generic object
detection [13, 19]. In this work, we derive a uncertainty multi-task loss (UML) function by
maximizing the overall likelihood with the network.

Let f W (x) be the output of a neural network with input x and weights W . The multi-task
likelihood is defined as the multiplication of single-task probabilities. In this work, we have
one classification task and three regression tasks.

p(y| f W (x)) = p(y1| f W (x))...p(y4| f W (x)), (2)
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where y = (y1, ...,y4) denotes the distribution of the four tasks.
In maximum likelihood estimation, we compute the log likelihood of the model:

log(p(y| f W (x))) =
4

∑
k=1

log(p(yk| f W (x))) (3)

Following [19], the classification likelihood is defined as Boltzmann distribution func-
tion:

p(ycla| f W (x)) = Softmax(
1

T 2 f W (x)), (4)

where the subscript cla denotes the classification task. T is temperature of the system.
The uncertainty loss of classification task L∗cla(W,T ) is computed as:

L∗cla(W,T ) =
1

T 2 Lcla(W )+ log(T ), (5)

The cross entropy loss without coefficient T can be defined as Lcla(W ), and it represents the
loss function of the classification task without the temperature factor T .

The likelihood of a regression task can be defined as a Gaussian with the mean given by
the model output N( f W (x),σ2), where σ is the model’s observation noise parameter. The
uncertainty loss of the regression task L∗reg(W,σ) is computed as :

L∗reg(W,σ) ∝
1

2σ2 Lreg(W )+ log(σ), (6)

Where Lreg(W ) denotes the L2 norm of the regression task, including two bounding box
regression tasks, a landmark regression task and pose estimation task in this work.

Applying (2)-(6) on the losses of individual tasks, we compute the overall loss function
L∗ as:

L∗ =
1

T 2
1

p∗i Lcls +
1

2σ2
1

p∗i Lbox +
1

2σ2
2

p∗i Lpts +
1

2σ2
3

p∗i Lpose + log(T1σ1σ2σ3), (7)

where T1 is the temperature of the classification task, σ1,σ2,σ3 are the observation noise of
the bounding box detection, landmark regression and pose estimation tasks. These parame-
ters are obtained through learning.

3.3 Online Feedback Sampling
Some methods improve the accuracy of small face by changing the distribution of face sam-
ples. In PyramidBox++ [22], Li et al. propose to resize the images into different scales
evenly. These strategies are beneficial for multi-scale sample training, but it needs empirical
parameters to prevent the network from over-fitting.

In this work, we propose an online feedback method for data augmentation. An illus-
tration of the algorithm is shown in Fig. 2(b). In the method, the training data is adjusted
dynamically according to the actual effect in each iteration, which is beneficial to keep a
balance on face scales. In our method, we construct a set S which starts from all training
samples for face detection. In each iteration, we calculate the loss Ls

box of face size less than
25× 25. The stitching strategy is used if the ratio of Ls

box/Lbox is less than value T . After
each epoch, we test the current model on the training data and obtain all images with false
positive and false negative boxes. Then we update S with these difficult images. In this way,
the proposed method improves the balance of the data automatically.
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4 Experiments

4.1 Implementation details
Training Dataset:The first dataset we use is the WIDER FACE dataset [40]. It consists of
32,203 images and 393,703 face bounding boxes. As the original dataset does not contain
pose labels, we first annotate the pose for the dataset. Head pose annotation from 2D images
is an extremely challenging and time-consuming task, especially for very small faces. In
our annotation, we annotate in a semi-supervised way and skip faces smaller than 35× 35
pixels. We first pre-label the data through FSAnet [41] and Hopenet [34], and then two
trained experts adjust the pre-labelled annotations manually after careful examination and
mutual agreement. In our annotation, we mainly adjust the Yaw, which is most important for
DFR. To facilitate the research in this area, we are preparing the data for release and the data
will be available at https://github.com/lyp-deeplearning/MOS-Multi-Task-Face-Detect.

Evaluation Metrics:The AFLW [20] dataset is used to test the landmark localization
accuracy. It contains 25993 faces with up to 21 landmarks per image. The evaluation is
based on the mean errors measured by the distances between the estimated landmarks and
the ground-truth, normalized with the face box size

√
w×h.

We conduct testing of Head Pose estimate on AFLW2000 [52] dataset. It provides
ground-truth 3D faces with pose angles for the first 2,000 images of the AFLW dataset.
We follow the protocol of Hopenet [34].

Model architecture and training protocols: We implement MOS-S based on lightweight
backbone ShuffleNet V2 [28]. MOS-S employs three feature pyramid levels from P3 to P5.
The backbones are pretrained on the Imagenet. We use online hard example mining [37] and
constrain the ratio of positive and negative anchors to 1:3. The SSH [30] module is added
to increase the receptive field. The anchor aspect ratio is set to 1:1. In MOS-S, we train the
model with 640×640 input images, the feature pyramid is set to P3(80×80), P4(40×40),
P5(20× 20), which leads to 16800 anchors. Although we mainly focus on the lightweight
backbones, we also implement MOS-L with heavy backbone ResNet152 [12] to explore the
performance of the proposed modules in this situation.

We train the face detection networks with a batch size of 64 using 1 NVIDIA Tesla V100
GPUs. We use SGD optimizer with momentum at 0.9, weight decay at 0.0005. The initial
learning rate is set to 0.001 and then divided by 10 at 150 and 180 epochs. The training
terminates at 200 epochs. For inference, we use multi-scale testing strategy as in [46].

4.2 Ablation Study
To justify the effectiveness of each component in MOS-S, we conduct the following ablation
studies. The baseline approach is based on ShuffleNet V2 and SSH without MTH, as shown
in Fig. 1 and Fig. 2(a). Then we add the four modules including MTH, Pose loss, UML,
Online Feedback and the commonly used deformable convolution network (DCN) [51] one
by one. The results are shown in Table 1.

Multi-task head. To justify the effectiveness of MTH, we first add MTH into the base-
line, denoted as +MTH. As shown in Table 1, it obtains 0.79%, 0.86%, and 1.44% improve-
ment on the easy, medium and hard subsets respectively for lightweight backbones.

Uncertainty Multi-task Loss. The baseline uses heuristic weights (Lcls : Lbox : Lpts :
Lpose = 2 : 1 : 1 : 0.25) for multi-tasking. Table. 1 compares the results of face detection
and pose estimation tasks using UML. The UML loss further improves the performance by
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Table 1: Ablation study of the proposed modules on the WIDER FACE validation set and
AFLW2000 [52]. The baseline adopts the the hard connect structure in Fig. 2(a) with
MOS-S.

Method Easy Medium Hard Avg. MAE
Baseline 89.32 88.45 80.20 6.73
+ MTH 90.11 89.31 81.64 6.49
+ UML 91.18 90.26 83.01 6.14
+ Online Feedback 92.41 91.37 85.24 6.09
+ DCN 92.91 91.61 85.72 5.97

Table 2: Comparison of AP with other methods for light networks in the WIDER FACE
validation and test set. * indicates the work without peer review. Blue indicates the best
result with lightweight backbone.

Method backbone easy(val‖test) medium(val‖test) hard(val‖test) Multi-task
MTCNN[44] Customized 0.851 ‖ − 0.820 ‖ − 0.607 ‖ − !

FACEBOXES[45] Customized 0.879 ‖ 0.881 0.857 ‖ 0.853 0.771 ‖ 0.774 #

lffd v1*[14] Customized 0.910 ‖ 0.896 0.881 ‖ 0.865 0.780 ‖ 0.770 #

ASFD-D0*[42] Customized 0.901 ‖ − 0.875 ‖ − 0.744 ‖ − #

RetinaFace[9] MobileNet-0.25 0.914 ‖ − 0.901 ‖ − 0.782 ‖ − !

img2pose*[1] ResNet-18 0.908 ‖ 0.900 0.899 ‖ 0.891 0.847 ‖ 0.839 !

MOS-S ShuffleNet V2 0.929 ‖ 0.922 0.916 ‖ 0.911 0.859 ‖ 0.857 !

MOS-L ResNet-152 0.969 ‖ 0.955 0.961 ‖ 0.952 0.921 ‖ 0.913 !

1.07%, 0.95% and 1.37%. Simultaneously, this method also improves the result of head pose
estimation from 6.49 to 6.14.

Online Feedback data-augmentation. In the online feedback, we add the samples with
small losses and false positive. The results are denoted as +Online Feedback. Table 1 show
that it obtains an improvement of 1.23%, 1.11% and 2.23% for easy, medium and hard sub-
sets respectively. This shows that the proposed feed-back strategy improves the balance of
the data and therefore the accuracy of face detection. In our experiments, we have observed
that arbitrary increase of small faces would bring the training into a bottleneck as many false
detection come from medium or large faces.

4.3 Benchmark Results

Face Detection Accuracy. We train the model on the training set and test on the WIDER
FACE validation and test sets. We follow the standard practices of [30, 46] and employ
flip as well as multi-scale strategies. The standard Average Precision (AP) is computed.
Table 2 shows the comparison in the validation set. Taking the lightweight ShuffleNet V2 as
backbone, MOS-S achieves AP of 92.9%, 91.6% and 85.9% on the three subsets respectively,
surpassing other methods. Taking the lightweight Mobilenet V2 [35] as backbone, MOS-
Mobilenetv2 achieves AP of 94.19%, 93.25% and 88.34% on the three subsets respectively
which confirms that our method is also effective on other lightweight backbones. MOS-S
has achieved trade-off between speed and accuracy.

Using the ResNet152 as backbone, MOS-L achieves AP of 96.9%, 96.1%, 92.1% on the
three subsets respectively.
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(a) Accuracy of landmark detection (b) Pose angle distribution in WIDER FACE
training set

Figure 3: (a) The comparison of MOS-S with other multi-task face detector on AFLW
dataset. (b) The pose angle distribution in WIDER FACE training set. We can observe
that majority of face angles are concentrated below 30 degrees.

Landmark Localization Accuracy. To evaluate the accuracy of the landmark localiza-
tion, we compare MOS-S with the commonly used MTCNN [44] and RetinaFace [9] with
landmark output. We train MOS-S on the WIDER FACE and test on the AFLW [20] dataset.
Fig. 3(a) compares the proposed MOS-S with RetinaFace and MTCNN. As we can see,
MOS-S performs the best.

Table 3: Evaluation on AFLW2000.
Method Yaw Pitch Roll MAE
Dlib(68 points) [18] 23.1 13.6 10.5 15.8
Fan(12 points) [3] 6.36 12.3 8.71 9.12
3DDFA [52] 5.40 8.53 8.25 7.39
Hopenet [34] (α = 2) 6.47 6.56 5.44 6.16
FsaNet [41] 4.50 6.08 4.64 5.07
QuatNet [16] 3.97 5.62 3.92 4.50
MOS-S-widerface 4.52 6.91 6.48 5.97
MOS-L-widerface 4.05 6.29 5.87 5.40
MOS-S-300wlp 3.91 5.42 3.98 4.43

Table 4: Avearge inference time in WIDER
FACE validation set.

Method Time (ms)
RetinaFace-M[9]+ PnP [10](GPU) 7.2
RetinaFace-M[9] + Hopenet [34](GPU) 47.9
RetinaFace-M[9] + FSAnet [41](GPU) 41.1
MOS-S(GPU) 10.8
MOS-S(ARM) 68
MOS-L(GPU) 62.2

Head Pose Estimation Accuracy. We evaluate the pose estimation using the AFLW2000
[52]. Of the six methods [3, 16, 18, 34, 41, 52] compared, MOS-S is the only method to
predict face location and head pose simultaneously. From Table 3, we observe that MOS-S-
widerface performs good in Yaw, but worse in Pitch and Roll. The lower performance of in
Pitch and Roll estimation is likely because of few samples with large pitch and roll angles in
the training data. Fig. 3(b) plots the distribution of the angles. As we can see, the WIDER
FACE dataset has few faces with large pitch and roll angle.

Note that the comparison here is not a completely fair one as MOS is trained using
WIDER FACE while others are trained using 300W-LP [52] which include various distribu-
tion angle data. For fair comparison, we add another experiment by training the model using
only the 300W-LP dataset. MOS-S-300wlp in Table 3 achieves state-of-the-art accuracy and
minimal inference time.

Some examples have been given to compare MOS-S with RetinaFace with different pose
estimation methods in Fig. 4. As we can see, PnP [10] performs poorly while Hopenet [34]
requires more computational time. Our method is able to provide accurate results efficiently.

Comparison with Hyperface. For a fair comparison, we use AFLW as the training
set, same as that in Hyperface [32]. We compared MOS-S and Hyperface-alexnet in face
detection and pose estimation. For face detection, MOS-S achieves mAP of 93.2% on the
FDDB dataset[17], which is better than 90.1% by Hyperface-alexnet. For pose estimation
task, MOS-S achieves 4.89 MAE better than 5.88 by Hyperface-alexnet in the AFLW dataset.
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(a) RetinaFace+PnP [10] (b) RetinaFace+Hopenet [34] (c) MOS-S

Figure 4: Visual comparison of results between MOS-S and RetinaFace (MobileNet-0.25
backbone) with different pose methods. We only show the yaw angle which is most impor-
tant in DFR, and the yellow circle indicates cases with large errors. It takes 7.6ms, 49.0ms,
and 12.1ms to process the images in the first row by the three different methods respectively.

4.4 Inference Efficiency

In order to better compare the results in dynamic face detection, MOS-S is compared with
RetinaFace-M( MobilenetV1[15]) combined with Hopenet or FSAnet. The average time for
images (resized to 640×480) from the WIDER FACE validation set are summarized in Table
4. We measure inference time of MOS using RTX 2060 GPU and ARM platform(RK3399).
With lightweight backbones, MOS-S outperforms state of the art in face detection and pose
estimation with less inference time. With heavy backbones, MOS-L takes about 62.2 ms.
Besides the above, we have also deployed MOS-S using ncnn with multi-threads on ARM
platform and it achieves 15 FPS for a mobile device.

5 Conclusion

Real-time face detection, landmark localization and head pose estimation with low compu-
tational resource are challenging tasks. In this work, we propose a novel low latency and
lightweight backbone to learn the three tasks simultaneously, which facilitates the computa-
tion for DFR in mobile devices such as robots. Uncertain multi-task loss has been proposed
to regularize the learning. Moreover, we propose an online feedback sampling to augment
the data according to the performance of the trained models in the training iterations. The
experimental results show that the proposed method achieves the state-of-the-art results com-
pared with other methods with similar computation resources. Our codes and annotation will
be made publicly available to facilitate further research in the area.
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