Embedding Graphs into Two-Dimensional Simplicial Complexes
DOI:
https://doi.org/10.57717/cgt.v1i1.11Abstract
We consider the problem of deciding whether an input graph G admits a topological embedding into an input two-dimensional simplicial complex C. This problem includes, among others, the embeddability problem of a graph on a surface and the topological crossing number of a graph, but is more general.
The problem is NP-complete in general (if C is part of the input), and we give an algorithm that runs in polynomial time for any fixed C.
Our strategy is to reduce the problem into an embedding extension problem on a surface, which has the following form: Given a subgraph H' of a graph G', and an embedding of H' on a surface S, can that embedding be extended to an embedding of G' on S? Such problems can be solved, in turn, using a key component in Mohar's algorithm to decide the embeddability of a graph on a fixed surface (STOC 1996, SIAM J. Discr. Math. 1999).
Downloads
Published
How to Cite
License
Copyright (c) 2022 Eric Colin de Verdiere , Thomas Magnard, Bojan Mohar
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).