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Abstract

In a wide number of applications in computational science and engineering the
solution of large linear systems of equations with several right-hand sides given at
once is required. Direct methods based on Gaussian elimination are known to be
especially appealing in that setting. Nevertheless when the dimension of the problem
is very large, preconditioned block Krylov space solvers are often considered as the
method of choice. The purpose of this paper is thus to present iterative methods
based on block restarted GMRES that allow variable preconditioning for the solution
of linear systems with multiple right-hand sides. The use of flexible methods is
especially of interest when approximate possibly iterative solvers are considered
in the preconditioning phase. First we introduce a new variant of block flexible
restarted GMRES that includes a strategy for detecting when a linear combination
of the systems has approximately converged. This explicit block size reduction is
often called deflation. We analyze the main properties of this flexible method based
on deflation and notably prove that the Frobenius norm of the block residual is
always nonincreasing. We also present a flexible variant based on both deflation and
truncation to especially be used in case of limited memory. Finally we illustrate the
numerical behavior of these flexible block methods on large industrial simulations
arising in geophysics, where indefinite linear systems of size up to one billion of
unknowns with multiple right-hand sides have been successfully solved in a parallel
distributed memory environment.
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1 Introduction

We consider block Krylov space methods for the solution of linear systems of equations
with p right-hand sides given at once

AX = B (1)

where A ∈ C
n×n is supposed to be a nonsingular matrix of large dimension, B ∈ C

n×p

is full rank and X ∈ C
n×p. We denote X0 ∈ C

n×p the initial block iterate and R0 =
B − AX0 the initial block residual. In the case of no preconditioning, as stated in
[20, 21] a block Krylov space method for solving the p systems is an iterative method
that generates approximations Xm ∈ C

n×p with m ∈ N such that

Xm − X0 ∈ Km(A,R0)

where the block Krylov space Km(A,R0) is defined as

Km(A,R0) =

{

m−1
∑

k=0

AkR0γk, ∀ γk ∈ C
p×p, with k | 0 ≤ k ≤ m − 1

}

⊂ C
n×p.

When the right-hand sides are available simultaneously, block Krylov methods are
appealing at least for two reasons. First they enable the systematic use of operations
on a block of vectors instead of on a single vector. Depending on the structure of A,
this may considerably reduce the number of memory accesses ([6], [27, Section 3.7.2.3]).
Secondly, by construction, the block Krylov space Km(A,R0) contains all Krylov sub-
spaces generated by each initial residual Km(A,R0(:, i)) for i such that 1 ≤ i ≤ p and all
possible linear combinations of the vectors contained in these subspaces. Thus, contrary
to the single right-hand side case (p = 1), the solution of each linear system is sought in
a potentially richer space leading hopefully to a reduction in terms of iteration count.
We refer the reader to [20] for a recent overview on block Krylov subspace methods and
note that most of the standard Krylov subspace methods have a block counterpart (see
e.g. block GMRES [51], block BiCGStab [19] and block QMR [16]).

When solving very large systems of linear equations resulting, e.g., from the dis-
cretization of partial differential equations in three dimensions, the use of preconditioning
techniques based on a possibly nonlinear, iteration dependent, operator is often consid-
ered. This is the case when adaptive preconditioners using information obtained from
previous iterations [4, 15] are used or when inexact solutions of the preconditioning sys-
tem using, e.g., adaptive cycling strategy in multigrid [34] or approximate interior solvers
in domain decomposition methods [47, Section 4.3] are considered. In the past years sev-
eral authors have proposed Krylov subspace methods that allow variable preconditioning
for the case of a linear system with a single right-hand side; see [3, 33, 39, 46, 49] among
others.

To the best of our knowledge we note however that these developments have rarely
addressed the case of linear systems with multiple right-hand sides, exception made of
[14] where a flexible variant of block restarted GMRES is shortly described. To allow
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variable preconditioning also for the solution of multiple right-hand side problems it
seems natural to combine algorithms related to both flexible Krylov subspace methods
and block Krylov space methods. In this paper we propose to derive flexible variants of
block restarted GMRES and simultaneously pay special attention to the computational
cost and memory requirements of the derived methods. Although potentially appealing
as discussed before, block GMRES based algorithms are known to be computationally
expensive due to the cost of orthogonalization [20]. Thus a primary concern when de-
riving those variants is to remove useless information for the convergence as soon as
possible during the iterative procedure. This supposes to include strategies for detecting
when a linear combination of the p systems has approximately converged. This explicit
block size reduction is later called deflation as discussed in [20]. The first strategy to
remove useless information from a block Krylov subspace is called initial deflation. It
consists in detecting linear dependency in the block right-hand side B or in the initial
block residual R0 ([20, Section 12] and [27, Section 3.7.2]). This requires us to compute
numerical ranks using rank-revealing QR-factorizations [10] or singular value decompo-
sitions [17] according to a certain deflation tolerance [22]. The linear dependency in the
block residual can also be detected at each iteration of the block Krylov method. This
has been notably implemented both in the hermitian [32, 38] and nonhermitian cases
[1, 5, 12, 16, 30, 35] for block Lanczos methods. It has then been extended to GMRES,
FOM [37] and GCR [28] respectively for block Arnoldi methods. A cheap variant in
terms memory of block GCR with deflation is also proposed in [43], this method builds
the block solution using only one column of its block residual (the one of maximal Eu-
clidean norm). When a restarted method is used, deflation can also be performed at
each initial computation of the block residual [20, Section 14]. This strategy spares some
rank revealing QR-factorizations or singular value decompositions and can sometimes
be as efficient as methods based on deflation at each iteration.

The contribution of this paper will thus be twofold. First we will derive flexible vari-
ants of block GMRES that include deflation at the restart and secondly we will detail the
convergence properties of those methods. In particular we will show that for some norms
including the Frobenius norm, the norm of the block residual is nonincreasing along the
iterations and show the relevance of the approach on a challenging application. This
paper is organized as follows. In Section 2 we introduce the block flexible GMRES(m)
method as a natural combination of block GMRES(m) and Flexible GMRES(m). Then
in Section 3 we propose two variants of block flexible GMRES(m) based on deflation and
analyze their main convergence properties. Furthermore we demonstrate the effective-
ness of the proposed algorithms on a challenging application in geophysics in Section 4.
Finally we draw some conclusions in Section 5.
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2 A flexible variant of block restarted GMRES

2.1 Notations

Throughout this paper we denote ‖.‖2 the Euclidean norm, ‖.‖F the Frobenius norm,
Ik ∈ C

k×k the identity matrix of dimension k and 0i×j ∈ C
i×j the zero rectangular

matrix with i rows and j columns. H denotes the transpose conjugate operation. Given a
vector d ∈ C

k with components di, D = diag(d1, . . . , dk) is the diagonal matrix D ∈ C
k×k

such that Dii = di. If C ∈ C
k×l we denote the singular values of C by σ1(C) ≥ · · · ≥

σmin(k,l)(C) ≥ 0. Finally em ∈ C
n denotes the mth canonical vector of C

n. Regarding the
algorithmic part (Algorithms 1-4), we adopt notations similar to those of MATLAB in
the presentation. For instance, U(i, j) denotes the Uij entry of matrix U , U(1 : m, 1 : j)
refers to the submatrix made of the first m rows and first j columns of U and U(:, j)
corresponds to its jth column.

2.2 Block flexible GMRES

In this section we present a block GMRES algorithm that allows variable preconditioning
referred to as BFGMRES(m) where m denotes the maximum projection dimension (also
called restart parameter). As briefly described in [14] it is derived as a natural combina-
tion of two existing algorithms: block GMRES (BGMRES) [51] and flexible GMRES(m)
[39]. BGMRES has been presented for the first time by Vital [51]. Since then numerous
variants have been proposed; see [13, 25, 26, 29, 40, 41, 42] and also [18, 31] for versions
exploiting spectral information to improve the convergence rate. Next we will introduce
a flexible variant relying on a block version of the Arnoldi method. Throughout the pa-
per, the orthogonalization scheme chosen is block modified Gram-Schmidt, although it
is clear that one can change it at will with similar convergence effects as for the GMRES
algorithm in floating point arithmetic.

2.2.1 Algorithm of block flexible GMRES

First we present in Algorithm 1 the block orthogonalization procedure used in the flexible
setting, where M−1

j denotes the preconditioning operator at step j (1 ≤ j ≤ m).

4



Algorithm 1 Flexible block Arnoldi with block Modified Gram-Schmidt: computation
of Vj+1, Zj and H̄j for 1 ≤ j ≤ m with V1 ∈ C

n×p such that V H
1 V1 = Ip

1: for j = 1, . . . ,m do

2: Zj = M−1
j Vj

3: S = AZj

4: for i = 1, . . . , j do

5: Hi,j = V H
i S

6: S = S − ViHi,j

7: end for

8: Compute the QR decomposition of S as S = QR with Q ∈ C
n×p and R ∈ C

p×p

9: Set Vj+1 = Q, Hj+1,j = R and Hi,j = 0p×p for i > j + 1
10: Define Zj = [Z1, . . . , Zj ], Vj+1 = [V1, . . . , Vj+1], H̄j = (Hk,l)1≤k≤j+1,1≤l≤j

11: end for

The flexible block Arnoldi method leads to the following relation (later called block
flexible Arnoldi relation), for 1 ≤ j ≤ m,

A [Z1, . . . , Zj ] = [V1, V2, . . . , Vj+1]

















H1,1 H1,2 . . . H1,j

H2,1 H2,2 . . . H2,j

0p×p H3,2 . . .
...

...
. . .

. . .
...

0p×p 0p×p 0p×p Hj+1,j

















.

Equivalently with notations introduced in Algorithm 1 line 10 the orthogonalization
procedure produces matrices Zj ∈ C

n×jp, Vj+1 ∈ C
n×(j+1)p and H̄j ∈ C

(j+1)p×jp which
satisfy

AZj = Vj+1 H̄j. (2)

It should be noticed that H̄j is no longer a Hessenberg matrix but a block Hessenberg
matrix. More precisely its block sub-diagonal is made of upper triangular blocks of
size p × p. BFGMRES(m) (given in Algorithm 2) is a straightforward combination of
block GMRES and flexible GMRES as briefly described in [14]. The proposed variant
uses the flexible block version of the Arnoldi method with modified block Gram-Schmidt
presented in Algorithm 1. In Algorithm 2 we denote by Bj ∈ C

(j+1)p×p the representation
of the block residual R0 = B −AX0 in the Vj+1 basis (R0 = Vj+1Bj) and by Yj ∈ C

jp×p

the solution of the following minimization problem:

Pr : Yj = argmin
Y ∈Cjp×p

||Bj − H̄jY ||F . (3)

The goal of this paper is to guarantee residual bounds at convergence for variants
of block flexible GMRES methods. We start by extending a convergence property of
block GMRES to the case of block flexible GMRES. We first show in Proposition 1
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Algorithm 2 Block Flexible GMRES (BFGMRES(m))

1: Choose a convergence threshold tol, the size of the restart m and the maximum
number of iterations itermax

2: Choose an initial guess X0 ∈ C
n×p

3: Compute the initial block residual R0 ∈ C
n×p as R0 = B − AX0

4: for iter = 1, . . . , itermax do

5: Compute the QR decomposition of R0 as R0 = QT with Q ∈ C
n×p and T ∈ C

p×p

6: Set V1 = Q and Bk =

[

T
0kp×p

]

, 1 ≤ k ≤ m.

7: for j = 1, . . . ,m do

8: Completion of Vj+1, Zj and H̄j : Apply Algorithm 1 from line 2 to 10 with
flexible preconditioning (Zj = M−1

j Vj, 1 ≤ j ≤ m) to obtain Vj+1 ∈ C
n×(j+1)p,

Zj ∈ C
n×jp and the matrix H̄j ∈ C

(j+1)p×jp such that:

AZj = Vj+1H̄j with VH
j+1Vj+1 = I(j+1)p.

9: Solve the minimization problem Yj = argminY ∈Cjp×p ||Bj − H̄jY ||F
10: if ||Bj(:, l) − H̄jYj(:, l)||2/||B(:, l)||2 ≤ tol, ∀ l | 1 ≤ l ≤ p then

11: Compute Xj = X0 + ZjYj ; stop
12: end if

13: end for

14: Compute Xm = X0 + ZmYm and Rm = B − AXm

15: Set R0 = Rm and X0 = Xm

16: end for

that the block flexible GMRES method minimizes the Euclidean norm of the residual of
each linear system. This important property justifies the choice of the stopping criterion
based on the Euclidean norm (Algorithm 2 line 10) as discussed later in Section 2.2.2.

Proposition 1. In block flexible GMRES (BFGMRES(m), Algorithm 2) solving the
reduced minimization problem Pr (3) amounts to minimizing the Frobenius norm of the
block true residual ||B−AX||F over the space X0+range(ZjY ) at iteration j (1 ≤ j ≤ m)
i.e.

argmin
Y ∈Cjp×p

||Bj − H̄jY ||F = argmin
Y ∈Cjp×p

||B − A(X0 + ZjY )||F ,

and min
Y ∈Cjp×p

||Bj − H̄jY ||F = min
Y ∈Cjp×p

||B − A(X0 + ZjY )||F . (4)

Furthermore solving the reduced minimization problem Pr (3) is also equivalent to min-
imizing the Euclidean norm of each linear system over the space X0(:, l) + range(Zj)
(1 ≤ l ≤ p) at iteration j (1 ≤ j ≤ m).
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Proof. Using successively the unitarily invariance of the Frobenius norm, R0 = Vj+1Bj

and the block flexible Arnoldi relation (2), we can formulate the minimization problem
Pr (3) as

argmin
Y ∈Cjp×p

||Bj − H̄jY ||F = argmin
Y ∈Cjp×p

||B − A(X0 + ZjY )||F ,

which ends the first part of the proof. This establishes the following relation between
the block true residual Rj = B − AXj and Bj − H̄jYj the Arnoldi residual (also named
block quasi-residual in [20])

||B − AXj ||F = ||Bj − H̄jYj ||F

which will be useful later when defining appropriate stopping criterion for the block
flexible GMRES(m) method. Finally using essentially the same arguments now in the
Euclidean norm we can rewrite the ||Bj − H̄jY ||2F as

||Bj − H̄jY ||2F =

p
∑

l=1

||Bj(:, l) − H̄jY (:, l)||22,

=

p
∑

l=1

||R0(:, l) − AZjY (:, l)||22,

=

p
∑

l=1

||B(:, l) − A(X0(:, l) + ZjY (:, l))||22.

Therefore the initial minimization problem Pr (3) posed in the Frobenius norm is sepa-
rable. Minimizing ||B − AXj ||F can then be performed by solving p independent least-
squares problems, one for each linear system.

Remark 1. In Algorithm 2 line 14 we propose to compute the block true residual explic-
itly rather than using Rm = Vm+1(Bm − H̄mYm) as obtained in Proposition 1. Indeed if
A is a sparse matrix with nnz(A) nonzero entries, it is usually cheaper to compute ex-
plicitly Rm = B−AXm (2nnz(A)p+np operations) than evaluating Vm+1(Bm−H̄mYm)
(2n(m + 1)p2 operations), where terms only proportional to the size of the problem n
have been considered in the last estimate.

2.2.2 Detection of convergence

The detection of convergence related to the p linear systems is performed at each it-
eration during a given restart of BFGMRES(m) as shown in Algorithm 2. We briefly
motivate the choice of the stopping criterion.

Corollary 1. In block flexible GMRES (BFGMRES(m), Algorithm 2) detecting the
convergence on the block true residual is equivalent to detecting the convergence on the
block quasi-residual in exact arithmetic:

||B(:, l) − AXj(:, l)||2
||B(:, l)||2

≤ tol, ∀ l | 1 ≤ l ≤ p ⇔
||Bj(:, l) − H̄jYj(:, l)||2

||B(:, l)||2
≤ tol, ∀ l | 1 ≤ l ≤ p.
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Proof. This is a direct consequence of Proposition 1.

Proposition 1 and Corollary 1 have guided the choice of the stopping criterion pro-
posed in Algorithm 2 line 10. We note that the Frobenius norm could also be used to
check the convergence since

max
1≤l≤p

||Rj(:, l)||
2
2 ≤ ||Rj ||

2
F ≤ p max

1≤l≤p
||Rj(:, l)||

2
2,

and hence the inequality ||Rj ||F ≤ tol guarantees convergence on all systems. However
the convergence of each individual linear system (or a combination of them) may occur
sooner. Variants that aim at reducing the global computational cost will be detailed in
Section 3.

3 Flexible variants of block GMRES(m) based on deflation
and truncation

3.1 Block flexible GMRES with deflation

When solving multiple right-hand side problems, linear dependence of the residuals of
the p linear systems may occur. Such dependence has to be taken into account to reduce
the block size along the iterations and yield effective block Krylov space methods as
stressed in [20, Section 8]. Determining a linearly independent subset of the columns of
the block true residual is thus required. The dimension of this subset will correspond
to the effective number of linear systems to be considered; this explicit reduction is
called deflation. In practice approximate deflation depending on a deflation tolerance
is usually preferred since exact deflation is rare. The main ideas related to deflation in
block Krylov methods are presented in ([20, Section 14], [30]) and are generalizations of
initial deflation techniques proposed in [27].

Block GMRES with deflation has been detailed in [20, Sections 12-14], where this
explicit reduction is implemented at each restart with help of rank-revealing factoriza-
tions. Robbé and Sadkane [37] have recently proposed to introduce deflation during each
iteration of block GMRES(m). The main idea consists in detecting linear dependency in
the block residual at each iteration. Of course this implies an additional computational
cost but it has been found that this strategy can really improve convergence at the same
memory cost as in BGMRES(m). However, since small restart parameters are sometimes
considered in practice for memory issues, we propose a simpler algorithm implementing
deflation solely at the restart of BFGMRES(m).

3.1.1 Algorithm of block flexible GMRES with deflation

The block flexible restarted GMRES with deflation later named BFGMRESD(m) is
presented in Algorithm 3. Hereafter we outline how approximate deflation has been
introduced and thus describe a given cycle of the method (lines 6 to 21 in Algorithm
3). The deflation procedure detects approximate linear dependency in the block true
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residual. For that purpose, given a QR-factorization of the scaled block true residual
R0 D−1 = QT where D ∈ C

p×p is defined as D = diag(d1, . . . , dp) with dl = ||B(:, l)||2
(1 ≤ l ≤ p), a singular value decomposition (SVD) of the upper triangular matrix
T ∈ C

p×p is performed which leads to the following relation:

T = UΣW H (5)

where U ∈ C
p×p, W ∈ C

p×p are unitary and Σ ∈ C
p×p is diagonal. The use of diagonal

scaling with matrix D enables the convergence detection on the true block residual scaled
by the norm of the right-hand sides, as explained later in Section 3.1.2. We note that
the related cost of the singular value decomposition of T (O(p3) operations) is negligible
in practice since p, the number of right-hand sides, is supposed to be considerably less
than n the dimension of the problem. As explained in Section 3.1, deflation consists of
selecting relevant information from the decomposition (5). Indeed we determine a subset
of the singular values of T according to the following condition:

σl(T ) > εd tol ∀ l such that 1 ≤ l ≤ pd (6)

where εd is a real positive parameter less than one. This leads to the following decom-
position of the diagonal matrix Σ

Σ =

[

Σ+ 0pd×(p−pd)

0(p−pd)×pd
Σ−

]

with Σ+ ∈ C
pd×pd defined as Σ+ = Σ(1 : pd, 1 : pd) and Σ− ∈ C

(p−pd)×(p−pd) as
Σ− = Σ(pd + 1 : p, pd + 1 : p). Due to the approximate deflation condition (6), we note
that

||Σ+||2 > εd tol and ||Σ−||2 ≤ εd tol.

Furthermore the scaled block true residual R0 D−1 can be written as

R0 D−1 = Q [U+ U−]

[

Σ+ 0pd×(p−pd)

0(p−pd)×pd
Σ−

]

[W+ W−]H ,

R0 D−1 = Q U+Σ+W H
+ + Q U−Σ−W H

− (7)

where we set U+ ∈ C
p×pd as U+ = U(:, 1 : pd) and W+ ∈ C

p×pd as W+ = W (:, 1 : pd).
Similarly we define U− ∈ C

p×(p−pd) as U− = U(:, pd + 1 : p) and W− ∈ C
p×(p−pd) as

W− = W (:, pd + 1 : p). U+, W+ and Σ+ denote the quantities effectively considered in a
given cycle of Algorithm 3, while U−, W− and Σ− are put aside due to deflation. Indeed
since W = [W+,W−] is unitary, it is straightforward to see from (7) that

||R0 D−1W−||2 ≤ εd tol.

If deflation is active in this cycle (pd < p), only pd linear systems will be considered which
may yield a significant reduction in terms of operations. Given V1 = QU+ the flexible
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block Arnoldi method with block Modified Gram-Schmidt (Algorithm 1) is applied to
obtain Zj ∈ C

n×jpd, Vj+1 ∈ C
n×(j+1)pd and H̄j ∈ C

(j+1)pd×jpd which satisfy

AZj = Vj+1 H̄j. (8)

We denote by Bj ∈ C
(j+1)pd×pd the representation of the scaled block residual in the Vj+1

basis (R0D
−1 = Vj+1Bj) and by Yj ∈ C

jpd×pd the solution of the reduced minimization
problem:

Pd
r : Yj = argmin

Y ∈C
jpd×pd

||Bj − H̄jY ||F . (9)

Proposition 2. In block flexible GMRES with deflation (BFGMRESD(m), Algorithm
3) solving the reduced minimization problem Pd

r (9) amounts to minimizing the Frobenius
norm of the block true residual ||B − AX||F over the space X0 + range(ZjY Σ+W H

+ D)
at iteration j (1 ≤ j ≤ m) in a given restart, i.e.,

argmin
Y ∈C

jpd×pd

||Bj − H̄jY ||F = argmin
Y ∈C

jpd×pd

||B − A(X0 + ZjY Σ+W H
+ D)||F , (10)

= argmin
Y ∈Cjpd×pd

||R0D
−1 − AZjY Σ+W H

+ ||F . (11)

Proof. Σ+ being a diagonal matrix, using elementary properties of the Frobenius norm
leads to

argmin
Y ∈Cjpd×pd

||Bj − H̄jY ||2F = argmin
Y ∈Cjpd×pd

||(Bj − H̄jY )Σ+||
2
F .

Since the Frobenius norm is unitarily invariant the last equality can be recast into

argmin
Y ∈Cjpd×pd

||Bj − H̄jY ||2F = argmin
Y ∈Cjpd×pd

||Vj+1(Bj − H̄jY )Σ+W H
+ ||2F .

Using the block flexible Arnoldi relation (8) leads to

argmin
Y ∈Cjpd×pd

||Bj − H̄jY ||2F = argmin
Y ∈Cjpd×pd

||Vj+1BjΣ+W H
+ − AZjY Σ+W H

+ ||2F .

Since Vj+1Bj = V1 = QU+, the quantity Vj+1BjΣ+W H
+ satisfies the following relation

Vj+1BjΣ+W H
+ = QU+Σ+W H

+

which finally leads to

argmin
Y ∈C

jpd×pd

||Bj − H̄jY ||2F = argmin
Y ∈C

jpd×pd

||QU+Σ+W H
+ − AZjY Σ+W H

+ ||2F .

Adding a term independent of Y on the right-hand side of the previous equation obviously
allows us to write

argmin
Y ∈C

jpd×pd

||Bj − H̄jY ||2F = argmin
Y ∈C

jpd×pd

(||QU+Σ+W H
+ − AZjY Σ+W H

+ ||2F + ||QU−Σ−W H
− ||2F ).
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Since W = [W+,W−] is unitary, we obtain

argmin
Y ∈C

jpd×pd

||Bj − H̄jY ||2F = argmin
Y ∈C

jpd×pd

||QU+Σ+W H
+ + QU−Σ−W H

− − AZjY Σ+W H
+ ||2F

which becomes, due to relation (7),

argmin
Y ∈Cjpd×pd

||Bj − H̄jY ||2F = argmin
Y ∈Cjpd×pd

||R0D
−1 − AZjY Σ+W H

+ ||2F .

Due to Proposition 2, the approximate solution that is based on a generalized minimum
Frobenius norm approach is obtained as

Xj = X0 + ZjYjΣ+W H
+ D

at the end of the restart (j = m) or before if the stopping criterion is satisfied at iteration
j. Proposition 2 also implies the nonincreasing behaviour of the block residual in the
Frobenius norm in BFGMRESD(m).

3.1.2 Detection of convergence

Similarly as in BFGMRES(m) (Algorithm 2), the detection of convergence related to the
p linear systems (Algorithm 3 line 15) is performed in BFGMRESD(m) at each iteration
during a given restart. For that purpose we consider a stopping criterion based on the
Euclidean norm of the components of the block quasi-residual ρj ∈ C

(j+1)pd×p defined
as

ρj = (Bj − H̄jYj)Σ+W H
+

in the deflated case. We discuss next how to choose both the stopping and deflation
thresholds in practice (εq and εd respectively) when deflation has occurred (pd < p) in
a given restart. The next proposition (Proposition 3) gives an explicit upper bound on
the Euclidean norm of each individual residual.

Proposition 3. In block flexible GMRES with deflation (BFGMRESD(m), Algorithm
3) the block true residual Rj satisfies the following inequality at iteration j during a given
restart

||Rj(:, l)||2
||B(:, l)||2

≤ ||ρj(:, l)||2 + σpd+1(T ), ∀ l | 1 ≤ l ≤ p. (12)

Furthermore if convergence occurs at iteration j (Algorithm 3 line 15)), Rj satisfies the
inequality

||Rj(:, l)||2
||B(:, l)||2

≤ tol εq + σpd+1(T ), ∀ l | 1 ≤ l ≤ p.

11



Algorithm 3 Block Flexible GMRES with SVD based deflation (BFGMRESD(m))

1: Choose a convergence threshold tol, a deflation threshold εd, a quality of convergence
threshold εq, the size of the restart m and the maximum number of iterations itermax

2: Choose an initial guess X0 ∈ C
n×p

3: Define the diagonal matrix D ∈ C
p×p as D = diag(d1, . . . , dp) with dl = ||B(:, l)||2

for l such that 1 ≤ l ≤ p
4: Compute the initial block residual R0 = B − AX0

5: for iter = 1, . . . , itermax do

6: Compute the QR decomposition of R0D
−1 as R0D

−1 = QT with Q ∈ C
n×p and

T ∈ C
p×p

7: Compute the SVD of T as T = U Σ W H

8: Select pd singular values of T such that σl(T ) > εd tol for all l such that 1 ≤ l ≤ pd

9: Define V1 ∈ C
n×pd as V1 = QU(:, 1 : pd)

10: Let Bk =

[

Ipd

0kpd×pd

]

, 1 ≤ k ≤ m

11: for j = 1, . . . ,m do

12: Completion of Vj+1, Zj and H̄j (see Algorithm 1): Apply Algorithm 1 from
line 2 to 10 with flexible preconditioning (Zj = M−1

j Vj , 1 ≤ j ≤ m) to obtain

Vj+1 ∈ C
n×(j+1)pd, Zj ∈ C

n×jpd and the matrix H̄j ∈ C
(j+1)pd×jpd such that:

AZj = Vj+1H̄j with VH
j+1Vj+1 = I(j+1)pd

.

13: Solve the minimization problem Yj = argminY ∈Cjpd×pd ||Bj − H̄jY ||F ;
14: Compute ρj = (Bj − H̄jYj)Σ(1 : pd, 1 : pd)W (1 : p, 1 : pd)

H

15: if ||ρj(:, l)||2 ≤ εq tol, ∀ l | 1 ≤ l ≤ p then

16: Compute Xj = X0 + ZjYjΣ(1 : pd, 1 : pd)W (1 : p, 1 : pd)
HD; stop;

17: end if

18: end for

19: Xm = X0 + ZmYmΣ(1 : pd, 1 : pd)W (1 : p, 1 : pd)
H D

20: Rm = B − AXm

21: Set R0 = Rm and X0 = Xm

22: end for

Proof. Using developments introduced in Proposition 2, the block true residual at iter-
ation j can be written as

Rj = B − A(X0 + ZjYjΣ+W H
+ D),

Rj = R0 − Vj+1H̄jYjΣ+W H
+ D,

Rj =
[

Vj+1(Bj − H̄jYj)Σ+W H
+ + QU−Σ−W H

−

]

D,

RjD
−1 =

[

Vj+1ρj + QU−Σ−W H
−

]

.

12



Thus for each linear system (1 ≤ l ≤ p) we obtain the inequality

||Rj(:, l)||2
||B(:, l)||2

≤ ||Vj+1ρj(:, l)||2 + ||QU−Σ−W−(l, :)H ||2,

||Rj(:, l)||2
||B(:, l)||2

≤ ||ρj(:, l)||2 + σpd+1(T ),

which ends the first part of the proof. The second inequality is straightforward. Indeed if
the stopping criterion is satisfied ( ||ρj(:, l)||2 ≤ εqtol for the p linear systems (Algorithm
3 line 15)), the inequality (12) becomes

||Rj(:, l)||2
||B(:, l)||2

≤ εqtol + σpd+1(T ).

When the convergence is declared, a simple way to make sure that the scaled block
residual norm is below tol consists in choosing a fixed quality of convergence threshold
εq ∈ (0, 1) such that εq + εd = 1. Indeed, if such a relation is satisfied, we obtain at
convergence

εqtol + σpd+1(T ) ≤ (εq + εd) tol

and consequently

||Rj(:, l)||2
||B(:, l)||2

≤ tol. (13)

We note that a different convergence and deflation thresholds can also be chosen at each
cycle. A possible strategy could aim at obtaining a less severe convergence threshold
on the block quasi-residual ρj leading to a reduction in terms of inner iterations. For
instance, considering Proposition 3, if at each cycle εq is chosen such that

εq = 1 −
σpd+1(T )

tol
, (14)

and if the stopping criterion on the block quasi-residual ρj is satisfied, relation (13) holds
since σpd+1(T ) ≤ εd tol.

3.2 Block flexible GMRES with deflation and truncation

At the same memory cost as in BFGMRES(m) we have been able to introduce a variant
(BFGMRESD(m)) which exploits the idea of deflation. This explicit block size reduction
should hopefully lead to a reduction in terms of computational operations when treat-
ing multiple right-hand side problems. We present next a variant of BFGMRESD(m)
that exhibits a lower memory cost. This latter feature is particularly appealing when
considering linear systems of large size with multiple right-hand sides as discussed later
in Section 4.
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3.2.1 Algorithm of block flexible GMRES with deflation and truncation

The block flexible restarted GMRES with deflation and truncation is given in Algorithm
4. Hereafter we only outline how truncation has been introduced since the method
is similar to the block flexible restarted GMRES with deflation (Algorithm 3) in many
aspects. Truncation here consists of fixing once and for all the maximal column size of the
block vectors to be considered in the method. We denote by pf this value (with pf < p).
Given the singular value decomposition of T = UΣW H with Σ ∈ C

p×p determined as in
Section 3.1.1, combining deflation and truncation leads to decompose Σ+ ∈ C

pf×pf into

Σ+ =

[

Σb
+ 0pb×(pf−pb)

0(pf−pb)×pb
Σ−

+

]

where pb is defined as min(pd, pf ), Σb
+ ∈ C

pb×pb as Σb
+ = Σ(1 : pb, 1 : pb) and Σ−

+ ∈

C
(pf−pb)×(pf−pb) as Σ−

+ = Σ(pb + 1 : pf , pb + 1 : pf ). In a given cycle deflation is active
only when pd ≤ pf . In such a case, when pf > pb, the method relies on the following
decomposition of R0 D−1

R0 D−1 = Q [U b
+ U−]





Σb
+ 0pb×(pf−pb) 0pb×(p−pf )

0(pf−pb)×pb
Σ−

+ 0(pf−pb)×(p−pf )

0(p−pf )×pb
0(p−pf )×(pf−pb) Σ−



 [W b
+ W−]H ,

where we set U b
+ ∈ C

p×pb as U+ = U(:, 1 : pb), W b
+ ∈ C

p×pb as W b
+ = W (:, 1 : pb), U− ∈

C
p×(p−pb) as U− = U(:, pb + 1 : p), Σ−

− ∈ C
(p−pf )×(p−pf ) as Σ−

− = Σ(pf + 1 : p, pf + 1 : p)

and W− ∈ C
p×(p−pb) as W− = W (:, pb + 1 : p). Quantities with a − lowerscript and

a − upperscript are discarded due to truncation and deflation respectively, while only
pb linear systems are considered in the cycle. When pb = pf , we have the following
decomposition

Σ =

[

Σb
+ 0pf×(p−pf )

0(p−pf )×pf
Σ−

]

.

Similarly as in Section 3.1.1, we denote by Bj ∈ C
(j+1)pb×pb the representation of

the scaled block residual in the Vj+1 basis after truncation and deflation (R0D
−1 =

Vj+1BjΣ
b
+W b

+
H

) and by Yj ∈ C
jpb×pb the solution of the reduced minimization problem:

Pt
r : Yj = argmin

Y ∈Cjpb×pb

||Bj − H̄jY ||F . (15)

Proposition 4. In block flexible GMRES with deflation and truncation (Algorithm
4, BFGMREST(m, pf)) solving the reduced minimization problem Pt

r (15) amounts to
minimizing the Frobenius norm of the block true residual ||B − AX||F over the space

X0 + range(ZjY Σb
+W b

+
H

D) at iteration j (1 ≤ j ≤ m) in a given restart, i.e.,

argmin
Y ∈C

jpb×pb

||Bj − H̄jY ||F = argmin
Y ∈C

jpb×pb

||B − A(X0 + ZjY Σb
+W b

+
H

D)||F . (16)
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Proof. The proof follows the same developments as in Proposition 2.

This strategy offers the flexibility to considerably reduce both the memory require-
ments and the computational cost of a given cycle since only pb linear systems will
be considered. However, due to truncation this method may fail to converge or require
more outer iterations to converge than BFGMRESD(m) because combinations of residu-
als that have not converged are also discarded from the block Krylov space. Nevertheless,
this has to be balanced with its reduced memory requirements and computational cost
as shown in Section 4.

3.2.2 Detection of convergence

A straightforward adaptation of Proposition 3 to the case of block flexible GMRES with
deflation and truncation leads to the following upper bound on each normalized linear
system residual

||Rj(:, l)||2
||B(:, l)||2

≤ ||ρj(:, l)||2 + σpb+1(T ), ∀ l | 1 ≤ l ≤ p, (17)

with the block quasi-residual ρj ∈ C
(j+1)pb×p defined as ρj = (Bj − H̄jYj)Σ

b
+W b

+
H

in
the deflated and truncated case. As a simple stopping condition we check that σpb+1(T )
is less than the convergence threshold tol (Algorithm 4 line 16)) and if successful we
verify the condition ||ρj(:, l)||2 < tol − σpb+1(T ) (Algorithm 4 line 17)). This insures
convergence thanks to inequality (17).

3.2.3 Computational cost and memory requirements

We summarize in Table 1 the main computational costs occurring during a given cycle
of BFGMREST(m, pf ) (Algorithm 4). We have only included the costs proportional to
the size of the original problem n which is supposed to be much greater than m and
p in practical applications. This also excludes the costs related to both matrix-vector
products and preconditioning operations. The total cost is quadratic in pf (the maximal
column size of the block vectors) and linear in n (the dimension of the problem).

Table 2 summarizes the maximal memory requirements (proportional to n) for the
three algorithms presented so far. Each method requires the storage of Rm, X0, Xm,
Vm+1 and Zm respectively. We note that only BFGMREST(m, pf ) leads to a reduction
in terms of memory requirements.

1Algorithm 4 line 13: the blocked Arnoldi method based on modified Gram-Schmidt (Algorithm 1)
requires

Pm

j=1

Pj

i=1
(4np2

b+npb) operations plus
Pm

j=1
(2np2

b+5npb) operations for the QR decomposition
of W .
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Step Computational cost of a cycle

Computation of R0D
−1 n

QR factorization of R0D
−1 2np2

b + 5npb

Computation of V1 2nppb

Block Arnoldi procedure1 2nm(m + 2)p2
b + (5mn + m(m+1)

2 n)pb

Computation of Xm np + nmppb

Total np2
b [2(m + 1)2]+

npb[p(m + 2) + (m + 1) (10+m)
2 ]+

n(p + 1)

Table 1: Maximal computational cost of a cycle of BFGMREST(m, pf ) with pb =
min(pf , pd). This excludes the cost of matrix-vector operations and preconditioning
operations.

Method BFGMRES(m) BFGMRESD(m) BFGMREST(m, pf )

Storage n(2m + 1)p + 3np n(2m + 1)p + 3np n(2m + 1)pf + 3np

Table 2: Maximal memory requirements in BFGMRES(m), BFGMRESD(m) and
BFGMREST(m, pf ).

3.3 Convergence analysis in another unitarily invariant norm

In the previous sections we have mainly considered both the Frobenius norm and the
Euclidean norm of each column of the block residual to describe convergence results
related to block Krylov subspace methods. It is however possible to prove a slightly
more general convergence result that holds in any unitarily invariant norm. First, we
recall that the proposed methods amount to minimizing the Frobenius norm of the block
true residual ||B −AX||F over the space X0 + range(ZjY ) at iteration j (1 ≤ j ≤ m) in
a given restart i.e. the general form of the minimization problem can be written as

P : argmin
Y ∈Cjs×s

||B − A(X0 + ZjY )||F = argmin
S∈range(AZj)

||R0 − S||F

with s = p for BFGMRES(m), s = pd for BFGMRESD(m) and finally s = pb for
BFGMREST(m, pf ); see Propositions 1, 2 and 4 respectively. The l-th column of the
current residual R(:, l) at iteration j is then obtained as the orthogonal projection of
R0(:, l) onto (range(AZj))

⊥. Thus R = PR0 where P is the orthogonal projector onto
(range(AZj))

⊥. With help of Lemma 5.1 (relation (21)) - shown in Appendix -, we
obtain that the singular values of the block residual are monotonically decreasing. This
important property guarantees that deflating with respect to singular values is appro-
priate. Furthermore from Lemma 5.1 (relation (22)) we conclude that for any given
unitarily invariant norm ‖.‖ on C

n×s, the following property is satisfied

‖R‖ ≤ ‖R0‖.
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Algorithm 4 Block Flexible GMRES with SVD based truncation (BFGMREST(m,pf ))

1: Choose a convergence threshold tol, a deflation threshold εd, a fixed block size pf < p,
the size of the restart m and the maximum number of iterations itermax

2: Choose an initial guess X0 ∈ C
n×p

3: Define the diagonal matrix D ∈ C
p×p as D = diag(d1, . . . , dp) with dl = ||B(:, l)||2

for l such that 1 ≤ l ≤ p
4: Compute the initial block residual R0 = B − AX0

5: for iter = 1, . . . , itermax do

6: Compute the QR decomposition of R0D
−1 as R0 D−1 = QT with Q ∈ C

n×p and
T ∈ C

p×p

7: Compute the SVD of T as T = U Σ W H

8: Select pd singular values of T such that σl(T ) > εd tol for all l such that 1 ≤ l ≤ pd

9: Set pb = min(pd, pf )
10: Define V1 ∈ C

n×pb as V1 = QU(:, 1 : pb)

11: Let Bk =

[

Ipb

0kpb×pb

]

, 1 ≤ k ≤ m

12: for j = 1, . . . ,m do

13: Completion of Vj+1, Zj and H̄j (see Algorithm 1): Apply Algorithm 1 from
line 2 to 10 with flexible preconditioning (Zj = M−1

j Vj, 1 ≤ j ≤ m) to obtain

Vj+1 ∈ C
n×(j+1)pb , Zj ∈ C

n×jpb and the matrix H̄j ∈ C
(j+1)pb×jpb such that:

AZj = Vj+1H̄j with VH
j+1Vj+1 = I(j+1)pb

.

14: Solve the minimization problem Yj = argminY ∈Cjpb×pb ||Bj − H̄jY ||F
15: Compute ρj = (Bj − H̄jYj)Σ(1 : pb, 1 : pb)W (1 : p, 1 : pb)

H

16: if σpb+1(T ) < tol then

17: if ||ρj(:, l)||2 ≤ tol − σpb+1(T )∀l ≤ p then

18: Compute Xj = X0 + ZjYjΣ(1 : pb, 1 : pb)W (1 : p, 1 : pb)
H D; stop;

19: else

20: Xnext = Xj , Rnext = Rj

21: Go to 28
22: end if

23: end if

24: end for

25: Xm = X0 + ZmYmΣ(1 : pb, 1 : pb)W (1 : p, 1 : pb)
H D

26: Rm = B − AXm

27: Xnext = Xm, Rnext = Rm

28: Set R0 = Rnext and X0 = Xnext

29: end for
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The convergence of the block residual norm is then monotone in any unitarily invariant
norm.

4 Numerical experiments

In this section we investigate the numerical behaviour of block flexible GMRES(m) meth-
ods on a challenging realistic application in geophysics. We introduce the background
of this study and then detail the performance of the various methods that have been
introduced in Sections 2 and 3. To give a broad picture of their performance we will also
include comments related to both computational time and memory requirement.

4.1 Acoustic full waveform inversion

We focus on a specific application in geophysics related to the simulation of wave propa-
gation phenomena in the Earth [50]. Given a three-dimensional physical domain Ωp, the
propagation of a wave field in a heterogeneous medium can be modeled by the Helmholtz
equation written in the frequency domain:

−
∂2u

∂x2
−

∂2u

∂y2
−

∂2u

∂z2
−

(2πf)2

c2(x, y, z)
u = δ(x − xs), x = (x, y, z) ∈ Ωp. (18)

The unknown u represents the pressure field in the frequency domain, c the acoustic-
wave velocity in ms−1, which varies with position, and f the frequency in Hertz. The
source term δ(x − xs) represents a harmonic point source located at (xs, ys, zs). The

wavelength λ is defined as λ =
c(x, y, z)

f
. A popular approach — the Perfectly Matched

Layer formulation (PML) [8, 9] — has been used in order to obtain a satisfactory near
boundary solution, without many artificial reflections. This artificial boundary layer is
used to absorb outgoing waves at any incidence angle as shown in [8]. The acoustic
full waveform inversion requires the solution of three-dimensional Helmholtz problems
at various locations of the Dirac sources and thus leads to multiple right-hand side prob-
lems [44, 45].

We consider a standard second-order accurate seven point finite-difference discretiza-
tion of the Helmholtz equation (18) on an uniform equidistant Cartesian grid of size
nx × ny × nz. We denote later by h the corresponding mesh grid size, Ωh the discrete
computational domain and nPML the number of points in the PML layer. A fixed value
for nPML = 16 has been considered hereafter. After discretization, the acoustic full wave
inversion leads to the following linear system with p multiple right-hand sides:

AX = B

where A ∈ C
n×n is a sparse complex matrix which is nonhermitian and nonsymmetric

due to the PML formulation and B ∈ C
n×p. Since a stability condition has to be satis-

fied to correctly represent the wave propagation phenomena [11], we consider numerical
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discretization schemes with 12 points per wavelength. Consequently we fix the mesh
grid size h in m and deduce the frequency f in Hz as

f =
min(x,y,z)∈Ωh

c(x, y, z)

12h
.

This relation imposes to solve very large systems of equations at the (high) frequencies
of interest for the geophysicists, a task that may be too computationally and memory
expensive for sparse direct methods. Due also to their indefiniteness these systems are
known to be challenging for iterative methods. A perturbed geometric two-level precon-
ditioner for flexible Krylov subspace methods has recently been designed in [36] to ad-
dress the solution of such problems. It has been proved that solving only approximately
the coarse grid problem in a geometric two-grid method leads to an efficient precondi-
tioner. In this section we consider this preconditioner in the multiple right-hand side
case and next investigate the performance of the block flexible Krylov methods presented
in Sections 2 and 3 on a challenging real-life application.

4.2 The SEG/EAGE Overthrust model

4.2.1 Settings

The SEG/EAGE Overthrust model [2] is a synthetic velocity field often used as a bench-
mark problem in seismic applications. The reference domain where the acoustic velocity
c(x, y, z) is recorded is a box of size 20 × 20 × 4.65 km3. The minimum value of the
velocity is 2179 m.s−1 and its maximum value is 6000 m.s−1. The p sources are located
in the plane z/h = nPML + 1 on the line y/h = ny/2 each 50 meters along the x axis
starting from x/h = nPML + 1:

B(:, l) = δ 
nPML + 1 + (l − 1)

50

h
,
ny

2
, nPML + 1

! = eil , ∀ l = 1, . . . , p. (19)

The block right-hand side B ∈ Cn×p is thus extremely sparse; it contains only one
nonzero element per column. We compare various preconditioned iterative methods
based on flexible GMRES(m) for the solution of (4.1) with a zero initial guess. In [36] it
has been shown that the combination of the two-grid preconditioner and of FGMRES(m)
with a moderate value of the restart parameter (m = 5) leads to an efficient numerical
method in the single right-hand side case. Consequently to limit the memory cost we
consider the same value for the restart parameter in this study. The iterative procedures
are stopped when the Euclidean norm of each column of the block residual normalized by
the Euclidean norm of the corresponding right-hand side satisfies the following relation:

||B(:, l) − AX(:, l)||2
||B(:, l)||2

≤ tol, ∀ l = 1, . . . , p. (20)

The tolerance is set to tol = 10−5 in the numerical experiments. Since the initial block
residual corresponds to the full rank matrix B, we note that no initial deflation occurs in
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the block variants investigated here. The numerical results shown in Section 4.2.2 were
obtained on Babel, a Blue Gene/P computer located at IDRIS (PowerPC 450 850 Mhz
with 512 MB of memory on each core) using a Fortran 90 implementation with MPI
in single precision arithmetic. This code was compiled by the IBM compiler suite with
standard compiling options and linked with the vendor BLAS and LAPACK subroutines.

4.2.2 Numerical results

Five different strategies are considered in this comparison. The first one, FGMRES(5)
sequence, consists of solving the linear systems in sequence choosing always a zero ini-
tial guess X0. The second method, FGMRES(5) simultaneous, applies FGMRES(5) to
each linear system simultaneously with a convergence detected in a blockwise manner.
This method is designed to take advantage of possible computational speed-up obtained
by gathering operations (matrix-vector products, dot products and communications be-
tween processors) and minimizing memory transfers. The third, fourth and fifth strate-
gies are related to block flexible methods: BFGMRES(5) (Algorithm 2), BFGMRESD(5)
(Algorithm 3) and BFGMREST(5, pf ) (Algorithm 4) respectively. In this last strategy
we consider two values for the block sizes pf (pf = p/2 and pf = p/4). The deflation
threshold εd has been set to 1 and the quality of convergence threshold εq has been
chosen according to Relation (14).

This numerical study addresses a simple practical question: given a fixed number of
cores of a parallel distributed memory computer and a certain number of right-hand sides,
which numerical method among the five strategies leads to the smallest computational
times on this application?

In Tables 3, 4 and 5, we compare these various strategies on three different problems
corresponding to increasing frequencies of interest for the geophysicists. In each exper-
iment we consider three cases for the multiple right-hand side problem (p = 4, 8, 16
respectively). Since doubling the number of right-hand sides nearly doubles the memory
requirement of the block methods, we also multiply the number of cores by a factor of
two with respect to the number of right-hand sides. This aims at imposing the same
memory constraint on each core for all numerical experiments. For each strategy we
collect the number of applications of the two-grid preconditioner on a single vector (Pr)
required to satisfy the stopping criterion (Relation 20), the elapsed time in seconds (T)
and the requested memory in Gigabytes (M).
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Overthrust - Grid : 446 × 446 × 130, h = 50 m, f = 3.64 Hz

p = 4, #Cores=32 p = 8, #Cores=64 p = 16, #Cores=128

Method Pr T M Pr T M Pr T M
FGMRES(5) sequence 56 618 4.4 112 623 4.5 224 657 4.6
FGMRES(5) simultaneous 56 613 17 112 615 35 224 639 70
BFGMRES(5) 56 622 17 112 631 35 224 668 70
BFGMRESD(5) 43 489 17 70 401 35 120 371 70
BFGMREST(5,p/2) 48 542 9.4 80 447 19 140 410 39
BFGMREST(5,p/4) 51 576 5.6 92 524 11 169 489 23

Table 3: Perturbed two-grid preconditioned flexible methods for the solution of the
Helmholtz equation for the SEG/EAGE Overthrust model. Case of f = 3.64 Hz (h =
50 m), with p = 4, p = 8 and p = 16 right-hand sides at once. The parameter T denotes
the total computational time in seconds, Pr the number of preconditioner applications
on a single vector and M the requested memory in GB.

Overthrust - Grid : 836 × 836 × 224, h = 25 m, f = 7.27 Hz

p = 4, #Cores=256 p = 8, #Cores=512 p = 16, #Cores=1024

Method Pr T M Pr T M Pr T M
FGMRES(5) sequence 120 1198 29 240 1216 30 483 1302 31
FGMRES(5) simultaneous 120 1195 113 240 1209 232 496 1303 471
BFGMRES(5) 120 1214 113 248 1277 232 496 1359 471
BFGMRESD(5) 85 892 113 135 734 232 235 695 471
BFGMREST(5,p/2) 95 955 63 160 805 128 260 707 259
BFGMREST(5,p/4) 96 951 38 180 904 76 320 831 154

Table 4: Perturbed two-grid preconditioned flexible methods for the solution of the
Helmholtz equation for the SEG/EAGE Overthrust model. Case of f = 7.27 Hz (h =
25 m), with p = 4, p = 8 and p = 16 right-hand sides at once. The parameter T denotes
the total computational time in seconds, Pr the number of preconditioner applications
on a single vector and M the requested memory in GB.
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Overthrust - Grid : 1637 × 1637× 413, h = 12.5 m, f = 14.53 Hz

p = 4, #Cores=2048 p = 8, #Cores=4096 p = 16, #Cores=8192

Method Pr T M Pr T M Pr T M
FGMRES(5) sequence 362 3293 209 858 3769 216 1776 4125 220
FGMRES(5) simultaneous 364 3279 802 864 3762 1651 1808 4079 3351
BFGMRES(5) 360 3291 802 856 3823 1651 1776 4192 3351
BFGMRESD(5) 270 2563 802 515 2418 1651 910 2242 3351
BFGMREST(5,p/2) 291 2638 446 601 2607 912 1040 2380 1846
BFGMREST(5,p/4) 305 2718 267 655 2842 543 1280 2850 1094

Table 5: Perturbed two-grid preconditioned flexible methods for the solution of the
Helmholtz equation for the SEG/EAGE Overthrust model. Case of f = 14.53 Hz
(h = 12.5 m), with p = 4, p = 8 and p = 16 right-hand sides at once. The parameter
T denotes the total computational time in seconds, Pr the number of preconditioner
applications on a single vector and M the requested memory in GB.

The results related to FGMRES(5) sequence lead to one important comment. For
f = 3.64 Hz and f = 7.27 Hz, the number of preconditioner applications is multiplied
exactly by a factor of two when the number of right-hand sides p is multiplied by the
same factor (first lines of Tables 3 and 4 respectively). This property is however not
satisfied in the case of the largest frequency f = 14.53 Hz (Table 5). This behaviour
can be explained as follows. An analysis of the perturbed two-grid preconditioned FGM-
RES(5) on three-dimensional heterogeneous Helmholtz problems in a single right-hand
side situation has shown that the numerical method satisfies a strong scalability property
up to a given number of cores [36]. We believe that this loss of scalability is due to the
preconditioner used both in the smoother and in the approximate solution of the coarse
problem. This preconditioner (symmetric Gauss-Seidel) is based on a subdomain decou-
pling and becomes inherently less efficient when the number of cores is increasing [7].
As a consequence, for a given problem, the computational times related to FGMRES(5)
sequence are expected to increase when the number of cores becomes large. An increase
by a factor of 1.25 is noticed in this case (3293 s for p = 4 versus 4125 s for p = 16, first
line of Table 5). Thus we obtain in this study a scalability with respect to the number
of right-hand sides (since we multiply here by the same factor of 2 both the number
of cores and the number of right-hand sides) only up to 1024 cores with FGMRES(5)
sequence.

FGMRES(5) simultaneous requires in most of the cases almost the same number of
preconditioner applications than FGMRES(5) sequence. The small differences in terms
of iteration are due to the blockwise detection of convergence used in FGMRES(5)
simultaneous. The computational times are generally lower due to the use of blocking
for both communications and numerical operations.

Whatever the frequency and the number of right-hand sides we remark that BFGM-
RES(5) requires a number of preconditioner applications similar to those obtained when
solving the given linear systems in sequence (FGMRES(5) sequence). The cost of the
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block orthogonalization procedure (70np2 + 40np as stated in Table 1 with m = 5)
clearly impacts the computational times for the largest value of p. In comparison, the
cost of the (unblocked) orthogonalization procedure used in FGMRES(5) sequence be-
haves as (5nm + 2nm2)p i.e. 75np with m = 5. We also notice that BFGMRES(5) is
almost equivalent to the second strategy (FGMRES(5) simultaneous) in terms of precon-
ditioner applications and elapsed times. On these nine problems this shows that there
is no clear benefit to use a standard flexible variant of block GMRES methods.
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Figure 1: Perturbed two-grid preconditioned flexible methods for the solution of the
Helmholtz equation for the SEG/EAGE Overthrust model. Case of f = 14.53 Hz (h =
12.5 m). Evolution of pd (the number of considered linear systems) in BFGMRESD(5)
versus the restarts for three different cases (p = 4, p = 8 and p = 16).

Among the six strategies BFGMRESD(5) always delivers the minimal number of
preconditioner applications and computational times (see bold values in Tables 3, 4
and 5). This clearly highlights the interest of deflation at each restart. In the largest
frequency case (f = 14.53 Hz), Figure 1 shows the evolution of pd at each restart for
the three different cases. The effective block size reduction is clearly shown. Thus
detecting the convergence of linear combinations of solutions allows us to reduce the
elapsed times at the same memory cost as BFGMRES(5). For instance we obtain a gain
of about 47% in computational time at f = 14.53 Hz for p = 16 (2242 s versus 4192 s
in Table 5). Moreover we note that at a fixed frequency the computational times related
to BFGMRESD(5) are always decreasing independently of the number of cores. This is
especially appealing since a scalable method with respect to the number of right-hand
sides would yield almost constant elapsed times at a given frequency.

Finally we also remark that the use of truncation techniques leads to an efficient
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method at a reduced cost in memory. In certain cases BFGMREST(5, pf ) is as efficient
as BFGMRESD(5) (see, e.g., the case p = 16 in Table 4 showing almost equivalent
computational times (704 s versus 695 s) but with a reduction in maximal memory by
a factor of 1.8 for BFGMREST(5, p/2). This feature is really important in this given
application due to the very large size of the linear systems.

The proposed flexible block variants (Algorithms 2, 3 and 4) rely on a simple block
orthogonalization procedure (Algorithm 1) that does not take into account the possible
rank-deficiencies of V1 or S. An improved block orthogonalization procedure would
thus consider these possible rank-deficiencies by incorporating both initial and Arnoldi
deflations as suggested in [20]. Rank-revealing QR factorizations would be used for that
purpose. We leave this point for a future work and note that the rank-deficiencies of V1

or S have never occurred in the numerical experiments detailed in this paper.

5 Conclusion

In this paper we have extended the block restarted GMRES method to a variant that al-
lows the use of variable preconditioning when solving multiple right-hand side problems
given at once. Furthermore we have proposed two variants of block flexible restarted GM-
RES that rely on deflation. This procedure performed at each restart aims at detecting
the possible convergence of a linear combination of the components of the block solu-
tion vector. We have also studied the convergence properties of those variants and have
shown that the Frobenius norm of the block residual is always nonincreasing. Finally
we have highlighted the efficiency of the block flexible methods on a realistic application
in geophysics requiring the solution of challenging multiple right-hand side problems.
Block flexible methods with deflation and truncation have proven to be efficient in a
constrained memory environment, a nice feature when handling linear systems with bil-
lion of unknowns as frequently required in this application field.

Acknowledgments

The authors would like to acknowledge GENCI (Grand Equipement National de Calcul
Intensif) for the dotation of computing hours on the IBM Blue Gene/P computer at
IDRIS, France. This work was granted access to the HPC resources of IDRIS under
allocation 2010065068 made by GENCI.

Appendix

Lemma 5.1. Let P ∈ Cn×n be an orthogonal projector and X ∈ Cn×p with p ≤ n. Then
the singular values of PX and X satisfy the following inequality

∀ i | 1 ≤ i ≤ p σi(PX) ≤ σi(X). (21)

Furthermore, for any given unitarily invariant norm ‖.‖ on C
n×p, we have

‖PX‖ ≤ ‖X‖. (22)
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Proof. Since P is an orthogonal projector, there exists Q1 ∈ C
n×q (where q ≤ n) with

orthonormal columns such that P = Q1Q
H
1 (see, e.g., [48, Eq. 6.6]). We complete Q1

with Q2 ∈ C
n×(n−q) with orthonormal columns to obtain Q = [Q1 Q2] an orthonormal

basis of C
n. Then we can write

σi(Q1Q
H
1 X) = σi(Q

H
1 X), (23)

σi(Q
H
1 X) ≤ σi(Q

HX) = σi(X), (24)

which proves the first statement (21). Indeed the equality (23) is valid because singular
values are invariant by left multiplication with a matrix with orthonormal columns. The
inequality (24) comes from [24, Corollary 3.1.3], since QH

1 X is a submatrix of QHX.
Finally the equality σi(Q

HX) = σi(X) holds because singular values are invariant by
unitary transformation.

Since ‖.‖ is a unitarily invariant norm on C
n×p, according to [24, Theorem 3.5.18]

there exists a symmetric gauge function g(.) on R
p such that

∀A in C
n×p ‖A‖ = g(σ1(A), . . . , σp(A)). (25)

We recall that a symmetric gauge function g(.) is also a monotone norm [23, Th 5.5.10],
i.e., if ∀y ∈ R

p and ∀z ∈ R
p,∀ i | 1 ≤ i ≤ p |yi| ≤ |zi| ⇒ g(y) ≤ g(z). From relation

(21) we deduce the following inequality

g(σ1(PX), . . . , σp(PX)) ≤ g(σ1(X), . . . , σp(X)),

since g(.) is a monotone norm. Due to relation (25), this last inequality is also equivalent
to

‖PX‖ ≤ ‖X‖,

which ends the proof.
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[37] M. Robbé and M. Sadkane. Exact and inexact breakdowns in the block GMRES
method. Linear Algebra and its Applications, 419:265–285, 2006. 3, 8

[38] A. Ruhe. Implementation aspects of band Lanczos algorithms for computation
of eigenvalues of large sparse symmetric matrices. Mathematics of Computation,
33(146):680–687, 1979. 3

[39] Y. Saad. A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Scien-
tific and Statistical Computing, 14:461–469, 1993. 2, 4

[40] V. Simoncini and E. Gallopoulos. A hybrid block GMRES method for nonsymmetric
systems with multiple right-hand sides. J. Comput. Appl. Math., 66:457–469, 1995.
4

[41] V. Simoncini and E. Gallopoulos. An iterative method for nonsymmetric systems
with multiple right-hand sides. SIAM J. Scientific Computing, 16:917–933, 1995. 4

[42] V. Simoncini and E. Gallopoulos. Convergence properties of block GMRES and
matrix polynomials. Linear Algebra and its Applications, 247:97–119, 1996. 4

[43] P. Soudais. Iterative solution methods of a 3-D scattering problem from arbitrary
shaped multidielectric and multiconducting bodies. IEEE Trans. on Antennas and
Propagation, 42 (7):954–959, 1994. 3

[44] F. Sourbier, S. Operto, J. Virieux, P. Amestoy, and J. Y. L’ Excellent. FWT2D
: a massively parallel program for frequency-domain full-waveform tomography of
wide-aperture seismic data - part 1: algorithm. Computer & Geosciences, 35:487–
495, 2009. 18

[45] F. Sourbier, S. Operto, J. Virieux, P. Amestoy, and J. Y. L’ Excellent. FWT2D
: a massively parallel program for frequency-domain full-waveform tomography of
wide-aperture seismic data - part 2: numerical examples and scalability analysis.
Computer & Geosciences, 35:496–514, 2009. 18

[46] D. B. Szyld and J. A. Vogel. FQMR: A flexible quasi-minimal residual method with
inexact preconditioning. SIAM J. Scientific Computing, 23(2):363–380, 2001. 2

[47] A. Toselli and O. Widlund. Domain Decomposition methods - Algorithms and The-
ory. Springer Series on Computational Mathematics, Springer, 34, 2004. 2

28



[48] L. N. Trefethen and D. Bau. Numerical Linear Algebra. SIAM: Society for Industrial
and Applied Mathematics, 1997. 25

[49] H. A. van der Vorst and C. Vuik. GMRESR: A family of nested GMRES methods.
Numerical Linear Algebra with Applications, 1:369–386, 1994. 2

[50] J. Virieux and S. Operto. An overview of full waveform inversion in exploration
geophysics. Geophysics, 74(6):WCC127–WCC152, 2009. 18
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