ADD-ON TURBO # POWERFUL BLADE DESIGN FOR TURBOMACHINERY AND PROPELLER APPLICATIONS Add comprehensive blade design capabilities to CAESES® that are made for automated workflows such as design explorations and shape optimization with CFD. The flexible blade modeling capabilities allow you to investigate even non-conventional designs. Any detail and innovative idea can be built into the geometry model. As a result, CAESES® is not a black-box tool but rather your highly customized blade modeling environment. #### GEOMETRY MODELING WITH MAXIMUM SHAPE CONTROL - * Define any parametric 2D profile, or readily use NACA profiles - * Create variable 2D meridional contours with flexible controls - * Create function distributions for spanwise blade control - * Create custom camber and thickness distributions - * Use the built-in generic blade object for marine propellers - * Model, vary and automatically fit radii-based fillets - * Optimize related features (endwall contouring, scallops, etc.) - * Optimize blade models along with CAESES® volute setups - * Vary all blade parameters manually or automatically #### **INTEGRATE YOUR TOOLS AND AUTOMATE** - * Integrate all your meshing and analysis tools - * Alternatively, run CAESES® in batch mode as a blade CAD engine - * Create periodic domains for CFD and structural analysis - * Use a variety of standard and blade-related export formats - * Write own export routines for proprietary export formats - * Linux version available for large-scale optimizations on HPC clusters - * Run studies with the integrated sampling & optimization strategies ### **EXAMPLE APPLICATIONS** - * Compressor blades (radial, axial or mixed) - * Turbines (radial, axial) - * Marine and aerospace propellers - * Wind turbine blades - * Fans and blowers - * Mixers