
O(log n) Dynamic Router-Tables For Prefixes And Ranges ∗

Haibin Lu & Sartaj Sahni
{halu, sahni}@cise.ufl.edu

Department of Computer and Information Science and Engineering
University of Florida, Gainesville, FL 32611

Abstract

Two versions of the Internet (IP) router-table problem are considered. In the first, the router table
consists of n pairs of tuples of the form (p, a), where p is an address prefix and a is the next-hop
information. In this version of the router-table problem, we are to perform the following operations:
insert a new tuple, delete an existing tuple, and find the tuple with longest matching-prefix for a
given destination address. We show that each of these three operations may be performed in O(log n)
time in the worst case using a priority-search tree. In the second version of the router-table problem
considered by us, each tuple in the table has the form (r, a), where r is a range of destination addresses
matched by the tuple. The set of tuples in the table is conflict free. For this version of the router-table
problem, we develop a data structure that employs priority-search trees as well as red-black trees. This
data structure permits us to perform each of the operations insert, delete, and find the tuple with
most-specific matching-range for a given destination address in O(log n) time each in the worst case.
The insert and delete operations preserve the conflict-free property of the set of tuples. Experimental
results also are presented.

Keywords: Packet routing, dynamic router-tables, longest-prefix matching, most-specific-range
matching, conflict-free ranges.

1 Introduction

In the general Internet packet classification problem, we use a rule table to classify incoming packets.

Each entry in the rule table is a pair of the form (rule, action). For each incoming packet, we are to

determine the best rule that matches the packet-header fields. Once this is done, the action corresponding

to this rule is performed. In one-dimensional packet classification, each rule is either a prefix or a range

and the packet-header field used for the classification is the destination address of the packet. In this

paper, we are concerned solely with the one-dimensional packet classification problem, which is very

closely related to the packet forwarding problem (each action is the next-hop to which the packet is

to be sent). Therefore, we refer to the rule table as the router table and to the actions as next-hop

information. Our focus in this paper is dynamic router-tables, that is tables into/from which rules are

inserted/deleted concurrent with packet classification.
∗This work was supported, in part, by the National Science Foundation under grant CCR-9912395.

1

When each rule is a prefix, we refer to the router table as a prefix router-table. The length of

a prefix is limited by the length W of the destination address (W = 32 for IPv4 destination addresses

and W = 128 for IPv6). In prefix router-tables, the best rule that matches a destination address is the

longest prefix that matches this address. Hence, in these tables, we use, what is called, longest-prefix

matching to classify (or lookup) packets. In a range router-table, each rule is a range of destination

addresses. Several criteria have been proposed to select the best rule that matches a given destination

address—first matching-rule in table, highest-priority rule that matches the address, and so on.

In this paper, we show, in Section 4, how priority-search trees may be used to represent dynamic

prefix-router-tables. The resulting structure, which is conceptually simpler than the CRBT (collection of

red-black trees) structure of [1], permits lookup, insert, and delete in O(log n) time each in the worst case.

Notice that although a simple balanced search tree for the intervals defined by a set of prefixes permits

longest-prefix matching in O(log n) time, updates requires O(n) time. For example, when W = 5, the

ranges corresponding to prefix set {*, 0010*, 1000*, 1010*} are {[0, 31], [4, 5], [16, 17], [20, 21]}; the

(basic) intervals obtained by decomposing the range [0, 2W − 1] into the natural disjoint ranges defined

by the end points of the prefix ranges are {[0, 3], [4, 5], [6, 15], [16, 17], [18, 19], [20, 21], [22, 31]};
four of these basic intervals correspond to prefix *; so, removing prefix * requires removing these four

basic intervals. In general, a prefix may be decomposed into O(n) basic intervals. So a straightforward

solution using a balanced tree structure does not work well for updates.

For range router-tables, we consider the case when the best matching range is the most-specific

matching range (this is the range analog of longest-matching prefix). Although much of the research in the

router-table area has focused on static prefix-tables, our focus here is dynamic prefix- and range-tables.

We are motivated to study such tables for the following reasons. First, in a prefix-table, aggregation of

prefixes is limited to pairs of prefixes that have the same length and match contiguous addresses. In

a range-table, we may aggregate prefixes and ranges that match contiguous addresses regardless of the

lengths of the prefixes and ranges being aggregated. So, range aggregation is expected to result in router

tables that have fewer rules. Second, with the move to QoS services, router-table rules include ranges

for port numbers (for example). Although ternary content addressable memories (TCAMs), the most

popular hardware solution for prefix tables, can handle prefixes naturally, they are unable to handle

ranges directly. Rather, ranges are decomposed into prefixes. Since each range takes up to 2W − 2

prefixes to represent, decomposing ranges into prefixes may result in a large increase in router-table

size. Multidimensional classifiers typically have one or more fields that are ranges. Since data structures

2

for multidimensional classifiers are built on top of data structures for one-dimensional classifiers, it is

necessary to develop good data structures for one-dimensional range router-tables (as we do in this

paper). Third, dynamic tables that permit high-speed inserts and deletes are essential in QoS (Quality

of Service) and VAS (Value Added Service) applications [2].

In Section 5, we show that dynamic range-router-tables that employ most-specific range matching

and in which no two ranges intersect (Definition 2) may be efficiently represented using two priority-

search trees. Using this two-priority-search-tree representation, lookup, insert, and delete can be done

in O(log n) time each in the worst case.

The general case of non-conflicting ranges (Definition 5)is considered in Section 6. In a non-conflicting

range set two ranges may intersect (partially overlap, but one range is not completely contained in

another). Although range intersection may be an infrequent occurrence in IP packet forwarding, it is a

frequent occurrence for range fields of single and multidimensional QoS classifiers. In multidimensional

packet classification, several filters may intersect. For intersecting multidimensional filters, Hari et al. [3]

introduced the notion of filter conflict and used resolve filters to make filter sets conflict free under the

most-specific-matching rule. Our definition of conflict-free range is a natural extension to ranges of the

definition of conflict free given by Hari et al. [3]. Since an efficient solution to one-dimensional packet

classification is essential if we are to have an efficient solution for multidimensional packet classification,

our work with respect to intersecting ranges may be considered a stepping stone to an efficient solution

for multidimensional packet classification. In Section 6, we augment the data structure of Section 5

with several red-black trees to obtain a range-router-table representation for non-conflicting ranges that

permits lookup, insert, and delete in O(log n) time each in the worst case.

Section 2 lists related work and Section 3 introduces the terminology we use. Experimental results

are reported in Section 7.

2 Related Work

Ruiz-Sanchez et al. [4] review data structures for static prefix router-tables and Sahni et al. [5] review data

structures for both static and dynamic prefix router-table design. Several trie-based data structures for

prefix router-tables have been proposed [6–12]. Structures such as that of [6] perform each of the dynamic

router-table operations (lookup, insert, delete) in O(W) time. Others (e.g., [7–12]) attempt to optimize

lookup time and memory requirement through an expensive preprocessing step. These structures, while

providing very fast lookup capability, have a prohibitive insert/delete time (insert/delete may involve a

3

rebuild of the entire structure) and so, they are suitable only for static router-tables (i.e., tables into/from

which no inserts and deletes take place).

Waldvogel et al. [13] have proposed a scheme that performs a binary search on hash tables organized by

prefix length. This binary search scheme has an expected complexity of O(log W) for lookup. Waldvogel’s

scheme is very similar to the k-ary search-on-length scheme developed by Berg et al. [14] and the binary

search-on-length schemes developed by Willard [15]. Berg et al. [14] used a variant of stratified trees [16]

for one-dimensional point location in a set of n disjoint ranges. Willard [15] modified stratified trees and

proposed the y-fast trie data structure to search a set of disjoint ranges. By decomposing filter ranges

that are not disjoint into disjoint ranges, the schemes of [14,15] may be used for longest-prefix matching in

router tables. The asymptotic complexity using the schemes of [14,15] is the same as that of Waldvogel’s

scheme [13]. An alternative adaptation of binary search to longest-prefix matching is developed in [17].

Using this adaptation, a lookup in a table that has n prefixes takes O(W + log n) time. Because the

schemes of [13] and [17] use expensive precomputation, they are not suited for dynamic router-tables.

Suri et al. [18] have proposed a B-tree data structure for dynamic router tables. Using their structure,

we may find the longest matching prefix in O(log n) time. However, inserts/deletes take O(W log n)

time. The number of cache misses is O(log n) for each operation. When W bits fit in O(1) words (as

is the case for IPv4 and IPv6 prefixes) logical operations on W -bit vectors can be done in O(1) time

each. In this case, the scheme of [18] takes O(log W ∗ log n) time for an insert and O(W + log n) =

O(W) time for a delete. Even though the structure of Suri et al. [18] takes more time to find a longest

matching-prefix than do structures optimized for static router-tables, the structure of Suri et al. [18]

has a significantly more favorable ratio between lookup and update times; making it more suitable for

high-update applications.

Sahni and Kim [1] developed a data structure, called a collection of red-black trees (CRBT), that

supports the three operations of a dynamic prefix-router table in O(log n) time each. In [19], Sahni and

Kim show that their CRBT structure is easily modified to extend the biased-skip-list structure of Ergun

et al. [20] so as to obtain a biased-skip-list structure for dynamic prefix-router-tables. Using this modified

biased skip-list structure, lookup, insert, and delete can each be done in O(log n) expected time. Like the

original biased-skip list structure of [20], the modified structure of [19] adapts so as to perform lookups

faster for bursty access patterns than for non-bursty patterns. The CRBT structure may also be adapted

to obtain a collection of splay trees structure [19], which performs the three dynamic prefix-router-table

operations in O(log n) amortized time and which adapts to provide faster lookups for bursty traffic.

4

Cheung and McCanne [21] develop “a model for table-driven route lookup and cast the table design

problem as an optimization problem within this model.” Their model accounts for the memory hierarchy

of modern computers and they optimize average performance rather than worst-case performance.

Hardware solutions that involve the use of content addressable memory [22] as well as solutions that

involve modifications to the Internet Protocol (i.e., the addition of information to each packet) have also

been proposed [23–25].

Gupta and McKeown [26] have developed two data structures for dynamic range-router-tables—heap

on trie (HOT) and binary search tree on trie (BOT). Both of these are for the case when the best-matching

rule is the highest-priority rule that matches the given destination address. The HOT takes O(W) time

for a lookup and O(W log n) time for an insert or delete. The BOT structure takes O(W log n) time for

a lookup and O(W) time for an insert/delete.

3 Preliminaries

3.1 Prefixes and Longest-Prefix Matching

The prefix 1101* (the prefix is a binary prefix) matches all destination addresses that begin with 1101

and 10010* matches all destination addresses that begin with 10010. For example, when W = 5,

1101* matches the addresses {11010, 11011} = {26, 27}, and when W = 6, 1101* matches {110100,

110101, 110110, 110111} = {52, 53, 54, 55}. Suppose that a router table includes the prefixes P1 = 101∗,
P2 = 10010∗, P3 = 01∗, P4 = 1∗, and P5 = 1010∗. The destination address d = 1010100 is matched

by the prefixes P1, P4, and P5. Since, |P1| = 3 (the length of a prefix is number of bits in the prefix),

|P4| = 1, and |P5| = 4, P5 is the longest prefix that matches d. In longest-prefix routing, the next

hop for a packet destined for d is given by the longest prefix that matches d.

3.2 Ranges

Definition 1 A range r = [u, v] is a pair of addresses u and v, u ≤ v. The range r represents the

addresses {u, u + 1, ..., v}. start(r) = u is the start point of the range and finish(r) = v is the finish

point of the range. The range r covers or matches all addresses d such that u ≤ d ≤ v. isRange(q)

is a predicate that is true iff q is a range.

The start point of the range r = [3, 9] is 3 and its finish point is 9. This range covers or matches the

addresses {3, 4, 5, 6, 7, 8, 9}. In IPv4, u and v are up to 32 bits long, and in IPv6, u and v may be up

to 128 bits long. The IPv4 prefix P = 0∗ corresponds to the range [0, 231 − 1]. The range [3,9] does not

5

u v x y
x y u v

(a)

u vx y
x yu v

(b)

u vx yx yu v
(c)

Figure 1: Relationships between pairs of ranges. (a). Disjoint. (b). Nested. (c). Intersect

correspond to any single IPv4 prefix. We may draw the range r = [u, v] = {u, u+1, ..., v} as a horizontal

line that begins at u and ends at v. Figure 1 shows ranges drawn in this fashion.

Notice that every prefix of a prefix router-table may be represented as a range. For example, when

W = 6, the prefix P = 1101∗ matches addresses in the range [52, 55]. So, we say P = 1101∗ = [52, 55],

start(P) = 52, and finish(P) = 55.

Since a range represents a set of (contiguous) points, we may use standard set operations and relations

such as ∩ and ⊂ when dealing with ranges. So, for example, [2, 6] ∩ [4, 8] = [4, 6]. Note that some

operations between ranges may not yield a range. For example, [2, 6] ∪ [8, 10] = {2, 3, 4, 5, 6, 8, 9, 10} is

not a range.

Definition 2 Let r = [u, v] and s = [x, y] be two ranges.

(a) The predicate isDisjoint(r, s) is true iff r and s are disjoint.

isDisjoint(r, s) ⇐⇒ r ∩ s = ∅ ⇐⇒ v < x ∨ y < u

(b) The predicate isNested(r, s) is true iff one of the ranges is contained within the other.

isNested(r, s) ⇐⇒ r ∩ s = r ∨ r ∩ s = s

⇐⇒ r ⊆ s ∨ s ⊆ r

⇐⇒ x ≤ u ≤ v ≤ y ∨ u ≤ x ≤ y ≤ v

(c) The predicate isIntersect(r, s) is true iff r and s have a nonempty intersection that is different

from both r and s.

isIntersect(r, s) ⇐⇒ r ∩ s 6= ∅ ∧ r ∩ s 6= r ∧ r ∩ s 6= s

⇐⇒ u < x ≤ v < y ∨ x < u ≤ y < v

6

Notice that r ∩ s = [x, v] when u < x ≤ v < y and r ∩ s = [u, y] when x < u ≤ y < v.

[2, 4] and [6, 9] are disjoint; [2,4] and [3,4] are nested; [2,4] and [2,2] are nested; [2,8] and [4,6] are

nested; [2,4] and [4,6] intersect; and [3,8] and [2,4] intersect. [4, 4] is the overlap of [2, 4] and [4, 6]; and

[3, 8] ∩ [2, 4] = [3, 4].

Lemma 1 Let r and s be two ranges. Exactly one of the following is true: isDisjoint(r, s), isNested(r, s),

isIntersect(r, s).

Proof Straightforward.

3.3 Most-Specific-Range Routing and Conflict-Free Ranges

Definition 3 The range r is more specific than the range s iff r ⊂ s.

[2, 4] is more specific than [1, 6], and [5, 9] is more specific than [5, 12]. Since [2, 4] and [8, 14] are

disjoint, neither is more specific than the other. Also, since [4, 14] and [6, 20] intersect, neither is more

specific than the other.

Definition 4 Let R be a range set. We define ranges(d, R) (or simply ranges(d) when R is implicit)

as the subset of ranges of R that match/cover the destination address d. We define msr(d, R) (or

msr(d)) as the most specific range of R that matches d. That is, msr(d) is the most specific range in

ranges(d). msr([u, v], R) = msr(u, v, R) = r iff msr(d,R) = r, u ≤ d ≤ v. When R is implicit,

we write msr(u, v) and msr([u, v]) in place of msr(u, v, R) and msr([u, v], R). msr(d) may not exist.

In most-specific-range routing, the next hop for packets destined for d is given by the next-hop

information associated with msr(d).

When R = {[2, 4], [1, 6]}, ranges(3) = {[2, 4], [1, 6]}, msr(3) = [2, 4], msr(1) = [1, 6], msr(7) = ∅, and

msr(5, 6) = [1, 6]. When R = {[4, 14], [6, 20], [6, 14], [8, 12], [17, 19]}, shown in Figure 2(c), msr(4, 5) =

[4, 14], msr(6, 7) = [6, 14], msr(8, 12) = [8, 12], msr(13, 14) = [6, 14], and msr(15, 20) = [6, 20].

Definition 5 The range set R has a conflict iff there exists a destination address d for which ranges(d) 6=
∅ ∧msr(d) = ∅. R is conflict free iff it has no conflict. The predicate isConflictFree(R) is true iff

R is a conflict-free range set.

isConflictFree({[2, 8], [4, 12], [4, 8])} is true while isConflictFree({[2, 8], [4, 12])} is false.

Searching for msr(d) in a conflict-free range set using a priority search tree is based on Lemma 2.

7

4 5 6

0 7

0 15

16 19

(a)

4 6

0 7

0 19

11 14

(b)

4 14

6 14

6 20

8 12 17 19

(c)

Figure 2: Sample set: (a). Prefixes (W = 5) {0*, 00*, 0010*, 00110, 100*}. (b). Non-intersecting ranges.
Range [4, 6] can’t be represented by single prefix, neither can [0, 19], [11, 14]. (c). Conflict-free ranges.
Ranges [4, 14] and [6, 20] intersect.

Lemma 2 Let R be a conflict-free range set and let d be a destination address. If ranges(d) 6= ∅,
then start(msr(d)) = a = maxStart(ranges(d)) = max{start(r)|r ∈ ranges(d)} and finish(msr(d))

= b = minFinish(ranges(d)) = min{finish(r)|r ∈ ranges(d)}.

Proof Since R is conflict free and ranges(d) 6= ∅, msr(d) 6= ∅. Assume that msr(d) = s. If s 6= [a, b],

then start(s) < a or finish(s) > b. Assume that start(s) < a (the case finish(s) > b is similar). Let

t ∈ ranges(d) be such that start(t) = a. Now, isIntersect(s, t) ∨ t ⊂ s. Hence, s 6= msr(d).

3.4 Priority Search Trees and Ranges

A priority-search tree (PST) [27] is a data structure that is used to represent a set of tuples of the

form (key1, key2, data), where key1 ≥ 0, key2 ≥ 0, and no two tuples have the same key1 value. The

data structure is simultaneously a min-tree on key2 (i.e., the key2 value in each node of the tree is

≤ the key2 value in each descendent node) and a search tree on key1. There are two common PST

representations [27]:

1. In a radix priority-search tree (RPST), the underlying tree is a binary radix tree on key1.

2. In a red-black priority-search tree (RBPST), the underlying tree is a red-black tree.

McCreight [27] has suggested a PST representation of a collection of ranges with distinct finish points.

This representation uses the following mapping of a range r into a PST tuple:

(key1, key2, data) = (finish(r), start(r), data) (1)

where data is any information (e.g., next hop) associated with the range. Each range r is, therefore

mapped to a point map1(r) = (x, y) = (key1, key2) = (finish(r), start(r)) in 2-dimensional space.

Figure 3 shows a set of ranges and the equivalent set of 2-dimensional points (x, y).

8

4 7 8 1411 1411 170 22
(a)

b

b

b b

b0 4 8 12 16 20 24048
12

(b)

b

b

b b

b

0 4 8 12 16 20 24
0

4

8

12

msr(12)

(c)

Figure 3: (a). An example range set R. (b). Its mapping map1(R) into points in 2D. The x value is the
range finish point and the y value is the range start point. (c). ranges(12) includes all the points inside the
solid rectangle since range [st, fn] such that st = y ≤ 12 ≤ fn = x matches 12. msr(12) = [11, 14] has the
largest y value among those having the smallest x value. minXinRectangle(2W 12+(2W −1−12),∞, 12)
performed on PST1 yields msr(12).

McCreight [27] has observed that when the mapping of Equation 1 is used to obtain a point set

P = map1(R) from a range set R, then ranges(d) is given by the points that lie in the rectangle (including

points on the boundary) defined by xleft = d, xright = ∞, ytop = d, and ybottom = 0. These points are

obtained using the method enumerateRectangle(xleft, xright, ytop) = enumerateRectangle(d,∞, d) of a

PST (ybottom is implicit and is always 0).

When an RPST is used to represent the point set P , the complexity of

enumerateRectangle(xleft, xright, ytop)

is O(log maxX + s), where maxX is the largest x value in P and s is the number of points in the

query rectangle. When the point set is represented as an RBPST, this complexity becomes O(log n + s),

where n = |P |. A point (x, y) (and hence a range [y, x]) may be inserted into or deleted from an RPST

(RBPST) in O(log maxX) (O(log n)) time [27]. We shall employ these RPST (RBPST) algorithms here

without further description. These algorithms are described in detail in [27].

3.5 Prefix Router-Table vs. Range Router-Table

The management of dynamic prefix router-tables is simplified by the fact that inserting and/or deleting

from a set of prefixes leaves behind a set of prefixes. When dealing with non-intersecting ranges, each

insertion must verify that the new range doesn’t intersect any of the existing ranges. This makes the case

of non-intersecting ranges slightly harder to handle. Note however, that when a range is deleted from

a set of non-intersecting ranges, the range set that remains is non-intersecting. The case of conflict-free

ranges is the hardest to handle. Both the insertion and deletion of a range from a set of conflict-free

ranges may cause the set of remaining ranges to have conflicts. Further, checking for conflicts is harder

9

than checking for intersections. In the following sections, we examine these three cases of filter sets in

increasing order of difficulty–prefixes, non-intersecting ranges, conflict-free ranges.

4 Prefixes

Let R be a set of ranges such that each range represents a prefix. It is well known (see [1], for example)

that no two ranges of R intersect. Therefore, R is conflict free. For simplicity, assume that R includes the

range that corresponds to the prefix * (prefix * is the default prefix, its length is zero and it matches all

destination addresses). With this assumption, msr(d) is defined for every d. From Lemma 2, it follows

that msr(d) is the range [maxStart(ranges(d)),minFinish(ranges(d))]. To find this range easily, we

first transform P = map1(R) into a point set transform1(P) so that no two points of transform1(P)

have the same x-value. Then, we represent transform1(P) as a PST.

Definition 6 Let W be the (maximum) number of bits in a destination address (W = 32 in IPv4).

Let (x, y) ∈ P . transform1(x, y) = (x′, y′) = (2W x + (2W − 1 − y), y) and transform1(P) =

{transform1(x, y) | (x, y) ∈ P}.

We see that 0 ≤ x′ < 22W for every (x′, y′) ∈ transform1(P) and that no two points in transform1(P)

have the same x′-value. Let PST1(P) be the PST for transform1(P). The operation

enumerateRectangle(2W d + (2W − 1− d),∞, d)

performed on PST1 yields ranges(d) since (y ≤ d ≤ x) ⇔ ((y′ ≤ d) ∧ (2W d + (2W − 1 − d) ≤ x′)). To

find msr(d), we employ the

minXinRectangle(x′left, x
′
right, y

′
top)

operation, which determines the point in the defined rectangle that has the least x′-value.

minXinRectangle(2W d + (2W − 1− d),∞, d)

performed on PST1 yields msr(d) (y′bottom is implicit and is always 0). The point (x′, y′) returned

corresponds to the point (x, y) that has the largest y-value among the points having the least x-value in

the rectangle defined by xleft = d, xright = ∞, ytop = d, and ybottom = 0. From the definition of map1,

such an (x, y) corresponds to the range [maxStart(ranges(d)), minFinish(ranges(d))].

To insert the prefix whose range is [u, v], we insert transform1(map1([u, v])) into PST1. In case

this prefix is already in PST1, we simply update the next-hop information for this prefix. To delete the

10

prefix whose range is [u, v], we delete transform1(map1([u, v])) from PST1. When deleting a prefix, we

must take care not to delete the prefix *. Requests to delete this prefix should simply result in setting

the next-hop associated with this prefix to ∅.
Since, minXinRectangle, insert, and delete each take O(log n) time when PST1 is a RBPST, PST1

provides a router-table representation in which longest-prefix matching, prefix insertion, and prefix dele-

tion can be done in O(log n) time each when an RBPST is used.

5 Nonintersecting Ranges

Let R be a set of nonintersecting ranges(note that R may contain nested as well as disjoint ranges).

Clearly, R is conflict free. For simplicity, assume that R includes the range z that matches all destination

addresses (z = [0, 232 − 1] in the case of IPv4). With this assumption, msr(d) is defined for every d. We

may use PST1(transform1(map1(R))) to find msr(d) as described in Section 4.

Insertion of a range r is to be permitted only if r does not intersect any of the ranges of R. Once

we have verified this, we can insert r into PST1 as described in Section 4. Range intersection may

be verified by noting that there are two cases for range intersection (Definition 2(c)). When inserting

r = [u, v], we need to determine if ∃s = [x, y] ∈ R[u < x ≤ v < y ∨ x < u ≤ y < v]. We see that

∃s = [x, y] ∈ R[x < u ≤ y < v] iff map1(R) has at least one point in the rectangle defined by xleft = u,

xright = v−1, and ytop = u−1 (recall that ybottom = 0 by default). Hence, ∃s = [x, y] ∈ R[x < u ≤ y < v]

iff minXinRectangle(2W u + (2W − 1− (u− 1)), 2W (v − 1) + (2W − 1), u− 1) exists in PST1.

To verify ∃s = [x, y] ∈ R[u < x ≤ v < y], map the ranges of R into 2-dimensional points using the

mapping, map2(r) = (start(r), 2W − 1− finish(r)). Call the resulting set of mapped points map2(R).

We see that ∃s = [x, y] ∈ R[u < x ≤ v < y] iff map2(R) has at least one point in the rectangle defined

by xleft = u + 1, xright = v, and ytop = (2W − 1) − (v + 1). To verify this, we maintain a second

PST, PST2 of points in transform2(map2(R)), where transform2(x, y) = (2W x + y, y) Hence,

∃s = [x, y] ∈ R[u < x ≤ v < y] iff minXinRectangle(2W (u+1), 2W v+(2W−1)−(v+1), (2W−1)−(v+1))

exists.

To delete a range r, we must delete r from both PST1 and PST2. Deletion of a range from a PST

is similar to deletion of a prefix as discussed in Section 4.

The complexity of the operations to find msr(d), insert a range, and delete a range are the same as

that for these operations for the case when R is a set of ranges that correspond to prefixes.

11

6 Conflict-Free Ranges

In this section, we extend the two-PST data structure of Section 5 to the general case when R is an

arbitrary conflict-free range set. Once again, we assume that R includes the range z that matches all

destination addresses. PST1 and PST2 are defined for the range set R as in Sections 4 and 5. Section 6.1

shows how to determine msr(d), Section 6.2 introduces the resolving subset for two intersecting ranges.

Section 6.3 gives the algorithm of inserting a range. Before inserting a new range r into a conflict-free

range set R, we need to determine whether or not R∪{r} is conflict-free. Section 6.4 gives the algorithm

of deleting a range. Before deleting an existing range r from a conflict-free range set R, we need to

determine whether or not R−{r} is conflict-free. To efficiently compute the functions maxP and minP

(Definition 9) that are used to verify the conflict-free property prior to inserting/deleting a range, we

employ the notion of a normalized range set. Normalized range sets are introduced in Section 6.5. The

methods to compute maxP and minP are given in Section 6.6, and the method to update the normalized

range set is developed in Section 6.7.

6.1 Determine msr(d)

Since R is conflict free, msr(d) is determined by Lemma 2. Hence, msrd(d) may be obtained by per-

forming the operation

minXinRectangle(2W d + (2W − 1− d),∞, d)

on PST1.

6.2 Projections and Resolving Subsets

Definition 7 Let R = {r1, ..., rn} be a set of n ranges. The projection, Π(R), of R is

Π(R) = ∪n
i=1 ri

That is, Π(R) comprises all addresses that are covered by at least one range of R.

For A = {[2, 5], [3, 6], [8, 9]}, Π(A) = {2, 3, 4, 5, 6, 8, 9}, and for B = {[4, 8], [7, 9]}, Π(B) = {4, 5, 6, 7, 8, 9}.
Π(A) is not a range. However, Π(B) is the range [4, 9]. Note that Π(R) is a range iff d ∈ Π(R) for every

d, u ≤ d ≤ v, where u = min{d|d ∈ Π(R)} and v = max{d|d ∈ Π(R)}.

Definition 8 Let r and s be two intersecting ranges of the range set R. The subset Q ⊂ R is a resolving

subset within R for these two ranges iff Q is conflict free and Π(Q) = r ∩ s. Two ranges of a range set

12

are in conflict iff they intersect and have no resolving subset. Two ranges are conflict free iff they are

not in conflict.

Lemma 3 A range set is conflict free iff it has no pair of ranges that are in conflict.

Proof See Appendix.

6.3 Insert a Range r = [u, v]

When inserting a range r = [u, v] 6∈ R, we must insert transform(map1(r)) into PST1 and insert

transform2(map2(r)) into PST2. Additionally, we must verify that R ∪ {r} is conflict free. This

verification is done using Lemma 4.

Lemma 4 Let R be a conflict-free range set. Let A = R ∪ {r}, where r = [u, v] 6∈ R.

isConflictFree(A) ⇐⇒ maxY (u, v,R) ≤ maxP (u, v, R) ∧minX(u, v, R) ≥ minP (u, v, R)

where maxY ≤ maxP (minX ≥ minP) is true whenever maxY (minX) does not exist and is false

when maxY (minX) exists but maxP (minP) does not.

Proof See Appendix.

maxP , minP , maxY and minX are defined below.

Definition 9

maxP (u, v, R) = max{finish(Π(A))|A ⊆ R∧ isRange(Π(A))∧ start(Π(A)) = u∧ finish(Π(A)) ≤ v}
is the maximum finish point of a possible projection that is a range that starts at u and finishes by v.

minP (u, v, R) = min{start(Π(A))|A ⊆ R∧ isRange(Π(A))∧finish(Π(A)) = v∧start(Π(A)) ≥ u}
is the minimum start point of a possible projection that is a range that finishes at v and starts by u.

When @A ⊆ R[isRange(Π(A))∧start(Π(A)) = u∧finish(Π(A)) ≤ v], we say that maxP (u, v, R) does

not exist. Similarly, minP (u, v,R) may not exist. At times, we use maxP and minP as abbreviations

for maxP (u, v, R) and minP (u, v,R), respectively.

maxY (u, v, R) = max{y|[x, y] ∈ R∧x < u ≤ y < v} and minX(u, v, R) = min{x|[x, y] ∈ R∧u <

x ≤ v < y}. Note that maxY and minX may not exist.

Figure 4 gives a high-level description of our algorithm to insert a range into R. Step 1 is done by

searching for transform1(map1(r)) in PST1. For Step 2, we note that

maxY (u, v, R) = maxXinRectangle(2W u + (2W − 1− (u− 1)), 2W (v − 1) + (2W − 1), u− 1)

13

Step 1: If r = [u, v] ∈ R, update the next-hop information associated with r ∈ R and terminate.

Step 2: Compute maxP (u, v, R), minP (u, v, R), maxY (u, v, R) and minX(u, v, R).

Step 3: If maxY (u, v, R) ≤ maxP (u, v, R) ∧ minX(u, v,R) ≥ minP (u, v, R), R ∪ {r} is conflict
free; otherwise, it is not. In the former case, insert transform1(map1(r)) into PST1 and
transform2(map2(r)) into PST2. In the latter case, the insert operation fails.

Figure 4: Insert r = [u, v] into the conflict-free range set R

minX(u, v, R) = minXinRectangle(2W (u + 1), 2W v + (2W − 1)− (v + 1), (2W − 1)− (v + 1))

where for maxY we use PST1 and for minX we use PST2. Section 6.6 describes the computation of

maxP and minP . The point insertions of Step 3 are done using the standard insert algorithm for a

PST [27].

6.4 Delete a Range r = [u, v]

Suppose we are to delete the range r = [u, v]. This deletion is to be permitted iff r 6= z (z is the default

range that matches all destination addresses) and A = R − {r} is conflict free. Its correctness follows

from Lemma 5.

Lemma 5 Let R be a conflict-free range set. Let A = R− {r}, for some r ∈ R.

1. ∃B ⊆ A[Π(B) = r] =⇒ isConflictFree(A).

2. @B ⊆ A[Π(B) = r] =⇒ [isConflictFree(A) ⇐⇒ ((@s ∈ A[r ⊂ s]) ∨ ([m,n] ∈ A))], where

m = max{start(s)|s ∈ A ∧ r ⊆ s}, and n = min{finish(s)|s ∈ A ∧ r ⊆ s}.

Proof See Appendix.

Assume r = [7, 9], m = 6 and n = 10. R − {r} contains the ranges [5, 10] and [6, 12]. But range

[m,n] = [6, 10] = [5, 10] ∩ [6, 12] is not in R− {r}. So R− {r} is not conflict-free.

Figure 5 gives a high-level description of our algorithm to delete r. Step 2 employs the standard

PST algorithm to delete a point [27]. For Step 3, we note that A has a subset whose projection equals

r = [u, v] iff maxP (u, v, A) = v. In Section 6.6, we show how maxP (u, v, A) may be computed efficiently.

For Step 5, we note that r = [u, v] ⊆ s = [x, y] iff x ≤ u ∧ y ≥ v. So, A has such a range iff

minXinRectangle(2W v + (2W − 1− u),∞, u)

exists in PST1.

14

Step 1: If r = z, change the next-hop information for z to ∅ and terminate.

Step 2: Delete transform1(map1(r)) from PST1 and transform2(map2(r)) from PST2 to get the PSTs
for A = R− {r}. If PST1 did not have transform1(map1(r)), r 6∈ R; terminate.

Step 3: Determine whether or not A has a subset whose projection equals r = [u, v].

Step 4: If A has such a subset, conclude isConflictFree(A) and terminate.

Step 5: Determine whether A has a range that contains r = [u, v]. If not, conclude isConflictFree(A) and
terminate.

Step 6: Determine m and n as defined in Lemma 5 as follows.
m = start(maxXinRectangle(0, 2W u + (2W − 1)− v, (2W − 1)− v) (use PST2)
n = finish(minXinRectangle(2W v + (2W − 1− u),∞, u) (use PST1)

Step 7: Determine whether [m,n] ∈ A. If so, conclude isConflictFree(A). Otherwise, con-
clude ¬isConflictFree(A). In the latter case reinsert transform1(map1(r)) into PST1 and
transform2(map2(r)) into PST2 and disallow the deletion of r.

Figure 5: Delete the range r = [u, v] from the conflict-free range set R

In Step 6, we assume that maxXinRectangle and minXinRectangle return the range of R that

corresponds to the desired point in the rectangle. To determine whether [m,n] ∈ A (Step 7), we search

for the point (2W n + (2W − 1 − m),m) in PST1 using the standard PST search algorithm [27]. The

reinsertion into PST1 and PST2, if necessary, is done using the standard PST insert algorithm [27].

6.5 Normalized Ranges for Computing maxP and minP

Definition 10 [Normalized Ranges] The range set R is normalized iff one of the following is true.

1. |R| ≤ 1.

2. |R| > 1 and for every r ∈ R and every s ∈ R, r 6= s, one of the following is true.

(a) isDisjoint(r, s).

(b) isNested(r, s) ∧ start(r) 6= start(s) ∧ finish(r) 6= finish(s). That is, r and s are nested and

do not have a common end-point.

Figure 6(a) shows a range set that is not normalized (it contains ranges that intersect as well as

nested ranges that have common end-points). Figure 6(b) shows a normalized range set. Regardless

of which of these two range sets is used, every destination d has the same most-specific range after the

15

(a)

(b)

Figure 6: Unnormalized and normalized range sets

correspondence is established between ranges in the original range set and those in the normalized range

set (chop(msr(d,R)) = msr(d, norm(R)), Lemma 21).

Definition 11 An ordered sequence of ranges (r1, ..., rn) is a chain iff ∀i < n[start(ri+1) = finish(ri)+

1]. A range set R is a chain iff its ranges can be ordered so as to form a chain. isChain(R) is a

predicate that is true iff R is a chain.

The range sequence ([2, 4], [5, 7], [8, 12]) is a chain while ([5, 8], [12, 14]) and ([5, 8], [2, 4]) are not. The

range sets {[5, 8], [2, 4]} and {[2, 4], [8, 12], [5, 7]} are chains while {[2, 4], [8, 12]} and {[2, 4], [5, 7], [8, 12], [9, 10]}
are not. Note that when R is a chain, Π(R) = [minStart(R), maxFinish(R)].

Lemma 6 Let N be a normalized range set.

1. N may be uniquely partitioned into a set of longest chains CP (N) = {C1, ..., Ck}, N = ∪k
i=1Ci. By

longest chains, we mean that no two chains of CP may be combined into a single chain. CP (N)

is called a canonical partitioning.

2. For all i and j, 1 ≤ i < j ≤ k, Π(Ci) and Π(Cj) are either disjoint, or Ci is properly contained

within a range of Cj, or Cj is properly contained within a range of Ci. A chain Ci is properly

contained within the range r iff Π(Ci) ⊂ r and Ci and r share no end point.

Proof See Appendix.

Figure 7 shows a normalized range set and its canonical partitioning into three chains.

Next we state a chopping rule that we use to transform every conflict-free range set R into an equivalent

normalized range set norm(R). By equivalent, we mean that for every destination d, the most-specific

matching-range is the same in R as it is in norm(R).

16

+1 +1+1 +1 +1
Figure 7: Partitioning a normalized range set into chains

Definition 12 [Chopping Rule] Let r = [u, v] ∈ R, where R is a range set. chop(r, R) (or more

simply chop(r) when R is implicit), is as defined below.

1. If neither maxP (u, v − 1, R) nor minP (u + 1, v, R) exists, chop(r) = r.

2. If only maxP (u, v − 1, R) exists, chop(r) = [maxP (u, v − 1, R) + 1, v].

3. If only minP (u + 1, v, R) exists, chop(r) = [u,minP (u + 1, v, R)− 1].

4. If both maxP (u, v − 1, R) and minP (u + 1, v, R) exist and maxP (u, v − 1, R) + 1 ≤ minP (u +

1, v, R)− 1, chop(r) = [maxP (u, v − 1, R) + 1,minP (u + 1, v, R)− 1].

5. If both maxP (u, v − 1, R) and minP (u + 1, v, R) exist and maxP (u, v − 1, R) + 1 > minP (u +

1, v, R) − 1, chop(r) = ∅, where ∅ denotes the null range. The null range neither intersects nor is

contained in any other range.

Define norm(R) = {chop(r) | r ∈ R ∧ chop(r) 6= ∅}.

Lemma 7 Let R be a conflict-free range set. For every r′ ∈ norm(R) there is a unique r ∈ R such that

chop(r) = r′.

Proof See Appendix.

For r′ ∈ norm(R), define full(r′) = chop−1(r′) = r, where r is the unique range in R for which

chop(r) = r′. Notice that full(chop(r)) = r except when chop(r) = ∅.

6.6 Computing maxP and minP

Although maxP and minP are relatively difficult to compute using data structures such as PST1 and

PST2 that directly represent R, they may be computed efficiently using data structures for norm(R).

In this section, we show how to compute maxP from norm(R). The computation of minP is similar.

17

Step 1: Find r′ ∈ norm(R) such that start(r′) = u.
If (no such r′) ∨ start(full(r′)) 6= u ∨ finish(full(r′)) > v, maxP does not exist; terminate.

Step 2: maxP = finish(r′);
while (∃s′ ∈ norm(R)[(start(s′) = maxP + 1) ∧ (full(s′) ⊆ [u, v])])

maxP = finish(s′);

Figure 8: Simple algorithm to compute maxP (u, v,R), where [u, v] is a range and isConflictFree(R)

6.6.1 A Simple Algorithm to Compute maxP

Figure 8 is a high-level description of a simple, though not efficient, algorithm to compute maxP (u, v,R).

Step 1 determines whether or not there is a range that is nested inside [u, v] and starts at u. If there is

no such range, maxP does not exist. Step 2 extends maxP as far as possible by following a chain.

Theorem 1 Figure 8 correctly computes maxP (u, v, R).

Proof See Appendix.

6.6.2 An Efficient Algorithm to Compute maxP

The algorithm of Figure 8 takes time O(length(Ci)), where length(Ci) is the number of ranges in the

chain Ci ∈ CP (norm(R)) that contains r′. We can reduce this time to O(log length(Ci)) by representing

each chain of CP (norm(R)) as a red-black tree (actually any balanced search tree structure that permits

efficient join and split operations may be used). The number of red-black trees we use equals the number

of chains in CP (norm(R)).

Let D = (t′1, ..., t
′
q) be a chain in CP (norm(R)). The red-black tree, RBT (D), for D has one node for

each of the ranges t′i. The key value for the node for t′i is start(t′i) (equivalently, finish(t′i) may be used as

the search tree key). Each node of RBT (D) has the following four values (in addition to having a t′i and

other values necessary for efficient implementation): minStartLeft, minStartRight, maxFinishLeft,

and maxFinishRight. For a node p that has an empty left subtree, minStartLeft = 2W − 1 and

maxFinishLeft = 0. Similarly, when p has an empty right subtree, minStartRight = 2W − 1 and

maxFinishRight = 0. Otherwise,

minStartLeft = min{start(full(r′))|r′ ∈ leftSubtree(p)}

minStartRight = min{start(full(r′))|r′ ∈ rightSubtree(p)}

maxFinishLeft = max{finish(full(r′))|r′ ∈ leftSubtree(p)}

18

maxFinishRight = max{finish(full(r′))|r′ ∈ rightSubtree(p)}

The collection of red-black trees representing norm(R) is augmented by an additional red-black tree

endPointsTree(norm(R)) that represents the end points of the ranges in norm(R). With each point x

in endPointsTree, we store a pointer to the node in RBT (D) that represents s′. Alternatively, we may

use a PST, PST3, for the range set chains = {[start(Ci), finish(Ci)]|Ci ∈ CP (norm(R))}. The points

in PST3 are map1(chains); with each point in PST3, we keep a pointer to the root of the RBT for that

chain. Note that since range end-points are distinct in chains, we do not need to use transform1 as

used in PST1. To find an end point d, we first find the smallest chain that covers d by performing the

operation minXinRectangle(d,∞, d) in PST3. Next, we follow the pointer associated with this chain to

get to the corresponding RBT. Finally, a search of this RBT gets us to the RBT node for the s′ with the

given end point. In the sequel, we assume that endPointsTree, rather than PST3, is used. A parallel

discussion is possible for the case when PST3 is used.

To implement Step 1 of Figure 8, we search endPointsTree for the point u. If u 6∈ endPointsTree,

then @r′ ∈ norm(R)[start(r′) = u]. If u ∈ endPointsTree, then we use the pointer in the node for u to

get to the root of the RBT that has r′. A search in this RBT for u locates r′. We may now perform the

remaining checks of Step 1 using the data associated with r′.

Suppose that maxP exists. At the start of Step 2, we are positioned at the RBT node that

represents r′. This is node 0 of Figure 9. We need to find s′ ∈ norm(R) with least s′ such that

start(s′) > finish(r′) ∧ full(s′) 6⊆ [u, v]. If there is no such s′, then maxP = max{finish(root.range),

root.maxFinishRight}. If such an s′ exists, maxP = start(s′)− 1.

s′ may be found in O(height(RBT)) time using a simple search process. We illustrate this process

using the tree of Figure 9. We begin at node 0. If [minStartRight, maxFinishRight] ⊆ [u, v], then

s′ is not in the right subtree of node 0. Since node 0 is a right child, s′ is not in its parent. So,

we back up to node 1 (in general, we back up to the nearest ancestor whose left subtree contains the

current node). Let t′1 be the range in node 1. s′ = t′ iff t′ 6⊆ [u, v]. If s′ 6= t′, we perform the test

[minStartRight,maxFinishRight] ⊆ [u, v] at node 1 to determine whether or not s′ is in the right

subtree of node 1. If the test is true, we back up to node 2. Otherwise, s′ is in the right subtree of node

1. When the right subtree (if any) that contains s′ is identified, we make a downward pass in this subtree

to locate s′. Figure 10 describes this downward pass.

19

3

2

1

0

Figure 9: An example RBT

downwardPass(currentNode)
// currentNode is the root of a subtree all of whose ranges start at the right of u
// This subtree contains s′. Return maxP .
while (true) {

if ([currentNode.minStartLeft, currentNode.maxFinishRight] ⊆ [u, v])
// s′ not in left subtree
if (currentNode.range ⊆ [u, v])

// s′ 6∈ currentNode. s′ must be in right subtree.
currentNode = currentNode.rightChild;

else return (start(currentNode.range)− 1);
else // s′ is in left subtree

currentNode = currentNode.leftChild;
}

Figure 10: Find s′ (and hence maxP) in a subtree known to contain s′

6.7 Update norm(R)

Now that we have augmented PST1 and PST2 with a collection of RBT s and an endPointsTree,

whenever we insert a range r = [u, v] into R or delete a range r = [u, v] from R, we must update not

only PST1 and PST2 as described in Section 6.3, but also the RBT collection and endPointsTree.

6.7.1 Update norm(R) After Inserting r = [u, v]

The norm(R) update algorithm following inserting r = [u, v] is based on Lemmas 8 and 9. Lemma 8

tells us that when a range r is inserted into the conflict-free range set R, the chop() value may change

only for the smallest enclosing range s ∈ R of r.

Lemma 8 Let R be a conflict-free range set. Let r 6∈ R be such that R ∪ {r} is conflict free.

1. chop(r,R ∪ {r}) = ∅ =⇒ ∀t ∈ R[chop(t, R) = chop(t, R ∪ {r})].

20

2. Let s be the smallest range of R that contains r. Assume that s exists and that chop(r,R∪{r}) 6= ∅.

(a) ∀t ∈ R− {s}[chop(t, R) = chop(t, R ∪ {r})].

(b) chop(s,R) 6= chop(s,R ∪ {r}) =⇒ (x′ = u′ ∧ y′ = v′) ∨ (x′ = u′ ∧ y′ > v) ∨ (x′ < u ∧ y′ = v′),

where r = [u, v], chop(r,R ∪ {r}) = chop(r,R) = [u′, v′], and chop(s,R) = [x′, y′].

Proof See Appendix.

Lemma 9 provides a method to compute chop(s,R ∪ {r}) for the smallest enclosing range s ∈ R of

r 6∈ R.

Lemma 9 Let R, r = [u, v], s = [x, y], x′, y′, u′ and v′ be as in Lemma 8. Assume that s exists and

chop(s) 6= ∅.

1. isDisjoint(r, chop(s,R)) ∨ x′ < u ≤ v < y′ =⇒ chop(s,R ∪ {r}) = chop(s,R).

2. x′ = u′ ∧ y′ = v′ =⇒ chop(s,R ∪ {r}) = ∅.

3. Suppose x′ = u′ ∧ y′ > v. If maxP (v′ + 1, y′, R) doesn’t exist, then chop(s,R∪ {r}) = [v + 1, y′]. If

it exists, chop(s,R ∪ {r}) = [maxP (v′ + 1, y′, R) + 1, y′].

4. Suppose x′ < u′ ∧ y′ = v′. If minP (x′, u′ − 1, R) doesn’t exist, then chop(s,R ∪ {r}) = [x′, u − 1].

If it exists, chop(s,R ∪ {r}) = [x′,minP (x′, u′ − 1, R)− 1].

Proof See Appendix.

To update RBT collection and endPointsTree, we first compute chop(r,R ∪ {r}) = chop(r,R) =

[u′, v′] by first computing minP (u + 1, v) and maxP (u, v − 1) as described in Section 6.6. [u′, v′] is now

easily obtained from the chopping rule. Since z ∈ R and r 6= z (z is prefix *), such an s must exist. Then

chop(s,R ∪ {r}) can be computed using Lemma 9.

Note that the insertion of r may combine two chains of CP (norm(R)). In this case, we use the join

operation of red-black trees to combine the RBT s corresponding to these two chains.

6.7.2 Update norm(R) After Deleting r = [u, v]

The norm(R) update algorithm following deleting r = [u, v] is based on Lemma 10. Lemma 10 tells us

that the only s ∈ R ∪ {r} whose chop() value may change as a result of the deletion of r is the smallest

enclosing range of r. This lemma also provides a way to compute chop(s,R− {r}).

21

Lemma 10 Let R be a conflict-free range set. Let r = [u, v] ∈ R be such that R− {r} is conflict free.

1. chop(r,R) = ∅ =⇒ ∀t ∈ R− {r}[chop(t, R) = chop(t, R− {r})].

2. Let s = [x, y] be the smallest range of R − {r} that contains r. Assume that s exists and that

chop(r,R) = [u′, v′].

(a) ∀t ∈ R− {r, s}[chop(t, R) = chop(t, R− {r})].

(b) chop(s,R) = ∅ =⇒ chop(s,R− {r}) = [u′, v′].

(c) chop(s,R) = [x′, y′] =⇒ chop(s,R− {r}) = [min{x′, u′}, max{y′, v′}].

Proof See Appendix.

When chop(r,R) = ∅, no changes are to be made to the RBT s and endPointsTree (Lemma 10(1)).

So, assume that chop(r,R) 6= ∅. We first find s, the smallest range that contains r (see Lemma 10(2)).

Note that since z ∈ R and r 6= z, s exists. One may verify that s is one of the ranges given by the

following two operations.

minXinRectangle(2W v + (2W − 1− u),∞, u)

maxXinRectangle(0, 2W u + 2W − 1− v, 2W − 1− v)

where the first operation is done in PST1 and the second in PST2 (both operations are done after

transform1(map1([u, v])) has been deleted from PST1 and transform2(map2([u, v])) has been deleted

from PST2). The ranges returned by these two operations may be compared to determine which is s.

Once we have identified s, Lemma 10(2) is used to determine chop(s,R−{r}). Assume that chop(s,R) 6=
∅. Let chop(r,R) = r′ = [u′, v′] and chop(s, R) = s′ = [x′, y′]. When s′ and r′ are in different RBT s (this

is the case when r′ ⊂ s′), chop(s,R) = chop(s,R − {r}) and the RBT that contains r′ may need to be

split into two RBT s. When s′ and r′ are in the same RBT , they are in the same chain of CP (norm(R)).

If s′ and r′ are adjacent ranges of this chain, we may simply remove the RBT node for r′ and update

that for s′ to reflect its new start or finish point (only one may change). When r′ and s′ are not adjacent

ranges, the nodes for these two ranges are removed from the RBT (this may split the RBT into up to

two RBT s) and chop(s,R− {r}) inserted. Figure 11 shows the different cases.

6.8 Complexity

The portions of the search, insert, and delete algorithms that deal only with PST1 and PST2 have

the same asymptotic complexity as their counterparts for the case of nonintersecting ranges (Section 5).

22

u0 v0x0 y0
u0 y0

(a)

x0 y0u0 v0
x0 v0

(b)

u0 v0 x0 y0
u0 y0

(c)

x0 y0 u0 v0
x0 v0

(d)

Figure 11: Cases when s′ and r′ are in the same chain of CP (norm(R))

The portions that deal with the RBT s and endPointsTree require a constant number of search, insert,

delete, join, and split operations on these structures. Since each of these operations takes O(log n) time

on a red-black tree and since we can update the values minStartLeft, minStartRight, and so on, that

are stored in the RBT nodes in the same asymptotic time as taken by an insert/delete/join/split, the

overall complexity of our proposed data structure is O(log n) for each operation when RBPST s are used

for PST1 and PST2.

7 Experimental Results

7.1 Prefixes

We programmed our red-black priority-search tree algorithm for prefixes (Section 4) in C++ and com-

pared its performance to that of the ACRBT of [19]. The ACRBT is the best performing O(log n) data

structure reported in [19] for dynamic prefix-tables. For test data, we used six IPv4 prefix databases

obtained from [28]. The number of prefixes in each of these databases as well as the memory requirements

for each database of prefixes using our data structure (PST) of Section 4 as well as the ACRBT structure

of [19] are shown in Table 1. The databases Paix1, Pb1, MaeWest and Aads were obtained on Nov 22,

2001, while Pb2 and Paix2 were obtained Sept. 13, 2000. Figure 12 is a plot of the data of Table 1. As

can be seen, the ACRBT structure takes almost three times as much memory as is taken by the PST

structure. Further, the memory requirement of the PST structure can be reduced to about 50% that of

our current implementation. This reduction requires an n-node implementation of a priority-search tree

as described in [27] rather than our current implementation, which uses 2n− 1 nodes as in [29].

Database Paix1 Pb1 MaeWest Aads Pb2 Paix2
Num of Prefixes 16172 22225 28889 31827 35303 85988

Memory PST 884 1215 1579 1740 1930 4702
(KB) ACRBT 2417 3331 4327 4769 5305 12851

Table 1: Memory usage

For the database Paix2, the optimal height 2 variable stride trie that results when the controlled

23

 Paix1 Pb1 MaeWest Aads Pb2 Paix2
0

2000

4000

6000

8000

10000

12000

14000

Database

T
ot

al
 M

em
or

y
(K

B
)

PST
ACRBT

Figure 12: Memory usage

prefix expansion scheme of [10] is used requires 2.5MB [12]; when the trie height is 3, 1.1MB is needed.

Using the n-node priority-search tree implementation of [27], our priority-search scheme would take about

2.4MB. This is very competitive with the height 2 optimal variable stride trie (2OVST [10]), and a little

more that twice the memory needed for the 3OVST [10].

To obtain the mean time to find the longest matching-prefix (i.e., to perform a search), we started

with a PST or ACRBT that contained all prefixes of a prefix database. Next, a random permutation

of the set of start points of the ranges corresponding to the prefixes was obtained. This permutation

determined the order in which we searched for the longest matching-prefix for each of these start points.

The time required to determine all of these longest-matching prefixes was measured and averaged over

the number of start points (equal to the number of prefixes). The experiment was repeated 20 times and

the mean and standard deviation of the 20 mean times computed. Table 2 gives the mean time required

to find the longest matching-prefix on a Sun Blade 100 Workstation that has a 500MHz UltraSPARC-Iie

processor and has a 256KB L2 cache. The standard deviation in the mean time is also given in this table.

On our Sun workstation, finding the longest matching-prefix takes about 10% to 14% less time using an

ACRBT than a PST. Extrapolating from the times reported in [1, 19], we anticipate that a search in a

PST takes about 3.2 times as much time as a search in a 2OVST.

To obtain the mean time to insert a prefix, we started with a random permutation of the prefixes in a

database, inserted the first 67% of the prefixes into an initially empty data structure, measured the time

to insert the remaining 33%, and computed the mean insert time by dividing by the number of prefixes

in 33% of the database. This experiment was repeated 20 times and the mean of the mean as well as the

standard deviation in the mean computed. These latter two quantities are given in Table 2 for our Sun

workstation. As can be seen, insertions into a PST take between 18% and 22% the time to insert into

an ACRBT!

24

Database Paix1 Pb1 MaeWest Aads Pb2 Paix2
PST Mean 2.88 3.06 3.25 3.31 3.43 4.06

Search Std 0.36 0.18 0.17 0.16 0.09 0.05
(µsec) ACRBT Mean 2.60 2.77 2.87 2.87 3.09 3.51

Std 0.25 0.16 0.16 0.12 0.13 0.04
PST Mean 3.90 4.45 4.83 5.18 5.14 6.04

Insert Std 0.57 0.63 0.51 0.48 0.19 0.20
(µsec) ACRBT Mean 21.15 23.42 24.77 25.36 25.54 28.07

Std 1.11 0.66 0.38 0.29 0.19 0.18
PST Mean 4.36 4.45 4.73 4.71 5.06 5.48

Delete Std 0.91 0.63 0.53 0.00 0.19 0.16
(µsec) ACRBT Mean 21.24 22.68 23.16 23.71 24.56 25.64

Std 0.95 0.55 0.49 0.35 0.26 0.21

Table 2: Prefix times on a 500MHz Sun Blade 100 Workstation

The mean and standard deviation data reported in Table 2 for the delete operation were obtained in

a similar fashion by starting with a data structure that had 100% of the prefixes in the database and

measuring the time to delete a randomly selected 33% of these prefixes. Deletion from a PST takes about

20% the time required to delete from an ACRBT.

Extrapolating from the times reported in [1,19], we anticipate that an insert in a 2OVST takes about

75 times as much time as an insert in our PST structure; and that the corresponding ratio for a delete

is about 300!

Tables 3 and 4 give the corresponding times a PST takes about 3.2 times as much time as a search

in an on a 700MHz Pentium III PC and a 1.4GHz Pentium 4 PC, respectively. Both computers have

a 256KB L2 cache. The run times on our 700MHz Pentium III are about one-half the times on our

Sun workstation. Surprisingly, when going from the 700MHz Pentium III to the 1.4GHz Pentium 4, the

measured time to find the longest matching-prefix decreased by only about 5% for PST. More surprisingly,

the corresponding times for ACRBT actually increased. The net result of the slight decrease in time for

PST and the increase for ACRBT is that, on our Pentium 4 PC, the PST is faster than the ACRBT on all

three operations–find longest matching-prefix, insert, and delete. This somewhat surprising behavior is

due to architectural differences (e.g., differences in width and size of L1 cache lines) between the Pentium

III and 4 processors.

Figures 13, 14 and 15 histogram the search, insert, and delete time data of the preceding tables.

25

Database Paix1 Pb1 MaeWest Aads Pb2 Paix2
PST Mean 1.39 1.54 1.61 1.65 1.70 1.97

Search Std 0.27 0.22 0.17 0.14 0.00 0.04
(µsec) ACRBT Mean 1.36 1.44 1.44 1.49 1.54 1.80

Std 0.25 0.18 0.13 0.14 0.14 0.06
PST Mean 2.41 2.63 2.60 2.83 2.80 3.07

Insert Std 0.87 0.30 0.53 0.43 0.40 0.14
(µsec) ACRBT Mean 11.97 12.63 13.48 13.62 13.77 14.93

Std 0.95 0.67 0.24 0.48 0.35 0.18
PST Mean 2.32 2.38 2.49 2.45 2.55 2.91

Delete Std 0.82 0.61 0.52 0.47 0.00 0.17
(µsec) ACRBT Mean 11.69 12.55 12.95 13.01 13.40 14.10

Std 0.87 0.63 0.54 0.44 0.48 0.16

Table 3: Prefix times on a 700MHz Pentium III PC

Database Paix1 Pb1 MaeWest Aads Pb2 Paix2
PST Mean 1.30 1.44 1.51 1.52 1.63 1.92

Search Std 0.19 0.18 0.17 0.13 0.13 0.06
(µsec) ACRBT Mean 1.48 1.69 1.83 1.87 1.87 2.24

Std 0.31 0.20 0.16 0.07 0.14 0.05
PST Mean 1.76 1.96 2.18 2.17 2.38 2.65

Insert Std 0.41 0.69 0.00 0.44 0.35 0.18
(µsec) ACRBT Mean 11.22 11.81 12.41 12.91 12.92 13.94

Std 0.41 0.60 0.41 0.44 0.26 0.18
PST Mean 1.76 1.69 1.92 1.93 2.00 2.22

Delete Std 0.41 0.60 0.38 0.21 0.42 0.17
(µsec) ACRBT Mean 9.46 10.39 10.54 10.42 10.92 11.64

Std 0.57 0.63 0.38 0.21 0.42 0.16

Table 4: Prefix times on a 1.4GHz Pentium 4 PC

7.2 Nonintersecting Ranges

Sine no two prefixes may intersect, we may use prefix databases to benchmark our data structure (Sec-

tion 5) for nonintersecting ranges. The search time for our six IPv4 prefix databases is same using the

data structure for nonintersecting ranges as it is when the data structure for prefixes is used. However,

the memory requirement is doubled since we now have two priority search trees, PST1 and PST2. Ta-

ble 5 gives the the mean times and standard deviations for insert and delete. The run times are for our

700MHz Pentium III PC. The insert, and delete experiments were modelled after those conducted for

the case of prefix databases. Since the insert algorithm for the case of nonintersecting ranges requires

us to first verify nonintersection with existing ranges and then insert into two priority search trees, an

insert is expected to take more than twice the insert time for the case of prefixes. This expectation is

26

 Paix1 Pb1 MaeWest Aads Pb2 Paix2
0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

3

3.3

3.6

3.9

4.2

4.5

Database

S
ea

rc
h

T
im

e
(µ

se
c)

PST
ACRBT

(a)

 Paix1 Pb1 MaeWest Aads Pb2 Paix2
0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

3

3.3

3.6

3.9

4.2

4.5

Database

S
ea

rc
h

T
im

e
(µ

se
c)

PST
ACRBT

(b)

 Paix1 Pb1 MaeWest Aads Pb2 Paix2
0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

3

3.3

3.6

3.9

4.2

4.5

Database

S
ea

rc
h

T
im

e
(µ

se
c)

PST
ACRBT

(c)

Figure 13: Longest matching-prefix (a) Sun, (b) 700MHz, (c) 1.4GHz

 Paix1 Pb1 MaeWest Aads Pb2 Paix2
0

3

6

9

12

15

18

21

24

27

30

33

Database

In
se

rt
 T

im
e

(µ
se

c)

PST
ACRBT

(a)

 Paix1 Pb1 MaeWest Aads Pb2 Paix2
0

3

6

9

12

15

18

21

24

27

30

33

Database

In
se

rt
 T

im
e

(µ
se

c)

PST
ACRBT

(b)

 Paix1 Pb1 MaeWest Aads Pb2 Paix2
0

3

6

9

12

15

18

21

24

27

30

33

Database

In
se

rt
 T

im
e

(µ
se

c)

PST
ACRBT

(c)

Figure 14: Insert a prefix (a) Sun, (b) 700MHz, (c) 1.4GHz

 Paix1 Pb1 MaeWest Aads Pb2 Paix2
0

3

6

9

12

15

18

21

24

27

30

Database

R
em

ov
e

T
im

e
(µ

se
c)

PST
ACRBT

(a)

 Paix1 Pb1 MaeWest Aads Pb2 Paix2
0

3

6

9

12

15

18

21

24

27

30

Database

R
em

ov
e

T
im

e
(µ

se
c)

PST
ACRBT

(b)

 Paix1 Pb1 MaeWest Aads Pb2 Paix2
0

3

6

9

12

15

18

21

24

27

30

Database

R
em

ov
e

T
im

e
(µ

se
c)

PST
ACRBT

(c)

Figure 15: Delete a prefix (a) Sun, (b) 700MHz, (c) 1.4GHz

borne out in our experiments. Although the delete operation for nonintersecting ranges does about twice

the work this operation does for prefixes, our measured delete times for nonintersecting ranges are more

27

Algorithm randomConflictFreeRanges(n){
u = 0; v = 2W − 1;
Z = φ; i = 0;
while(i < n){

Use PST1 to list ranges [x, y] ∈ R such that x < u ≤ y < v (A is the set of such ranges);
InsertSetA = {[u, y] | [x, y] ∈ A};
Sort InsertSetA according to the finish points of ranges;
Use PST2 to list ranges [x, y] ∈ R such that u < x ≤ v < y (B is the set of such ranges);
InsertSetB = {[x, v] | [x, y] ∈ B};
Sort InsertSetB according to the start points of ranges;
Append InsertSetA to Z; i = i + |InsertSetA|;
Append InsertSetB to Z; i = i + |InsertSetB|;
Append {[u, v]} to Z; i = i + 1;
Generate a random range [u, v];

}
return Z;

}

Figure 16: Generate random conflict-free ranges

than twice that for prefixes. We believe this apparent anomaly is due to a disproportionate increase in

the number of cache misses resulting from the fact that the nonintersecting-range data structure uses

twice as much memory as used by the data structure for prefixes.

Database Paix1 Pb1 MaeWest Aads Pb2 Paix2
Insert Mean 6.68 6.69 7.17 6.93 7.27 8.22
(µsec) Std 0.93 0.53 0.43 0.46 0.43 0.18
Delete Mean 5.56 6.01 5.92 6.36 6.12 7.30
(µsec) Std 0.43 0.69 0.49 0.46 0.35 0.29

Table 5: Nonintersecting Ranges. PIII 700MHz with 256K L2 cache

7.3 Conflict-free Ranges

Figure 16 gives the algorithm used by us to generate a random sequence Z of n conflict-free ranges.

When the ranges in the sequence Z are inserted in sequence order, every insert succeeds (the proof of

this is omitted). The sequence Z is used by us to measure insert times. For deletion, 33% of the ranges

are removed in the reverse of the insert order.

Table 6 gives the memory required as well as the mean times and standard deviations for the case of

conflict-free ranges.

It should be noted that the memory required by our data structure for conflict free ranges is a

28

little more than twice that required by the structure for non-intersecting ranges. Further, the lookup

time is about 30% more than required by comparable-sized nonintersecting-range tables; the insert time

for conflict-free ranges is about 2.5 times that for non-intersecting ranges; and the remove time for

conflict-free ranges is about three times that for nonintersecting ranges. The insert and delete times for

conflict-free ranges are, respectively, 6.7 and 7.5 times as much as they are for prefix tables represented

as priority-search trees.

Num of Ranges in R 30000 50000 80000
Num of Ranges Mean 29688 48868 76472

in norm(R) Std 18.03 42.90 60.05
Memory Usage Mean 6240 9979 15219

(KB) Std 7.06 10.91 11.19
Search Mean 1.98 2.34 2.69
(µsec) Std 0.07 0.09 0.06
Insert Mean 18.45 19.65 20.76
(µsec) Std 0.51 0.27 0.27
Delete Mean 19.3 20.49 21.60
(µsec) Std 0.41 0.13 0.29

Table 6: Conflict-free Ranges. PIII 700MHz with 256K L2 cache

8 Conclusion

We have developed data structures for dynamic router tables. Our data structures permit one to search,

insert, and delete in O(log n) time each in the worst case. Although O(log n) time data structures for

prefix tables were known prior to our work [1, 19], our data structure is more memory efficient than the

data structures of [1, 19]. Further, our data structure is significantly superior on the insert and delete

operations, while being competitive on the search operation.

Although the OVST structure of [10] isn’t designed to support insert and delete operations, one may

still compare the OVST and PST structures. The memory required by a 2OVST and a PST for the

Paix2 database are about the same; however a PST takes about twice the memory needed by a 3OVST.

For the search operation, the PST is significantly slower than a 2OVST; taking about 3.2 times as much

time. So, if one has a static IPv4 table (i.e., a table that doesn’t permit inserts and deletes), the 2OVST

is the way to go. The insert operation takes about 75 times as much time using a 2OVST as it does

when a PST used; and the delete operation takes about 300 times as much time. While these ratios

will decrease as we go from a 2OVST to a 3OVST, a 4OVST, and so on, the OVST search time will

correspondingly increase, making the PST more attractive in a high update environment (for example,

29

dynamic multi-field classification as used in firewalls).

With IPv6 databases, the memory required by a 2OVST and 3OVST could be quite prohibitive. We

expect that the relative benefits of the PST structure would be enhanced when IPv6 is in use.

For nonintersecting ranges and conflict-free ranges our data structures are the first to permit O(log n)

search, insert, and delete.

Even though our data structures require the use of multiple trees, only one tree is needed for the

lookup operation. The remaining trees are accessed only during an update. The run times reported in

this paper are for a 700MHz PC and are not indicative of the native speed of the proposed data structures

on contemporary PCs dedicated to the packet classification task. The structures are expected to be

much faster on (say) a 3GHz PC with no background tasks running. Further, much faster search and

update times can be expected from a hardware implementation of the proposed structures and associated

algorithms for comparative purposes.

References

[1] S. Sahni and K. Kim. o(log n) dynamic packet routing. In IEEE Symposium on Computers and

Communications, pages 443–448, 2002.

[2] C. Macian and R. Finthammer. An evaluation fo the key design criteria to achieve high update

rates in packet classifiers. IEEE Network, pages 24–29, Nov./Dec. 2001.

[3] A. Hari, S. Suri, and G. Parulkar. Detecting and resolving packet filter conflicts. In IEEE INFOCOM,

2000.

[4] M. Ruiz-Sanchez, E. Biersack, and W. Dabbous. Survey and taxonomy of ip address lookup algo-

rithms. IEEE Network, 15(2):8–23, March/April 2001.

[5] S. Sahni, K. Kim, and H. Lu. Data structures for one-dimensional packet classification using most-

specific-rule matching. In International Symposium on Parallel Architectures, Algorithms, and Net-

works (ISPAN), May 2002.

[6] K. Sklower. A tree-based routing table for berkeley unix. Technical report, University of California

- Berkeley, 1993.

[7] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink. Small forwarding tables for fast routing

lookups. In ACM SIGCOMM, pages 3–14, 1997.

30

[8] W. Doeringer, G. Karjoth, and M. Nassehi. Routing on longest-matching prefixes. IEEE/ACM

Transactions on Networking, 4(1):86–97, 1996.

[9] S. Nilsson and G. Karlsson. Fast address look-up for internet routers. IEEE Broadband Communi-

cations, 1998.

[10] V. Srinivasan and G. Varghese. Faster ip lookups using controlled prefix expansion. ACM Transac-

tions on Computer Systems, pages 1–40, Feb 1999.

[11] S. Sahni and K. Kim. Efficient construction of fixed-stride multibit tries for ip lookup. In Proceedings

8th IEEE Workshop on Future Trends of Distributed Computing Systems, 2001.

[12] S. Sahni and K. Kim. Efficient construction of variable-stride multibit tries for ip lookup. In

Proceedings IEEE Symposium on Applications and the Internet (SAINT), 2002.

[13] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner. Scalable high speed ip routing lookups. In

ACM SIGCOMM, pages 25–36, 1997.

[14] M. Berg, M. Kreveld, and J. Snoeyink. Two- and three-dimensional point location in rectangular

subdivisions. Journal of Algorithms, 18(2):256–277, 1995.

[15] D. E. Willard. Log-logarithmic worst-case range queries are possible in space θ(n). Information

Processing Letters, 17:81–84, 1983.

[16] P.V. Emde Boas, R. Kass, and E. Zijlstra. Design and implementation of an efficient priority queue.

Mathematical Systems Theory, 10:99–127, 1977.

[17] B. Lampson, V. Srinivasan, and G. Varghese. Ip lookup using multi-way and multicolumn search.

In IEEE INFOCOM, 1998.

[18] S. Suri, G. Varghese, and P. Warkhede. Multiway range trees: Scalable ip lookup with fast updates.

In GLOBECOM, 2001.

[19] S. Sahni and K. Kim. Efficient dynamic lookup for bursty access patterns. In

http://www.cise.ufl.edu/∼sahni, 2003.

[20] F. Ergun, S. Mittra, S. Sahinalp, J. Sharp, and R. Sinha. A dynamic lookup scheme for bursty

access patterns. In IEEE INFOCOM, 2001.

31

[21] G. Cheung and S. McCanne. Optimal routing table design for ip address lookups under memory

constraints. In IEEE INFOCOM, 1999.

[22] A. McAuley and P. Francis. Fast routing table lookups using cams. In IEEE INFOCOM, pages

1382–1391, 1993.

[23] G. Chandranmenon and G. Varghese. Trading packet headers for packet processing. IEEE Trans-

actions on Networking, 1996.

[24] P. Newman, G. Minshall, and L. Huston. Ip switching and gigabit routers. IEEE Communications

Magazine, Jan. 1997.

[25] A. Bremler-Barr, Y. Afek, and S. Har-Peled. Routing with a clue. In ACM SIGCOMM, pages

203–214, 1999.

[26] P. Gupta and N. McKeown. Dynamic algorithms with worst-case performance for packet classifica-

tion. In IFIP Networking, 2000.

[27] E. McCreight. Priority search trees. SIAM Jr. on Computing, 14(1):257–276, 1985.

[28] Merit. Ipma statistics. In http://nic.merit.edu/ipma, 2000, 2001.

[29] K. Melhorn. Data Structures and Algorithms 3: Multi-dimensional Searching and Computational

Geometry. Springer Verlag, New York, 1984.

APPENDIX

Proof of Lemma 3. Proof It is sufficient to prove that a range set R is not conflict free iff it has

at least one pair of ranges that are in conflict.

From Definition 5 it follows that if the range set R is not conflict free, there is a destination address

d for which ranges(d) 6= ∅ ∧msr(d) = ∅. Since ranges(d) 6= ∅, there is at least one range that contains

d. Let r ∈ R be the smallest range that contains d (r may not be msr(d)). Because msr(d) = ∅, there

exists another range s ∈ R such that d ∈ s and isIntersect(r, s) is true. Since r ∈ R is the smallest

range that contains d, there is no range t ∈ R such that d ∈ t ∧ t ⊆ r∩s. Therefore, there is no resolving

subset for r and s. The ranges r and s are in conflict.

If there is a pair of ranges r and s that are in conflict, r and s intersect and have no resolving subset.

Either there is no subset Q ⊂ R such that Π(Q) = r ∩ s, or Q is not conflict-free for all Q ⊂ R ∧

32

Π(Q) = r ∩ s. For the former case, let Q = {t|t ∈ R ∧ t ⊆ r ∩ s}. Since Π(Q) 6= r ∩ s, there is a

destination address d such that d ∈ r ∩ s ∧ d 6∈ Π(Q). Therefore, ranges(d) 6= ∅ ∧ msr(d) = ∅. For

the latter case, choose the largest Q, i.e., {t|t ∈ R ∧ t ⊆ r ∩ s}. Since Q is not conflict free, from

Definition 5, it follows that there is a destination address d for which ranges(d,Q) 6= ∅ ∧msr(d,Q) = ∅.
Since msr(d,Q) = msr(d,R), msr(d,R) = ∅. Since ranges(d,Q) ⊆ ranges(d,R), ranges(d,R) 6= ∅.

Lemma 11 Let R be a conflict-free range set. Let r be an arbitrary range. Let A be the subset of R that

comprises all ranges of R that are contained in r. A is conflict free.

Proof Since R is conflict free, every pair (s, t) of intersecting ranges in A has a resolving subset B in

R. From Definition 8, it follows that every range in B is contained in s ∩ t. Hence, B ⊂ A. Therefore,

every pair of intersecting ranges of A has a resolving subset in A. So, A is conflict free.

Lemma 12(1) tells us that we can always find a subset B ⊆ R such that A ∪ B is conflict-free and

Π(A) = Π(A ∪ B). r = Π(A) may not be in R, but R ∪ {r} is conflict free (Lemma 12(3)) because

whenever a range s intersects a range r, there is a resolve subset in R for r and s (Lemma 12(2)).

Lemma 12 Let R be a conflict-free range set. Let A, A ⊆ R be such that Π(A) = r = [u, v].

1. ∃B ⊆ R[isConflictFree(A ∪B) ∧Π(A) = Π(A ∪B)]

2. Let s ∈ R be such that isIntersect(r, s). ∃B ⊆ R[Π(B) = r ∩ s]

3. R ∪ {r} is conflict free.

Proof

1. Follows from Lemma 11, i.e., let A ∪B comprise all ranges of R that are contained in [u, v].

2. When r ∈ R, (2) follows from the definition of a conflict-free range set. So, assume r 6∈ R. Let C

comprise all ranges of A contained in s. If s intersects no range of A, Π(C) = r ∩ s. If s intersects

at least one range of A, then let t ∈ A be an intersecting range with maximum overlap. Since R is

conflict free, ∃D ⊆ R[Π(D) = t ∩ s]. We see that Π(C ∪D) = r ∩ s.

3. From parts (1) and (2) of this lemma, it follows that there is a resolving subset in R∪{r} for every

s ∈ R that intersects with r. Hence, R ∪ {r} is conflict free.

33

Proof of Lemma 4. Proof (=⇒) Assume that A is conflict free. When neither maxY nor minX

exist (this happens iff no range of R intersects r = [u, v]), maxY ≤ maxP ∧ minX ≥ minP . When,

maxY exists, s = [x,maxY] ∈ A∧ x < u ≤ maxY < v. (Note that isIntersect(r, s)). Since A is conflict

free, A has a (resolving) subset B for which Π(B) = r ∩ s = [u,maxY]. Therefore, maxY ≤ maxP .

Similarly, when minX exists, minX ≥ minP .

(⇐=) Assume that maxY (u, v, R) ≤ maxP (u, v, R) ∧minX(u, v,R) ≥ minP (u, v, R). When neither

maxY nor minX exist, no range of R intersects r. When, maxY exists, ∃s = [x, y] ∈ A[x < u ≤ y < v].

Consider any such s = [x, y]. Since maxY ≤ maxP and maxY exists, maxP exists. Hence, from

Lemma 11, ∃B ⊆ R[isConflictFree(B)∧Π(B) = [u,maxP]]. When y = maxP , B is a resolving subset

for s and r in A. When y < maxP , isIntersect(s, [u,maxP]). Since R ∪ {[u,maxP]} is conflict free

(Lemma 12(3)), R∪{[u,maxP]} (and so also R and A) has a resolving subset for s and [u,maxP]. This

resolving subset is also a resolving subset for s and r. When minX exists, ∃s = [x, y] ∈ A[u < x ≤ v < y].

In a manner analogous to the proof for the case maxY exists, we may show that A has a resolving subset

for r and each such s. Hence, in all cases, intersecting ranges of A have a resolving subset. So, A is

conflict free.

Lemma 13, which is used in the proof of Lemma 5, states when A has no subset whose projection

equals r and when no range in A contains r, A has no subset whose projection contains r.

Lemma 13 Let R be a conflict-free range set. Let A = R− {r} for some r ∈ R.

((@B ⊆ A[Π(B) = r]) ∧ (@s ∈ A[r ⊆ s])) =⇒ (@C ⊆ A[r ⊆ Π(C)])

Proof Assume

@B ⊆ A[Π(B) = r] (2)

and

@s ∈ A[r ⊆ s] (3)

We need to show that @C ⊆ A[r ⊆ Π(C)].

Suppose that there is a C such that C ⊆ A ∧ r ⊆ Π(C). From C ⊆ A and Equation 3, it follows that

∀t ∈ C[isDisjoint(r, t) ∨ isIntersect(r, t) ∨ t ⊂ r] (4)

34

If @t ∈ C[isIntersect(r, t)], then from Equation 4, we get ∀t ∈ C[isDisjoint(r, t) ∨ t ⊂ r]. From this

and r ⊆ Π(C), it follows that all destination addresses d, d ∈ r, are covered by ranges of C that are

contained in r. Therefore, ∃B ⊆ C ⊆ A[Π(B) = r]. This contradicts Equation 2.

Next, suppose ∃t ∈ C[isIntersect(r, t)]. Let D be the union of the resolving subsets for all of these

t and r in R. Clearly, all ranges in D are contained in r. Further, let E be the subset of all ranges

in C that are contained in r. Since every point in r is either in E or in a range that intersects r,

((D ∪ E) ⊆ A) ∧ (Π(D ∪ E) = r). This contradicts Equation 2.

Proof of Lemma 5. Proof For (1), we note that by replacing r by B in every resolving subset

for intersecting ranges in R, we get resolving subsets that do not include r. Hence all of these resolving

subsets are present in A. So, A is conflict free.

For (2), assume that @B ⊆ A[Π(B) = r].

(=⇒) Assume that A is conflict free. We need to prove

@s ∈ A[r ⊂ s] ∨ [m,n] ∈ A (5)

We do this by contradiction. So, assume

∃s ∈ A[r ⊂ s] ∧ [m,n] 6∈ A (6)

Since ∃s ∈ A[r ⊂ s], m and n are well defined. Equation 6 implies that A has a range [m, y], y > n

as well as a range [x, n], x < m. Further, isIntersect([m, y], [x, n]) and r ⊆ [m, y] ∩ [x, n] = [m,n]. Let

B be the subset of R comprised of all ranges contained in [m,n]. From Lemma 11, it follows that B is

conflict free. However, no subset of C = B−{r} has projection equal to r. Further, from the definitions

of m and n, no range of C can contain r. From Lemma 13, it follows that no subset of C has a projection

that contains r. In particular, C has no subset whose projection is [m,n]. Therefore, A, has no subset

whose projection is [m,n]. So, A has no resolving subset for [m, y] and [x, n]. Therefore, A is not conflict

free, a contradiction.

(⇐=) If no range of A contains r, then r is not part of the resolving subset for any pair of intersecting

ranges of R. This, together with the fact that R is conflict free, implies that A is conflict free. If

[m,n] ∈ A, we can use [m, n] in place of r in any resolving subset for intersecting ranges of R. Therefore,

A has a resolving subset for every pair of intersecting ranges. So, A is conflict free.

Lemma 14 Let N be a normalized range set.

A ⊆ N ∧Π(A) = [u, v] =⇒ ∃B ⊆ N [isChain(B) ∧Π(B) = [u, v]]

35

Proof Let B be the subset of A obtained by removing from A all ranges that are nested within at

least one other range of A. Clearly, Π(B) = Π(A) = [u, v]. Since N is normalized and B ⊆ N , B is

also normalized. From Definition 10 and the fact that B has no pair of nested ranges, it follows that all

ranges of B are disjoint. For disjoint ranges to have a projection that is a range, the disjoint ranges must

form a chain.

Proof of Lemma 6. Proof

1. Let A be the subset of N obtained by removing from N all ranges that are nested within at least

one other range of N . From the proof of Lemma 14, A is normalized and all ranges of A are disjoint.

Clearly, A can be uniquely partitioned into a set of longest chains CP (A). Since every range in

N − A is nested within at least one other range of A and no two ranges in N have a common

end-point, no range in N − A can be assigned to any chain in CP (A) to form a different chain.

Therefore, CP (A) ⊆ CP (N). Repeating the above procedure for N −A, we get CP (B) ⊆ CP (N),

where B is the subset of N −A obtained by removing from N −A all ranges that are nested within

at least one other range of N − A. Clearly, CP (B) ∩ CP (A) = ∅. Repeating the same procedure,

we get CP (C), CP (D) and so on until there is no range left to partition. It is easy to see that

CP (N) = CP (A)∪CP (B)∪CP (C)∪ ... is a unique partitioning of N into a set of longest chains.

2. Direct consequence of the definition of a normalized set and that of a chain.

Lemma 15 establishes a relationship between s and chop(r) when s is contained in r.

Lemma 15 Let R be a conflict-free range set.

∀r ∈ R ∀s ∈ R [s ⊂ r =⇒

(s ⊂ chop(r) ∧ start(s) 6= start(chop(r)) ∧ finish(s) 6= finish(chop(r)))

∨ isDisjoint(s, chop(r))]

Proof The lemma is trivially true when chop(r) = ∅ (isDisjoint(s, ∅) is true). So, assume that

chop(r) = r′. For the lemma to be false, either isIntersect(s, r′) or (r′ ⊆ s or s and r′ have a common

end point).

If isIntersect(s, r′), then either start(r′) < start(s) ≤ finish(r′) < finish(s) or start(s) < start(r′) ≤
finish(s) < finish(r′). Assume the former (the latter case is similar). From the chopping rule, it fol-

lows that ∃A ⊆ R[Π(A) = [finish(r′) + 1, finish(r)]]. Therefore, A ∪ {s} ⊆ R ∧ Π(A ∪ {s}) =

36

[start(s), finish(r)]. From this, start(r) ≤ start(r′) < start(s), and the chopping rule, we get finish(chop(r))

< start(s). But, start(s) ≤ finish(r′), a contradiction.

So, r′ ⊆ s or s and r′ have a common end point. First consider the case r′ ⊆ s ⊂ r. Suppose that

start(s) 6= start(r) (the case finish(s) 6= finish(r) is similar). Since r′ = chop(r), ∃A ⊆ R[Π(A) =

[finish(r′) + 1, finish(r)]]. Therefore, Π(A ∪ {s}) = [start(s), finish(r)] and start(r) < start(s) ≤
start(r′). From the chopping rule, it follows that finish(chop(r)) < start(s) ≤ start(r′) ≤ finish(r′), a

contradiction. Therefore, s ⊂ r′. If start(s) = start(r′), maxP (start(r), finish(r)− 1) ≥ finish(s). So,

start(r′) > finish(s), which contradicts s ⊂ r′. The case finish(s) = finish(r′) is similar.

Lemma 16 establishes a relationship among chop(r), chop(s), and r ∩ s when r and s intersect.

Lemma 16 Let r and s be two intersecting ranges of a conflict-free range set R.

isDisjoint(chop(r), r ∩ s) ∧ isDisjoint(chop(s), r ∩ s) ∧ isDisjoint(chop(r), chop(s))

Proof Without loss of generality, we may assume that start(r) < start(s) ≤ finish(r) < finish(s).

Since R is conflict free, ∃A[A ⊂ R ∧ Π(A) = r ∩ s]. Therefore, finish(chop(r)) < start(s) and

start(chop(s)) > finish(r). This proves the lemma.

Proof of Lemma 7. Proof Let r′ be any range in norm(R). Clearly, for every r′ ∈ norm(R),

there is at least one r ∈ R such that chop(r) = r′. Suppose two different ranges r and s of R have

r′ = chop(r) = chop(s).

If isIntersect(r, s), then from Lemma 16 we get isDisjoint(chop(r), chop(s)). So, chop(r) 6= chop(s).

If isNested(r, s), then from Lemma 15 it follows that s ⊂ chop(r)∨ isDisjoint(s, chop(r)) when s ⊂ r

and r ⊂ chop(s)∨isDisjoint(r, chop(s)) when r ⊂ s. Consider the former case (the latter case is similar).

s ⊂ chop(r) implies chop(s) 6= chop(r). isDisjoint(s, chop(r)) also implies chop(s) 6= chop(r).

The final case is isDisjoint(r, s). In this case, clearly, chop(s) 6= chop(r).

Lemma 17 For every conflict-free range set R, norm(R) is a normalized conflict-free range set.

Proof We shall show that norm(R) is normalized. Since a normalized range set has no intersecting

ranges, every normalized range set is conflict free.

If |norm(R)| ≤ 1, norm(R) is normalized. So, assume that |norm(R)| > 1. Let r′ and s′ be two

different ranges in norm(R). We need to show that r′ and s′ satisfy property 2(a) or 2(b) of Definition 10.

Let r = [u, v] = full(r′) and s = full(s′). There are three possible cases for r and s, they either intersect,

are nested, or are disjoint (Lemma 1).

37

Case 1: isIntersect(r, s). From Lemma 16, it follows that r′ and s′ are disjoint.

Case 2: isNested(r, s). Either s ⊂ r or r ⊂ s. Assume the former (the latter case is similar). From

Lemma 15, we get

[s ⊂ chop(r) ∧ start(s) 6= start(chop(r)) ∧ finish(s) 6= finish(chop(r))] ∨ isDisjoint(s, chop(r))

s ⊂ chop(r) ∧ start(s) 6= start(chop(r)) ∧ finish(s) 6= finish(chop(r)) implies that s′ and r′ are nested

and do not have a common end-point. isDisjoint(s, chop(r)) implies that s′ and r′ are disjoint.

Case 3. isDisjoint(r, s). Clearly, isDisjoint(r′, s′).

Lemma 18 tells us that full(r′) is the msr(r′, R) if there is no s′ ∈ norm(R) that is nested inside r′.

Lemma 18 Let r′ ∈ norm(R), where R is a conflict-free range set.

@s′ ∈ norm(R)[s′ ⊂ r′] =⇒ r = full(r′) = msr(r′, R)

Proof Assume that @s′ ∈ norm(R)[s′ ⊂ r′]. If ∃d ∈ r′[r 6= msr(d,R)], then ∃s ⊂ r[d ∈ s]. From

Lemma 15, it follows that s ⊂ r′ ∨ s ∩ r′ = ∅. Since d ∈ s ∧ d ∈ r′, s ∩ r′ 6= ∅. Hence, s ⊂ r′. From

Lemma 11, it follows that A = {t|t ∈ R ∧ t ⊆ s} is conflict free. Since s ∈ A, A 6= ∅. From the chopping

rule it follows that norm(A) 6= ∅. For any t′ ∈ norm(A) ⊂ norm(R), t′ ⊆ full(t′) ⊆ s ⊂ r′. This violates

the assumption of this lemma. Therefore, @d ∈ r′[r 6= msr(d,R)]. So, r = msr(r′, R).

Lemma 19 Let R be a conflict-free range set, let x be the start point of some range in R, and let y be

the finish point of some range in R.

1. Let s ∈ R be such that start(s) = x and finish(s) = min{finish(t)|t ∈ R ∧ start(t) = x}

(a) chop(s) 6= ∅.

(b) start(chop(s)) = x.

(c) chop(s) is the only range in norm(R) that starts at x.

2. Let s ∈ R be such that finish(s) = y and start(s) = max{start(t)|t ∈ R ∧ finish(t) = y}

(a) chop(s) 6= ∅.

(b) finish(chop(s)) = y.

(c) chop(s) is the only range in norm(R) that finishes at y.

38

Proof We prove 1(a) - (c). 2(a) - (c) are similar. Since maxP (start(s), finish(s) − 1, R) does not

exist, case 5 of the chopping rule does not apply and chop(s) 6= ∅. One of the cases 1 and 3 applies. In

both of these cases, start(chop(s)) = x. For 1(c), we note that norm(R) is normalized (Lemma 17) and

the definition of a normalized set (Definition 10) implies that no two ranges of norm(R) share an end

point. In particular, norm(R) can have only one range that has x as an end point.

Lemma 20 Let r′ ∈ norm(R), where R is a conflict-free range set.

start(full(r′)) 6= start(r′) =⇒ @s ∈ R[start(s) = start(r′)]

Proof Suppose that start(full(r′)) 6= start(r′) and ∃s ∈ R[start(s) = start(r′)]. From Lemma 19(1a

and 1b), it follows that ∃t ∈ R[start(t) = start(r′)∧ chop(t) 6= ∅∧ start(chop(t)) = start(r′)]. Therefore,

norm(R) has at least two ranges (r′ and chop(t)) that start at start(r′). This contradicts Lemma 19(1c).

Definition 13 Let r′ ∈ norm(R). If start(r′) = start(full(r′)), start(r′) is a real starting point.

Otherwise, start(r′) is a fake start point.

Lemma 21 Let R be a conflict-free range set. Let r ∈ R be such that r = msr(u, v, R) for some range

[u, v]. r′ = chop(r) = msr(u, v, norm(R)).

Proof From the definition of msr, it follows that there is no s ∈ R such that s ⊂ r ∧ s ∩ [u, v] 6=
∅. Therefore, maxP (start(r), finish(r) − 1, R) < u if maxP (start(r), finish(r) − 1, R) exists, and

minP (start(r)+1, finish(r), R) > v if minP (start(r)+1, finish(r), R) exists. From the Chopping Rule,

[u, v] ⊆ chop(r). Further, from Lemmas 15 and 16, it follows that norm(R) contains no s′ ⊂ chop(r).

So, r′ = msr(u, v, norm(R)).

Lemma 22 Let R be a conflict-free range set that has a subset whose projection equals [x, y]. Let A ⊆ R

comprise all r ∈ R such that r ⊆ [x, y].

1. ∃B ⊆ norm(R)[Π(B) = [x, y]]

2. C = {full(r′)|r′ ∈ norm(R) ∧ r′ ⊆ [x, y]} ⊆ A

Proof

39

1. From Lemma 11, it follows that A is conflict free. Further, since R has a subset whose projection

equals [x, y], Π(A) = [x, y]. From Lemma 21, it follows that every d ∈ [x, y] has a most-specific

range in norm(A). Therefore, Π(norm(A)) = [x, y]. From the definition of the chopping rule and

that of A, we see that ∀r ∈ A[chop(r,A) = chop(r,R)]. So, norm(A) ⊆ norm(R).

2. First, assume that [x, y] ∈ R. Suppose there is a range r′ ∈ norm(R) such that r′ ⊆ [x, y] and

r = full(r′) 6∈ A. There are three cases for r.

Case 1: isDisjoint(r, [x, y]). In this case, isDisjoint(r′, [x, y]) and so r′ 6⊆ [x, y].

Case 2: isIntersect(r, [x, y]). From Lemma 16, we get isDisjoint(chop(r), [x, y]). So r′ 6⊆ [x, y].

Case 3: [x, y] ⊂ r. From Lemma 15 and r′ ⊆ [x, y], we get isDisjoint([x, y], chop(r)). So

r′ 6⊆ [x, y].

When [x, y] 6∈ R, let R′ = R ∪ {[x, y]}, C ′ = {full(r′)|r′ ∈ norm(R′) ∧ r′ ⊆ [x, y]} and A′ =

A∪{[x, y]}. Using the lemma case we have already proved, we get C ′ ⊆ A′. Since chop([x, y], R′) = ∅
and chop(s,R) = chop(s,R′) for every s ∈ R, norm(R′) = norm(R). Therefore, C = C ′. So,

C ⊆ A′. Finally, since [x, y] 6∈ C, C ⊆ A.

Proof of Theorem 1. Proof First consider Step 1. From Lemma 19(1b), it follows that

@r′ ∈ norm(R)[start(r′) = u] =⇒ @r ∈ R[start(r) = u]

Therefore, @r′ ∈ norm(R)[start(r′) = u] =⇒ @maxP . From Lemma 20, it follows that start(full(r′)) 6=
start(r′) = u =⇒ @s ∈ R[start(s) = start(r′) = u]. So, start(full(r′)) 6= u =⇒ @maxP . Fi-

nally, u = start(r′) = start(full(r)) implies finish(full(r′)) = min{finish(t)|t ∈ R ∧ start(t) = u}
(Lemma 19(1)). So, finish(full(r′)) > v implies @s ∈ R[start(s) = u ∧ finish(s) ≤ v]. Hence,

start(r′) = u ∧ finish(full(r′)) > v =⇒ @maxP . Further, when ∃r′ ∈ norm(R)[start(r′) = u ∧
finish(full(r′)) ≤ v], maxP exists and maxP ≥ finish(full(r′)) ≥ finish(r′). Therefore, Step 1

correctly identifies the case when maxP doesn’t exist.

We get to Step 2 only when maxP exists. From the definition of maxP , ∃A ⊆ R[Π(A) = [u,maxP]].

From this and Lemma 22(1), we get ∃B ⊆ norm(R)[Π(B) = [u,maxP]]. Now, from Lemma 14, we get

∃D ⊆ norm(R)[isChain(D) ∧ Π(D) = [u,maxP]]. From Lemma 6, it follows that D is a sub-chain of

the unique chain Ci ∈ CP (norm(R)) that includes r′. Let r′, s′1, s′2, ..., s′q be the tail of Ci. It follows

that maxP is either finish(r′) or finish(s′j) for some j in the range [1, q]. Let j be the least integer such

40

that full(s′j) 6⊆ [u, v]. If such a j does not exist, then maxP = finish(s′q) as norm(R) has no subset

whose projection equals [u, x] for any x > finish(s′q). So, assume that j exists. From Lemma 22(2), it

follows that maxP < finish(s′j). Hence, Step 2 correctly determines maxP .

Proof of Lemma 8. Proof For (1), note that chop(r,R ∪ {r}) = ∅ =⇒ ∃A ⊆ R[Π(A) = r].

Therefore, the addition of r to R does not affect any of the maxP and minP values.

For (2a), suppose there are two different ranges g and h in R such that chop(g, R) 6= chop(g,R∪ {r})
and chop(h,R) 6= chop(h, R ∪ {r}). From the chopping rule, it follows that

r ⊂ g ∧ r ⊂ h (7)

Therefore, ¬isDisjoint(g, h). From this and Lemma 1, we get isIntersect(g, h)∨ isNested(g, h). Equa-

tion 7 and isIntersect(g, h) imply r ⊆ g∩h. From this and Lemma 16, we get isDisjoint(r, chop(g, R))∧
isDisjoint(r, chop(h,R)). Therefore, chop(g, R) = chop(g,R ∪ {r}) and chop(h,R) = chop(h,R ∪ {r}),
a contradiction. So, ¬isIntersect(g, h).

If isNested(g, h), we may assume, without loss of generality, that g ⊂ h. This and Equation 7

yield r ⊂ g ⊂ h. Therefore, maxP (x, y − 1, R) = maxP (x, y − 1, R ∪ {r}) and minP (x + 1, y, R) =

minP (x + 1, y, R ∪ {r}), where h = [x, y]. So, chop(h,R) = chop(h, R ∪ {r}), a contradiction.

Hence, there can be at most one range of R whose chop() value changes as a result of the addition

of r. The preceding proof for the case isNested(g, h) also establishes that the chop() value may change

only for the range s, that is for the smallest enclosing range of r (i.e., smallest s ∈ R[r ⊂ s]).

For (2b), assume that chop(s,R) 6= chop(s,R ∪ {r}). This implies that chop(s,R) 6= ∅ and so x′ and

y′ are well defined. (Note that from part (1), we get chop(r,R) 6= ∅.) We consider each of the three cases

for the relationship between r and chop(s,R) (Lemma 1).

Case 1: isDisjoint(r, chop(s,R)). This case cannot arise, because then chop(s,R) = chop(s, R∪{r}).
Case 2: isIntersect(r, chop(s, R)). Now, either x′ < u ≤ y′ < v or u < x′ ≤ v < y′. Consider the

former case. Since r ⊂ s = [x, y], v ≤ y. minP (x + 1, y, R) = y′ + 1 since chop(s,R) = [x′, y′]. When

v = y, minP (u + 1, v, R) = minP (x + 1, y, R) since u ≤ y′. Since start(r) = u, r cannot contribute

to minP (u + 1, v, R ∪ {r}). So minP (u + 1, v, R ∪ {r}) = minP (u + 1, v, R). Therefore, when v = y,

minP (u + 1, v, R∪{r}) = y′+ 1. So, v′ = y′. Therefore, x′ < u∧ y′ = v′. Consider the case v < y. From

the chopping rule, it follows that ∃A ⊆ R ⊂ R ∪ {r}[Π(A) = [y′ + 1, y]]. From this, Lemma 12(2), and

the fact that R∪ {r} is conflict free, we conclude ∃B ∈ R∪ {r}[Π(B) = r ∩ [y′ + 1, y] = [y′ + 1, v]]. From

this and minP (x + 1, y, R) = y′ + 1, we get minP (u + 1, v, R ∪ {r}) = y′ + 1. So, v′ = y′. Once again,

x′ < u ∧ y′ = v′. Using a similar argument, we may show that when u < x′ ≤ v < y′, x′ = u′ ∧ y′ > v.

41

Case 3: isNested(r, chop(s, R)). So, either r ⊆ chop(s,R) or chop(s,R) ⊂ r. First, consider

all possibilities for r ⊆ chop(s,R). The case x′ < u ≤ v < y′ cannot arise, because this implies

chop(s,R) = chop(s,R ∪ {r}). When x′ = u ≤ v < y′, u′ = x′ since maxP (u, v − 1, R) does not exist

(otherwise maxP (x, y − 1, R), if it exists, would be larger than x′ − 1). So, x′ = u′ ∧ y′ > v. When

x′ < u ≤ v = y′, v′ = y′ since minP (u + 1, v, R) does not exist (otherwise minP (x + 1, y, R), if it exists,

would be smaller than y′ + 1). So, x′ < u ∧ y′ = v′. The final case is when x′ = u ≤ v = y′. Now,

u′ = x′ ∧ y′ = v′.

Using an argument similar to that used in part (2a), we may show that when chop(s,R) ⊂ r, x′ =

u′ ∧ y′ = v′.

Proof of Lemma 9. Proof (1) follows from the proof of Lemma 8(2b). For (2), from the proof

cases of Lemma 8(2b) that have x′ = u′ ∧ y′ = v′, it follows that case 5 of the chopping rule applies for

s in R ∪ {r}. So, chop(s,R ∪ {r}) = ∅.
For (3), finish(chop(s,R ∪ {r})) = y′ follows from the proof of Lemma 8(2b). Also, we observe that

maxP (x, y − 1, R ∪ {r}) ≥ v. So, (3b) can be false only when maxP (x, y − 1, R ∪ {r}) > v and either

(a) maxP (v′ + 1, y′, R) doesn’t exist or (b) maxP (v′ + 1, y′, R) < maxP (x, y − 1, R ∪ {r}). For (a),

∃[c, d] ∈ R[x ≤ c ≤ v′ ∧ v < d < y′]. For (b), ∃[c, d] ∈ R[x ≤ c ≤ v′ ∧ v < maxP (v′ + 1, y′, R) < d < y′].

In both cases, c ≤ u implies that r = [u, v] ⊂ [c, d] ⊂ s. This contradicts the assumption that s is the

smallest enclosing range of r. Also, in both cases, c > u implies isIntersect(r, [c, d]). So, R ∪ {r} has a

subset whose projection is [c, v]. Therefore, finish(chop(u, v, R ∪ {r})) < c ≤ v′, a contradiction.

The proof for (4) is similar to that for (3).

Proof of Lemma 10. Proof For (1), note that chop(r,R) = ∅ =⇒ ∃A ⊆ R − {r}[Π(A) = r].

Therefore, the removal of r from R does not affect any of the maxP and minP values.

For (2a) note that by substituting R− {r} for R in Lemma 8(2a), we get ∀t ∈ R− {r, s}[chop(t, R−
{r}) = chop(t, R)]. (2b) and (2c) follow from Lemma 9.

42

