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Abstract

Newton-HSS methods, that are variants of inexact Newton meth-
ods different from Newton-Krylov methods, have been shown to be
competitive methods for solving large sparse systems of nonlinear
equations with positive definite Jacobian matrices [Bai and Guo, 2010].
In that paper, only local convergence was proved. In this paper, we
prove a Kantorovich-type semilocal convergence. Then we introduce
Newton-HSS methods with a backtracking strategy and analyse their
global convergence. Finally, these globally convergent Newton-HSS
methods are shown to work well on several typical examples using
different forcing terms to stop the inner iterations.

Keywords. systems of nonlinear equations, semilocal conver-
gence, inexact Newton methods, the Newton-HSS method, globally
convergent Newton-HSS method
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1 INTRODUCTION

Consider solving the system of nonlinear equations with n equations in n
variables

F (x) = 0, (1)

where F : D ⊂ Cn → Cn is a nonlinear continuously differentiable operator
mapping from an open convex subset D of the n-dimensional complex linear
space Cn into Cn, and the Jacobian matrix F ′(x) is sparse, nonsymmetric
and positive definite. This is satisfied in many practical cases (see [3, 4, 6]).
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The Newton method is the most common iterative method for solving (1.1)
(see [23] and [25], for example). It has the following form:

xk+1 = xk − F ′(xk)
−1F (xk), k = 0, 1, · · · . (2)

So it is necessary to solve the Newton equation

F ′(xk)sk = −F (xk), (3)

to obtain the (k+1)th iteration xk+1 = xk + sk. Equation (3) is a system of
linear equations that we denote generally by

Ax = b. (4)

In general, there are two types of iterative methods for solving (4) (see
[22]). One comprises nonstationary iterative methods such as the Krylov
methods. If Krylov subspace methods are used to solve the Newton equa-
tion, then we get Newton-Krylov subspace methods. We call the linear it-
eration, for example the Krylov subspace iteration, an inner iteration, while
the nonlinear iteration that generates the sequence {xk} is an outer iteration.
Newton-CG and Newton-GMRES iterations, using CG and GMRES as an in-
ner iteration respectively, are widely studied (see [13, 14, 22, 11, 12]). The
second type of iterative methods that include methods such as Jacobi, Gauss-
Seidel and successive overrelaxation (SOR) are classical stationary iterative
methods. These methods do not depend on the history of their iterations.
They are based on splittings of A. When splitting the coefficient matrix A
of the linear equation into B and C, A = B − C, splitting methods to solve
(4) of the form

Bxℓ = Cxℓ−1 + b, ℓ = 0, 1, · · · (5)

are obtained. So if these methods are regarded as inner iterations (and we
assume that as is common the initial iterate is 0), we obtain the inner/outer
iteration (see [23, 27, 28, 5, 9, 2, 10, 6, 20])





x0 given,

xk+1 = xk − (T ℓk−1
k + · · ·+ Tk + I)B−1

k F (xk),
Tk = B−1

k Ck,
F ′(xk) = Bk − Ck, k = 0, 1, · · · ,

(6)
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where ℓk is the number of inner iteration steps.

Bai, Golub and Ng [6] have proposed the HSS method for non-Hermitian
positive definite linear systems based on Hermitian and skew-Hermitian split-
ting. They have proved that this method converges unconditionally to the
unique solution of the system of linear equations and, when the optimal pa-
rameters are used, it has the same upper bound for the convergence rate as
that of the CG method.

In [8], Bai and Guo use the HSS method as the inner iteration and ob-
tain the Newton-HSS method to solve the system of nonlinear equations
with non-Hermitian positive-definite Jacobian matrices. Numerical results
on two-dimensional nonlinear convection-diffusion equations have shown that
the Newton-HSS method considerably outperforms the Newton-USOR, the
Newton-GMRES and the Newton-GCG methods in the sense of number of
iterations and CPU time.

There are three fundamental problems concerning the convergence of the
iteration [23]. The first is local convergence which assumes a particular solu-
tion x∗. The second type of convergence, called semilocal, does not require
knowledge of the existence of a solution, but imposes all the conditions on the
initial vectors. Finally, global convergence, the third and most elegant type
of convergence result, states that beginning from an arbitrary point in Cn, or
at least in a large part of it, the iterates will converge to a solution. In [8],
we gave two types of local convergence theorems. In this paper, we will first
present semilocal convergence theorems for the Newton-HSS method. Then,
to obtain the globally convergent result, we define a Newton-HSS method
with backtracking and prove its global convergence. Finally, computational
results are demonstrated.

2 PRELIMINARIES

Throughout this paper, the norm is the Euclidean norm. We denote by
B(x, r) ≡ {y|‖y−x‖ < r} an open ball centred at x with radius r > 0, while
B(x, r) is its closed ball. A∗ represents the conjugate transpose of A. We
also use xk,ℓ with subscripts k as the step of the outer iteration and ℓ as the
step of the inner iteration, respectively.

Inexact Newton methods ([15]) compute an approximate solution of the
Newton equation as follows:
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ALGORITHM IN ([15]).
1. Given x0 and a positive constant tol.
2. For k = 0, 1, 2, · · · until ‖F (xk)‖ ≤ tol‖F (x0)‖ do:

2.1. For a given ηk ∈ [0, 1) find sk that satisfies

‖F (xk) + F ′(xk)sk‖ < ηk‖F (xk)‖.

2.2. Set xk+1 = xk + sk.
For large sparse non-Hermitian and positive definite systems of linear

equations (4), the Hermitian/skew-Hermitian splitting(HSS) iteration method
(see [6, 7]) can be written as:

ALGORITHM HSS ([6])
1. Given an initial guess x0, and positive constants α and tol.
2. Split A into its Hermitian part H and its skew-Hermitian part S

H =
1

2
(A + A∗) and S =

1

2
(A− A∗).

3. For ℓ = 0, 1, 2, · · · until ‖b− Axℓ‖ ≤ tol‖b− Ax0‖, compute xℓ+1 by:

{
(αI + H)xℓ+ 1

2

= (αI − S)xℓ + b,

(αI + S)xℓ+1 = (αI −H)xℓ+ 1

2

+ b.

3 SEMILOCAL CONVERGENCE OF THE

NEWTON-HSS METHOD

Now we present a Newton-HSS algorithm to solve large systems of nonlinear
equations with a positive definite Jacobian matrix (1):

ALGORITHM NHSS (the Newton-HSS method [8]).
1. Given an initial guess x0, positive constants α and tol, and a positive
integer sequence{ℓk}∞k=0.
2. For k = 0, 1, · · · until ‖F (xk)‖ ≤ tol‖F (x0)‖ do:

2.1. Set dk,0 := 0.
2.2. For ℓ = 0, 1, 2, · · · , ℓk − 1, apply Algorithm HSS:

{
(αI + H(xk))dk,ℓ+ 1

2

= (αI − S(xk))dk,ℓ − F (xk),

(αI + S(xk))dk,ℓ+1 = (αI −H(xk))dk,ℓ+ 1

2

− F (xk),
(7)
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and obtain dk,ℓk
such that

‖F (xk) + F ′(xk)dk,ℓk
‖ < ηk‖F (xk)‖, for some ηk ∈ [0, 1), (8)

where H(xk) = 1
2
(F ′(xk)+F ′(xk)

∗) and S(xk) = 1
2
(F ′(xk)−F ′(xk)

∗).
2.3. Set

xk+1 = xk + dk,ℓk
. (9)

In [8], ηk, for all k, is set equal to a positive constant η̃ less than 1 that
is pre-specified before implementing the algorithm. However, the globally
convergent algorithm in the next section is based on different ηk (see [17])
per step.

If the last direction dk,ℓk
at the k-th step is given in terms of the first

direction dk,0 in (7) (here the value is 0), we get

dk,ℓk
= (I − T ℓk

k )(I − Tk)
−1B−1

k F (xk), (10)

where Tk := T (α; xk), Bk := B(α; xk) and




T (α; x) = B(α; x)−1C(α; x),
B(α; x) = 1

2α
(αI + H(x))(αI + S(x)),

C(α; x) = 1
2α

(αI −H(x))(αI − S(x)).
(11)

Then, from the expressions for Tk in (11) and dk,ℓk
in (10), the Newton-HSS

iteration in (9) can be written as:

xk+1 = xk − (I − T ℓk

k )F ′(xk)
−1

F (xk). (12)

In order to get a Kantorovich-type semilocal convergence theorem for the
above Newton-HSS method, we need the following assumption.

ASSUMPTION 3.1. Let x0 ∈ Cn, and F : D ⊂ Cn −→ Cn be G-
differentiable on an open neighbourhood N0 ⊂ D on which F ′(x) is contin-
uous and positive definite. Suppose F ′(x) = H(x) + S(x), where H(x) =
1
2
(F ′(x) + F ′(x)∗) and S(x) = 1

2
(F ′(x) − F ′(x)∗) are the Hermitian and the

skew-Hermitian parts of the Jacobian matrix F ′(x), respectively. In addition,
assume the following conditions hold.
(A1)(THE BOUNDED CONDITION) there exist positive constants β and γ
such that

max{‖H(x0)‖, ‖S(x0)‖} ≤ β, ‖F ′(x0)
−1‖ ≤ γ, ‖F (x0)‖ ≤ δ, (13)
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(A2) (THE LIPSCHITZ CONDITION) there exist nonnegative constants Lh

and Ls such that for all x, y ∈ B(x0, r) ⊂ N0,

{
‖H(x)−H(y)‖ ≤ Lh‖x− y‖,
‖S(x)− S(y)‖ ≤ Ls‖x− y‖. (14)

From Assumption 3.1, F ′(x) = H(x) + S(x), L = Lh + Ls and Banach’s
theorem (see Theorem V.4.3 in [21], or the Perturbation Lemma 2.3.2 in
[23]), Lemma 3.1 easily follows.

LEMMA 3.1. Under Assumption 3.1, we have
1) ‖F ′(x)− F ′(y)‖ ≤ L‖x− y‖;
2) ‖F ′(x)‖ ≤ L‖x− x0‖+ 2β ;
3) If r ≤ 1

γL
, then F ′(x)is nonsingular and satisfies

‖F ′(x)−1‖ ≤ γ

1− γL‖x− x0‖
.

Then we can give the following semilocal convergence theorem.

THEOREM 3.2. Assume that Assumption 3.1 holds with the constants
satisfying

δγ2L ≤ 1− η

2(1 + η2)
, (15)

where η = maxk{ηk} < 1, r = min (r1, r2) with





r1 = α+β

L
(
√

1 + 2ατθ
(2γ+γτθ)(α+β)2

− 1),

r2 = b−
√

b2−2ac
a

,

a = γL(1+η)
1+2γ2δLη

, b = 1− η, c = 2γδ,

(16)

and with ℓ∗ = lim infk→∞ ℓk satisfying 1 ℓ∗ > ⌊ ln η

ln ((τ+1)θ)
⌋, τ ∈ (0, 1−θ

θ
) and

θ ≡ θ(α; x0) = ‖T (α; x0)‖ < 1. (17)

1Here, the ”floor” symbol ⌊·⌋ represents the largest integer less than or equal to the
corresponding real number.
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Then the iteration sequence {xk}∞k=0 generated by the Algorithm NHSS is
well-defined and converges to x∗ which satisfies F (x∗) = 0.

Proof. First of all, we will show the following estimate about the iterative
matrix T (α; x) of the linear solver: if x ∈ B(x0, r), then

‖T (α; x)‖ ≤ (τ + 1)θ < 1. (18)

In fact, from the definition of B(α; x) in (11) and Assumption (A2), we can
obtain

‖B(α; x)−B(α; x0)‖
≤ 1

2
‖(H(x)−H(x0)) + (S(x)− S(x0))‖+ 1

2α
‖H(x)S(x)−H(x0)S(x0)‖

≤ L
2
‖x− x0‖+ 1

2α
(‖(H(x)−H(x0)) + H(x0)‖‖S(x)− S(x0)‖+ ‖H(x)−H(x0)‖‖S(x0)‖)

≤ L
2
‖x− x0‖+ 1

2α
((Lh‖x− x0‖+ β)Ls‖x− x0‖+ βLh‖x− x0‖)

≤ L
2
‖x− x0‖+ 1

2α
(L2

2
‖x− x0‖2 + βL‖x− x0‖)

= L2

4α
‖x− x0‖2 + (α+β)L

2α
‖x− x0‖.

(19)

Similarly, we have

‖C(α; x)− C(α; x0)‖ ≤
L2

4α
‖x− x0‖2 +

(α + β)L

2α
‖x− x0‖. (20)

Then because F ′(x) = B(α; x)−C(α; x) and the definition of T (α; x) in (11),
it follows that

‖B(α; x0)
−1‖ = ‖(I − T (α; x0))F

′(x0)
−1‖

< (1 + θ)γ
< 2γ.

(21)

Meanwhile, r ≤ r1 implies that

L2r2 + 2(α + β)Lr <
2ατθ

2γ + γτθ
<

2α

γ
. (22)

So, again using the Banach theorem, we get

‖B(α; x)−1‖ ≤ ‖B(α;x0)−1‖
1−‖B(α;x0)−1‖‖B(α;x)−B(α;x0)‖

≤ 8αγ

4α−2γ(L2‖x−x0‖2+2(α+β)L‖x−x0‖) .
(23)

Hence, as in Theorem 3.2 of [8], this together with (17), (19), (20) and (22),
the estimate about the inner iteration matrix T (α; x) and T (α; x0) is obtained



8

as follows:

‖T (α; x)− T (α; x0)‖
= ‖B(α; x)−1(C(α; x)− C(α; x0))−B(α; x)−1(B(α; x)−B(α; x0))B(α; x0)

−1C(α; x0)‖
≤ 4γ(L2‖x−x0‖2+2(α+β)L‖x−x0‖)

4α−2γ(L2‖x−x0‖2+2(α+β)L‖x−x0‖)
< τθ.

(24)

Consequently,

‖T (α; x)‖ ≤ ‖T (α; x)− T (α; x0)‖+ ‖T (α; x0)‖ ≤ (τ + 1)θ < 1. (25)

Secondly, we claim that the following iterative sequence {tk} converges mono-
tone increasingly to r2:

{
t0 = 0,

tk+1 = tk − g(tk)
h(tk)

, k = 0, 1, 2, · · · , (26)

where
{

g(t) = 1
2
at2 − bt + c,

h(t) = at− 1.
(27)

In short, the following inequalities hold:

tk < tk+1 < r2 for k = 0, 1, · · · . (28)

In fact, from inequality (15) we have

δγ2L ≤ (1 + 2γ2δLη)(1− η)

2(1 + η)
,

that is,

c = t1 <
b

a
.

Based on g(t1) = 1
2
ac2 +ηc > 0 = g(r2), and g(t) decreasing in [0, b

a
], it holds

that
t1 < r2,

so (28) is true for k = 0.
Suppose that tk−1 < tk < r2, we consider

tk+1 = tk −
g(tk)

h(tk)
.
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Since g(t) decreasing and g′(t) increasing in [0, b
a
] imply that g(tk) > 0 and

g′(tk) ≤ 0, respectively. Furthermore, h(tk) ≤ g′(tk) implies −h(tk) ≥ 0.
Hence,

tk+1 > tk.

On the other hand, the function

t− g(t)

g′(t)

increases in [0, b
a
]. Combining with

−g(tk)

h(tk)
≤ − g(tk)

g′(tk)
,

we have

tk+1 ≤ r2 −
g(r2)

g′(r2)
= r2.

Hence, (28) is also true for k. Consequently, the claim (28) holds for all
nonnegative integers. Furthermore, there exists t∗ such that limk tk = t∗.
Then we can assert t∗ = r2 (see [26]).
Finally, we prove by induction:





‖xk+1 − xk‖ ≤ tk+1 − tk,
‖xk+1 − x0‖ ≤ tk+1 − t0 ≤ r2,
‖F (xk)‖ ≤ 1−γLtk

γ(1+η)
(tk+1 − tk), for k = 0, 1, · · · .

(29)

Since
‖x1 − x0‖ = ‖F ′(x0)

−1F (x0) + T ℓ∗
0 F ′(x0)

−1F (x0)‖
≤ γ(1 + θℓ∗)δ
≤ 2γδ
= t1 − t0,

and

‖F (x0)‖ ≤ δ ≤ 2δ

1 + η
=

1− γLt0
γ(1 + η)

(t1 − t0),

(29) is correct for k = 0. Suppose that (29) holds for all nonnegative integers
less than k. We need to prove it holds for k.
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It follows from the integral mean-value theorem and Lemma 3.1 that when
x, y ∈ B(x0, r),

‖F (x)− F (y)− F ′(y)(x− y)‖ = ‖ ∫ 1
0 F ′(y + t(x− y))(x− y)dt− F ′(y)(x− y)‖

≤ ∫ 1
0 ‖F ′(y + t(x− y))− F ′(y)‖‖x− y‖dt

≤ ∫ 1
0 Lt‖x− y‖2dt

= L
2
‖x− y‖2.

(30)

Therefore, because of (8) and xk−1, xk ∈ B(x0, r2),

‖F (xk)‖
≤ ‖F (xk)− F (xk−1)− F ′(xk−1)(xk − xk−1)‖+ ‖F (xk−1) + F ′(xk−1)(xk − xk−1)‖
≤ L

2
‖xk − xk−1‖2 + η‖F (xk−1)‖,

then using the inductive hypothesis, we have

γ(1+η)
1−γLtk

‖F (xk)‖
≤ γ(1+η)

1−γLtk
(L

2
(tk − tk−1)

2 + η 1−γLtk−1

γ(1+η)
(tk − tk−1))

≤ 1
2

(1+η)γL

1−γLtk
(tk − tk−1)

2 + η
1−γLtk

(tk − tk−1)

≤ 1
2

a
−h(tk)

(tk − tk−1)
2 + η

−h(tk)
(tk − tk−1).

The above last inequality is true because (15) implies δ ≤ 1
2γ2L

, therefore

1− γLtk ≥ −h(tk), while tk > t1 = 2γδ implies (1+η)γL

1−γLtk
< a

−h(tk)
.

Hence, from

g(tk)− g(tk−1)− h(tk)(tk − tk−1) =
1

2
a(tk − tk−1)

2 + η(tk − tk−1),

we obtain

γ(1+η)
1−γLtk

‖F (xk)‖
≤ 1

−h(tk)
(g(tk)− g(tk−1)− h(tk)(tk − tk−1))

= tk+1 − tk.

(31)

Consequently, from the iterative formula (12), (25) and Lemma 3.1, we get

‖xk+1 − xk‖ ≤ ‖(I − T ℓk

k )F ′(xk)
−1F (xk)‖

≤ (1 + ((τ + 1)θ)ℓ∗) γ
1−γLtk

‖F (xk)‖, .
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Then, based on the choice of ℓ∗, it follows that

‖xk+1 − xk‖ ≤ (1 + η)
γ

1− γLtk
‖F (xk)‖,

so that, from (31), the first inequality in (29) is also correct for k. The second
one in (29) is easy to get from:

‖xk+1 − x0‖ ≤ ‖xk+1 − xk‖+ ‖xk − xk−1‖+ · · ·+ ‖x1 − x0‖
≤ tk+1 − tk + tk − tk−1 + · · ·+ t1 − t0
≤ tk+1 − t0
≤ r2.

So, (29) is true for all k. Since the sequence {tk} converges to t∗, the sequence
{xk} also converges, to say x∗. Because ‖T (α; x∗)‖ < 1 (see [6]), from the
iteration (12), we have

F (x∗) = 0.

Therefore, the conclusion of this theorem follows.
Note.The semilocal convergence of inexact Newton methods was proved

in [20] under the following assumptions:




‖F ′(x0)
−1F (x0)‖ ≤ β,

‖F ′(x0)
−1(F ′(x)− F ′(y))‖ ≤ γ‖x− y‖,

‖F ′(x0)−1sn‖
‖F ′(x0)−1F (xn)‖ ≤ ηn,

(32)

and

βγ ≤ g1(η), (33)

where

g1(η) =

√
(4η + 5)3 − (2η2 + 14η + 11)

(1 + η)(1− η)2
. (34)

Later, Shen and Li [26] substituted g1(η) with g2(η), where

g2(η) =
(1− η)2

(1 + η)(2(1 + η)− η(1− η)2
. (35)

These could be used to obtain convergence results for the Newton-HSS method
as a subclass of these techniques. However, our detailed proof in Theorem
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Figure 1: graphs of g1(η), g2(η) and g3(η)

3.2 is targeted specifically at the Newton-HSS method and so gives better
bounds for the semilocal convergence result, see Figure 1. The corresponding
bound in our theorem is

g3(η) =
1− η

2(1 + η2)
. (36)

An unconditional convergence theorem of the HSS iteration (see Theorem
2.2 in [6]) shows that the Euclidean norm of T satisfies

‖T (α; x)‖ ≤ max
λ∈σ(H)

α− λ

α + λ
< 1,

where λ(·) represents the spectrum of the corresponding matrix. Hence Equa-
tion (3.11) holds and is not part of the assumption. It serves only to define
the scalar parameter θ.
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4 GLOBAL CONVERGENCE OF THE NEWTON-

HSS METHOD

In the previous section, we have answered an important question (see [23]).
From a specific initial approximation x0, the existence of solutions can be
ascertained directly from the iterative process. This point x0 needs to satisfy
some conditions. These may (at least in principle) be used to find solutions.
In fact, in [19] we have utilized such criteria on x0 to solve an integral equa-
tion. We now look at a stronger type of convergence. A globally convergent
algorithm for solving (1) means an algorithm with the property that, for any
initial iterate, the iteration either converges to a root of F or fails to do so
in one of a small number of ways (see [22]). There are three main ways that
such algorithms can be globalized: linear search methods, trust region meth-
ods and continuation/homotopy methods. Various inexact Newton methods
with such global strategies are at present widely considered to be among the
best approaches for solving nonlinear systems of equations, especially globally
convergent Newton-GMRES subspace methods (see [16, 22, 24, 12, 1, 18]).

A general framework can be obtained by augmenting the inexact Newton
condition with a sufficient decrease condition on ‖F‖ (see [16]).
ALGORITHM GIN (global inexact Newton method [16]).
Let x0 and t ∈ (0, 1) be given.
1. For k = 0 step 1 until ∞ do:

1.1. For a given ηk ∈ [0, 1), find an sk that satisfies

‖F (xk) + F ′(xk)sk‖ ≤ ηk‖F (xk)‖

and

‖F (xk + sk)‖ ≤ [1− t(1− ηk)]‖F (xk)‖.
1.2. Set xk+1 = xk + sk.
Eisenstat and Walker [16] give a thorough demonstration that trust re-

gion methods are in some sense dual to line search methods and the inexact
Newton method with practically implemented Goldstein-Armijo conditions
can be regarded as a special case of Algorithm GIN.

So, in this section, we select a backtracking linear search paradigm to
implement the Newton-HSS method. Eisenstat and Walker [16] offer the
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following inexact Newton backtracking method containing strong global con-
vergence properties combined with potentially fast local convergence:

ALGORITHM INB (inexact Newton backtracking method [16, 17]).
Let x0, ηmax ∈ [0, 1), t ∈ (0, 1), and 0 < θmin < θmax < 1 be given.
1. For k = 0 step 1 until ∞ do:

1.1. Choose ηk ∈ [0, ηmax) and dk such that

‖F (xk) + F ′(xk)dk‖ ≤ ηk‖F (xk)‖.

1.2. Set dk = dk and ηk = ηk.
1.3. While ‖F (xk + dk)‖ > [1− t(1− ηk)]‖F (xk)‖ do:

1.3.1 Choose θ ∈ [θmin, θmax].
1.3.2 Update dk ←− θdk and ηk ←− 1− θ(1− ηk).

1.4. Set xk+1 = xk + dk.
Eisenstat and Walker [17] have examined in great detail the choice of the

parameter ηk (the so-called forcing term). This is used to reduce the effort
required to obtain too accurate a solution of the Newton equation.

Choice 1: For ρ = 1+
√

5
2

and any η0 ∈ [0, 1), choose

ηk =
|‖F (xk)‖ − ‖F (xk−1) + F ′(xk−1)dk−1‖|

‖F (xk−1)‖
, k = 1, 2, . . . ,

with
Choice 1 safeguard: ηk = max{ηk, η

ρ
k−1} wherever ηρ

k−1 > 0.1.
Choice 2: Given λ ∈ [0, 1] and ρ ∈ (1, 2], select any η0 ∈ [0, 1) and choose

ηk = λ(
‖F (xk)‖
‖F (xk−1)‖

)ρ, k = 1, 2, . . . ,

with
Choice 2 safeguard: ηk = max{ηk, ληρ

k−1} wherever ληρ
k−1 > 0.1.

Then in both cases after applying the above two safeguards, it is necessary
for Algorithm INB to use another additional safeguard (see [24]):

ηk ←− min{ηk, ηmax}. (37)

When ηk‖F (xk)‖ is small enough, a larger ηk can actually be used for
the outer iteration. So Pernice and Walker [24] impose the following final
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safeguard:

ηk ←− 0.8ǫ/‖F (xk)‖ wherever ηk ≤ 2ǫ/‖F (xk)‖. (38)

Now we give the Newton-HSS method with backtracking as follows.
ALGORITHM NHSSB (the Newton-HSS method with back-

tracking).
Let x0, ηmax ∈ [0, 1), t ∈ (0, 1), 0 < θmin < θmax < 1, tol > 0 be given.
1. While ‖F (xk)‖ > tol min{‖F (x0)‖,

√
n} and k < 1000 do:

1.1. Choose ηk ∈ [0, ηmax], apply Algorithm HSS to the kth Newton equa-
tion to obtain

dk such that

‖F (xk) + F ′(xk)dk‖ < ηk‖F (xk)‖.

1.2. Perform the Backtracking Loop (BL), i.e.,
1.2.1. Set dk = dk, ηk = ηk.
1.2.2. While ‖F (xk + dk)‖ > [1− t(1− ηk)]‖F (xk)‖do:

1.2.2.1. Choose θ ∈ [θmin, θmax].
1.2.2.2. Update dk = θdk and ηk = 1− θ(1− ηk).

1.3. Set xk+1 = xk + dk.

Assumption 3.1 guarantees Lemma 3.1 holds. That means that F ′ is
Lipschitz continuous with Lipschitz constant L, and there exists a positive
constant mf such that ‖F ′(x)−1‖ ≤ mf on the set

Ω({xn}, r) =
∞⋃

n=0

{x|‖x− xn‖ ≤ r}.

Hence we have the following two global convergence theorems for NHSSB by
Theorem 8.2.1 of Kelley [22], Theorems 2.2 and 2.3 of Pernice and Walker
[24].

THEOREM 4.1. Let x0 ∈ Cn and t ∈ (0, 1) be given. Assume that {xk}
is given by Algorithm NHSSB, in which each ηk is given by Choice 1 followed
by all “the safeguards”. Furthermore, suppose that {xk} is bounded, and
Assumption 3.1 holds. Then {xk} converges to a root {x∗} of F . Moreover

1) if ηk −→ 0, the convergence is q-superlinear, and
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2) if ηk ≤ Kη‖F (xk)‖p for some Kη > 0, the convergence is q-superlinear
with q-order 1 + p.

THEOREM 4.2. Let x0 ∈ Cn and t ∈ (0, 1) be given. Assume that {xk}
is given by Algorithm NHSSB, in which each ηk is given by Choice 2 followed
by all “the safeguards”. Furthermore, suppose that {xk} is bounded, and
Assumption 3.1 holds. Then {xk} converges to a root {x∗} of F . Moreover,

1) if λ < 1, the convergence is of q-order ρ, and
2) if λ = 1, the convergence is of r-order ρ and of q-order p for every

p ∈ [1, ρ).

Remark. In fact, it is not necessary here to use the first bound condition
(A1) in Assumption 3.1 for proving these two theorems.

5 NUMERICAL TESTS

In this section, we illustrate Algorithm NHSSB with five kinds of forcing
terms on nonlinear convection-diffusion equations. Since a comparison be-
tween the Newton-HSS method and other methods such as Newton-GMRES,
Newton-USOR and Newton-GCG were shown in detail in [8], in this paper
we just demonstrate the effectiveness of the Newton-HSS method with back-
tracking and the effect of the forcing terms. Also, comparison between the
Newton-HSS method and the Newton-GMRES method with backtracking
and forcing terms is shown.

We consider the two-dimensional nonlinear convection-diffusion equation

{
−(uxx + uyy) + q(ux + uy) = −eu, (x, y) ∈ Ω,

u(x, y) = 0, (x, y) ∈ ∂Ω,
(39)

where Ω = (0, 1)× (0, 1), with ∂Ω its boundary, and q is a positive constant
used to control the magnitude of the convective terms (see [3, 4, 8]). Now
we apply the five-point finite-difference scheme to the diffusive terms and the
central difference scheme to the convective terms, respectively. Let h = 1

N+1

and Re = qh

2
denote the equidistant step-size and the mesh Reynolds number,
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respectively. Then we get the system of nonlinear equations of the form:

{
Au + h2eu = 0,
u = (u1, u2, · · · , uN)⊤, ui = (ui1, ui2, · · · , uiN)⊤, i = 1, 2, · · · , N,

where the coefficient matrix of the linear term is

A = Tx ⊗ I + I ⊗ Ty.

Here, ⊗ means the Kronecker product, and Tx and Ty are the tridiagonal
matrices

Tx = tridiag(t2, t1, t3), Ty = tridiag(t2, 0, t3),

with
t1 = 4, t2 = −1−Re, t3 = −1 + Re.

Discretization is on a 100 × 100 uniform grid, so that the dimension
n = 10000. In the implementations of Algorithm NHSSB, α = qh/2 is
adopted (see [6]). Five types of forcing terms in the figures are represented
as follows:
Choice 1 denotes Choice 1 with Choice 1 safeguard, additional safeguard and
final safeguard;
Choice 2 denotes Choice 2 with Choice 2 safeguard, additional safeguard and
final safeguard;
Choice 3 ηk = 0.1, for all k;
Choice 4 ηk = 0.0001, for all k;
Choice 5 ηk = |‖F (xk)‖−‖F (xk−1)+F ′(xk−1)dk−1‖|

‖F (xk)‖ , k = 1, 2, . . . , with Choice 1
safeguard, additional safeguard and final safeguard.

Note. Choice 5 is a new option that we introduce that has a different
denominator from Choice 1. Since the term ‖F (xk)‖ is closer to the current
iterate than ‖F (xk−1)‖, it is reasonable to adopt this value in our forcing
term. From the proof of the local convergence order of Choice 1 (see Theo-
rem 2.2 of [17]), the corresponding estimate can easily be obtained as:

‖xk+1 − x∗‖ ≤ β(‖xk − x∗‖2 + ‖xk−1 − x∗‖2).
It looks a bit weaker than q-superlinear and two-step q-quadratic conver-
gence, but it is effective in numerical tests (see Figures 4 and 7).
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Figure 2: The total number of inner iterations versus the norms of the non-
linear function values when q = 200 and q = 600 respectively with x0 = e.

We follow [17] in our choice of values for the other parameters. We set
η0 = 0.5 in Choice 1, 2 and 5 and use ηmax = 0.9 for safeguards in Choices
1, 2 and 5. As for the backtracking search, we choose t = 10−4, θmin = 1/10,
θmax = 1/2. We select θ in Step 1.2.2.1 of Algorithm NHSSB such that the
merit function g(θ) ≡ ‖F (xk + θdk)‖2 is minimized over [θmin, θmax]. λ = 1
and ρ = (1+

√
5)/2 are chosen in Choice 2 as they have been seen to be most

effective by [17].

We give the results in the following six figures. The horizontal axis indi-
cates the total number of inner iterations (denoted as “IT”), the total number
of outer iterations (denoted as “OT”) and the total CPU time (denoted as
“t”) respectively. The corresponding vertical axis is log ‖F (xk)‖. In every
figure, results for two values of q (200 and 600) are shown. We let e be the
vector of all 1s. We use x0 = e in the first three figures and x0 = 16e in
the last three figures. The reason for choosing these two points is that the
solution is near 0 and any points over 16e can cause problems with the con-
vergence for some choices of parameter values resulting in a large increase
in run time. For example, when we let x0 = 17e and x0 = 18e, we require
more than our limit of 1000 inner iterations to get the direction dk for the
iteration with Choice 4.

One sees from Figure 2 that fewer inner iterations are needed in the case
of Choice 5 than in the other cases. The poorest is Choice 4. Choices 1, 2 and
3 are almost the same. But a different situation is found with the number of
outer iterations. That is, the least number of outer iterations are performed
for Choice 4, then the order is Choice 1, 5, 2 and 3 (see Figure 3). This is
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Figure 3: The number of outer iterations versus the norms of the nonlinear
function values when q = 200 and q = 600 respectively with x0 = e.
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Figure 4: CPU times versus the norms of the nonlinear function values when
q = 200 and q = 600 respectively with x0 = e.
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Figure 5: The total number of inner iterations versus the norms of the non-
linear function values when q = 200 and q = 600 respectively with x0 = 16e.
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Figure 6: The number of outer iterations versus the norms of the nonlinear
function values when q = 200 and q = 600 respectively with x0 = 16e.
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Figure 7: CPU times versus the norms of the nonlinear function values when
q = 200 and q = 600 respectively with x0 = 16e.
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Figure 8: The total number of inner iterations versus the norms of the non-
linear function values when q = 600 and q = 2000 respectively with x0 = e
and Choice 1 for the Newton-HSS method and the Newton-GMRES method.
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Figure 9: The total number of inner iterations versus the norms of the non-
linear function values when q = 600 and q = 2000 respectively with x0 = 16e
and Choice 1 for the Newton-HSS method and the Newton-GMRES method.

not that surprising as, if the inner equation is solved more accurately (hence
more inner iterations), one might expect that fewer outer iterations would
be needed. So, because the initial point is close to the solution, it is not very
astonishing that the CPU times have the same behaviour as the number of
iterations in Figure 3. This is shown in Figure 4.

When the starting point is far from the solution (for example, x0 = 16e
in our tests), more inner iterations are needed than in the case of x0 = e.
The number of inner iterations is still the main influence on the CPU time,
see Figures 5, 6 and 7. Choice 5 is still a good choice.

Though Newton-HSS and Newton-GMRES have been compared in [8],
the comparison using a globalization strategy and choosing forcing terms
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dynamically wasn’t carried out. Such a comparison is given in Figures 8 and
9, using GMRES(20). One can notice that Newton-GMRES needs more
inner iterations because some inner GMRES iterations still don’t converge
after the maximum number of inner iteration steps (here, it is 1000). Tests
with other different forcing terms give similar results to Figures 8 and 9.

Note. The Newton-HSS method with a back-tracking global strategy and
choices of forcing terms performs better than the Newton-GMRES method
with same global strategy and choices, especially on the problem (39) and for
big Reynolds numbers. But we are restricted in our choice of test problems
because the Jacobian matrix F ′(x) needs to be positive definite. On the other
hand, although Newton-HSS cannot be implemented in the Jacobian-free way
as Newton-GMRES, it is less important for Newton-HSS. GMRES needs to
compute and store r, Ar,A2r, · · · (r is the residual), but HSS is a stationary
iterative and so avoids this. For solving systems of nonlinear equations (1),
one can use

F ′(x)d ≈ F (x + ǫd)− F (x)

ǫ
, (40)

where ǫ is a small perturbation (say, see [13]), to carry out Jacobian-free
Newton-GMRES. While, in Newton-HSS, (▽hF )(x) (see [22]) can be intro-
duced, where

(▽hF )(x)j =





F (x+h‖x‖ej)−F (x)

h‖x‖ , x 6= 0,
F (hej)−F (x)

h
, x = 0,

(41)

to implement derivative-free Newton-HSS. Furthermore, it’s very easy to
compute Jacobian matrices for some problems such as (39).

6 CONCLUSIONS

We have proved the semilocal convergence for the Newton-HSS method which
ensures that the sequence {xk} produced by Algorithm NHSS converges to
the solution of the system of nonlinear equations (1) under some reasonable
assumptions. This means that in principle any point can be tested to be an
effective initial point or not by checking this semilocal convergence theorem.
But in order to consider the convergence of iterates starting from an arbitrary
point, we present Algorithm NHSSB combining the Newton-HSS method
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with a backtracking strategy and prove global convergence with two typical
forcing terms. Finally, numerical tests are shown on convection-diffusion
equations. We compare five choices for the stopping criteria of the inner
iterations. Among them, from the results in this paper, Choice 5 needs the
least run time.
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