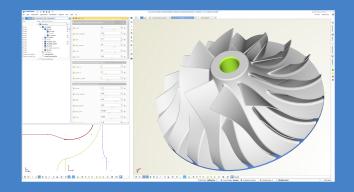
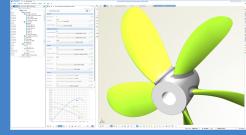
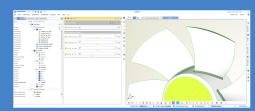


ADD-ON TURBO

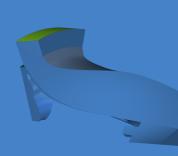
POWERFUL BLADE DESIGN FOR TURBOMACHINERY AND PROPELLER APPLICATIONS


Add comprehensive blade design capabilities to CAESES® that are made for automated workflows such as design explorations and shape optimization with CFD.


The flexible blade modeling capabilities allow you to investigate even non-conventional designs. Any detail and innovative idea can be built into the geometry model. As a result, CAESES® is not a black-box tool but rather your highly customized blade modeling environment.


GEOMETRY MODELING WITH MAXIMUM SHAPE CONTROL

- * Define any parametric 2D profile, or readily use NACA profiles
- * Create variable 2D meridional contours with flexible controls
- * Create function distributions for spanwise blade control
- * Create custom camber and thickness distributions
- * Use the built-in generic blade object for marine propellers
- * Model, vary and automatically fit radii-based fillets
- * Optimize related features (endwall contouring, scallops, etc.)
- * Optimize blade models along with CAESES® volute setups
- * Vary all blade parameters manually or automatically



INTEGRATE YOUR TOOLS AND AUTOMATE

- * Integrate all your meshing and analysis tools
- * Alternatively, run CAESES® in batch mode as a blade CAD engine
- * Create periodic domains for CFD and structural analysis
- * Use a variety of standard and blade-related export formats
- * Write own export routines for proprietary export formats
- * Linux version available for large-scale optimizations on HPC clusters
- * Run studies with the integrated sampling & optimization strategies

EXAMPLE APPLICATIONS

- * Compressor blades (radial, axial or mixed)
- * Turbines (radial, axial)
- * Marine and aerospace propellers
- * Wind turbine blades
- * Fans and blowers
- * Mixers

