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Abstract

The aim of this paper is to combine distance functions and Boolean proposi-
tions by developing a formalism suitable for speaking about distances between
Boolean formulas. We introduce and investigate a formal language that is an
extension of classical propositional language obtained by adding new binary
(modal-like) operators of the form D¢, and Ds, s € Q. Our language all-
ows making formulas such as D¢,(a, 8) with the intended meaning ‘distance
between formulas a and [ is less than or equal to s The semantics of the
proposed language consists of possible worlds with a distance function defined
between sets of worlds. Our main concern is a complete axiomatization that is
sound and strongly complete with respect to the given semantics.
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STOJANOVIC, IKODINOVIC AND DJORDJEVIC

1 Introduction

Formalisms for representing uncertain, incomplete or vague data, information and
knowledge, as well as reasoning about them are the subject of increasing interest
in many scientific fields closely related to many applications (such as technology
development). Besides many mathematical concepts that are useful in these fields,
we emphasize two of them: distance functions and Boolean propositions.

In general, distance functions are fundamental for many areas of mathematics
and computer science. Roughly speaking, distance functions express the degree
of similarity (or dissimilarity) between two objects: matrices (in algebra), graphs
(in discrete mathematics, combinatorics), strategies (in game theory), probability
distributions (in probability theory), knowledge (in artificial intelligence), messages
(in coding theory), strings (in information theory, linguistics), etc.

Boolean propositions (Boolean functions or propositional formulas, what the
reader prefers) are important in many of the above mentioned areas. The language of
Boolean propositions is very suited for a representation of different discrete systems.
Some recent applications include circuit design, social choice theory, learning theory
ete.

The aim of this paper is to combine distance functions and Boolean propositions
by developing a formalism suitable for speaking about distances between Boolean
formulas. More precisely, we introduce and investigate a formal language that is an
extension of classical propositional language obtained by adding new binary (modal-
like) operators of the form D¢ and D=, s € QF (where Qg is the set of non negative
rational numbers). The language allows making formulas such as D<g(«, 5) with
the intended meaning ‘distance between formulas o and S is less than or equal to s’.
Thus, our formalism is substantially related to distance functions between Boolean
propositions, and it enables us to infer consistent conclusions from propositional
and metric statements. In the next section, Example 3 gives an illustrative sketch
of possible applications.

The idea of constructing logical formalisms that include the notion of distance
is not new ([2], [3], [6], [9], [10], [11], [13], [20], [22] and [25]). More attention has
been devoted to metric (or quantitative) temporal logics (see [1], [7] and [14]), which
reflects the fact that temporal logic in general is more developed than spatial logic.

In this paper, we adopt an approach similar to the development of probabilistic
propositional logic (see [5], [15], [16], [17], [18] and [19]). The semantics of our
language consists of possible worlds with a distance function defined between sets of
words. Our main concern is a complete axiomatization that is sound and strongly
complete with respect to the given semantics (‘Every consistent set of formulas
has a model’ in contrast to the weak completeness ‘every consistent formula has a
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A PROPOSITIONAL LOGIC WITH BINARY METRIC OPERATORS

model’). Finitary axiomatizations could not be expected, because of the inherent
non-compactness: in the proposed language it is possible to define an inconsistent
set of formulas such that all its finite subsets are consistent (I" = {~D—o(c, )} U
{D_1(a,B) | nis a positive integer}). The lack of compactness forces us to consider
an innﬁnitary axiomatization.

The rest of the paper is organized as follows. Section 2 presents some prelimina-
ries and gives several examples that motivate our investigation and indicate possible
applications. Syntax and semantics of our logic are introduced in Section 3. In
Section 4 we examine a sound and (strongly) complete axiomatization, and discuss
several modifications of the proposed logic. This Section contains the main results
of this paper. Concluding remarks are given in Section 5.

2 Preliminaries

The term distance generally refers to a function satisfying some properties of the
(most common) distance between two points in Euclidean space. In this paper, we
focus on metrics and pseudometrics.

Recall that a metric space is a pair (X,d), where X is a nonempty set and
d: X xX — [0,+00) is a metric, i.e., a function satisfying the following constraints:

(D1) d(x,y) =0 iff z = y (identity of indiscernibles),
(D2) d(z,z) < d(z,y) + d(y, z) (triangle inequality),
(D3) d(z,y) = d(y, z) (symmetry),

for all z,y,z € X. The value d(z,y) is called the distance from = to y. Although
acceptable in many cases, the requirements (D1), (D2) and (D3) all together are too
strong in many real contexts. This is especially true for the condition: d(z,y) = 0
implies x = y. In a pseudometric space, the distance between two distinct points
can be zero; d : X x X — [0,+00) is a pseudometric if it satisfies (D2), (D3) and
the following constraint less strong than (D1):

(D1-) d(z,z) =0, for all z € X.

There are many ways of relaxing the constraints on metrics. For instance, it
is reasonable to omit the symmetry of distance (e.g., d(z,y) = ‘work required to
get from = to y in a mountainous region’.) A quasimetric is defined as a function
that satisfies (D1) and (D2). Any quasimetric traditionally can be symmetrized,
e.g. by one of the procedures: (d(z,y) + d(y,x))/2 or max{d(z,y),d(y,z)}. A
pseudoquasimetric (also called hemimetric) satisfies (D1-) and (D2).
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In many naturally arising examples, distance functions are bounded. If it is
not bounded, there are well-known procedures that normalize a metric space (X, d)
into an 1-bounded topologically-equivalent metric space such as (X,d/(1 + d)) or
(X, min{1,d}). Especially, if d is bounded by M, (X,d/M) is a straightforward
conversion.

The rest of this section brings some motivating examples that highlight possible
applications of our logic.

ExXAMPLE 1. Given a bounded pseudometric space (X, d), one can define a pseudo-
quasimetric on the subsets of X, called the one-sided Hausdorff distance:

di(A, B) = sup inf d(a,b), A,B C X.
aeAbEB

The (bidirectional) Hausdorff distance is defined as:
Dy (A, B) = max{dy (A, B),dy(B,A)}, A,B C X.

Dy is a pseudometric on P(X) (the power set of X) that is of a great importance
in many applications (e.g. [21]).

Besides the Hausdorff metric, many other distance functions between sets are

important for applications (see for instance [4] and the references given there). Any
such distance function is closely related to our semantics (specified in the next
section) that is based on a distance function defined on a Boolean algebra (more
precisely, on the Lindenbaum-Tarski algebra of a classical propositional theory).
EXAMPLE 2. Given a probability space (W, F, P), a natural example of distance
between two sets (events) is the probability of their symmetric difference, dp(A, B) =
P(AAB). It is well-known that dp is a pseudometric. This example could inspire
development of logics that extend probabilistic propositional logics by enriching their
languages with distance operators. Some interesting ideas in that direction are given
in [12].
ExAMPLE 3. Let For,, be the set of classical propositional formulas over the propo-
sitional variables pi,...,pn. Let ai,...,ay, where N = 2" run through the 2"
conjunctive clauses of the form p{* A -+ ApSr, where ey, ..., e, € {0,1} (p! = p and
p’ = =p). We call a;’s atoms, and denote the set of these atoms by A. It is obvious
that for a given atom a there is a unique valuation v, : {p1,...,pn} — {0,1} such
that v,(a) = 1, and vice versa. Moreover, each formula can be regarded as a set of
atoms. For each a there is S, C A such that « is classically equivalent to \/ Su:

So={a€eA|laEal={ac A|v,(a)=1}

Identifying the atoms from A with the binary strings of the length n, any distance
function between strings can be transferred into the logical context. For instance,
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the Hamming distance could be very useful (the Hamming distance between two
strings of equal length is the number of positions at which the corresponding symbols
are different). Note that this distance can be derived from the notion of logical
consequence, or more precisely from the mapping:

o) ={ g oL

Any distance between atoms can be lifted to a distance between formulas in
a manner analogous to the way in which one obtains the Hausdorff metrics (see
Example 1). The Hamming distance between atoms defines D : For x For — [0, +00),

N
D(Oé,,@) = Z "U(G/i,Oé) - ’U(CL@,,B)L
i=1
which is a metric. Normalizing the metric D, we obtain another metric

N
D(OZ,B) = (Z |U(a’i7a) - U(&i,ﬁﬂ) /N
=1

Using the metric D, we sketch out an idea for more serious applications. Suppose
that the patient can use four different types of medicines A, B, C, D for medical
treatment (taking only one type or mixing two or more types simultaneously). We
use a, b, ¢, d to denote the (propositional) statements: the patient takes A, B, C, D,
respectively. Let p denote ‘the patient is cured’. Three experimentally approved facts
can be expressed by the following formulas: aAb — p, aVbVe — p, (aAd)V(bAc) — p.
In order to identify the most efficient medicine, i.e. to prescribe only one medicine
to a new patient, the doctor could consider the distances from a — p, b = p, c = p
or d — p to each of the approved facts. The following table is obtained by easy
calculations. For instance, D(a Ab — p,a — p) = 4/32 = 0.125. The table shows
that @ — p or b — p are the closest to one of the approved statements.

D a—p | b=>p | c—=p | d—=p
(aND)—p 0.125 0.125 0.25 0.25

(avevd)—p 0.1875 0.25 0.1875 | 0.1875

((and)V (bAc)) — p|0.15625 | 0.15625 | 0.15625 | 0.15625

Note that D has very interesting properties:
1. D(a,~a) =1,
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2. D(o,—~8) =1— D(a, ),
3. D(a, BV ~) = D(a, 8) + D(at,y) — D(cv, B A7),

for all formulas «, 5 and «. Since the metric D shares some properties with condi-
tional probabilities, it would be interesting to investigate some deeper connections
between our logic and the appropriate probabilistic logics (see [5], [8], [15], [16], [17],
[18] and [19]).

3 Syntax and Semantics

Syntax. The language of distance logics consists of a countable set P = {p1,p2,...}
of propositional letters, classical connectives A and —, and a list of binary metric
operators D¢g i D4 for every s € Q(J{. The set Forg of all classical propositional
formulas over the set P is defined as usual. The formulas from the set Forg will be
denoted by a, 3,7, ... If a, 8 € Forc and s € QF, then D<y(a, ) and D=4(a, 3) are
basic metric formulas. The set For; of all metric formulas is the smallest set:

e containing all basic metric formulas, and
e closed under formation rules: if A, B € Forys, then =A, A A B € Fory,.

The formulas from the set Forp; will be denoted by A, B,C,... Let For = Forg U
Forps. The formulas from For will be denoted by @, ... For example, the following
is a formula: D<o 4(a, B) A =Dso1(a Ay, —8).

We use the usual abbreviations for the other classical connectives V, — and <,
and the standard conventions for the omission of parentheses. We also abbreviate:

_‘Dgs(OZ?ﬂ) to D>S(a7/8)7
_‘D>s(a76) to D<S(Oé,,3),
D<s(a, B) N Dss(a, B) to D—g(cv, B), and

—D_g(a, B) to Drs(cv, ).

Both a A =« and A A —~A are denoted by L, for arbitrary formulas « € Fore
and A € Forys. Note that neither mixing of pure propositional formulas and met-
ric formulas, nor nested metric operators are allowed. Thus, a V D>g2(v, ) and
Do 4(D<oo(e,8), D=p(7,3)) do not belong to the set For.

Semantics. The semantics of our logic is essentially based on a distance functi-
on D : Forc x Forc — [0,+00) satisfying the corresponding constraints for every
a, 3,7 € Forg:
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(D1-) If a <+ j is a tautology, then D(a, 5) = 0;
(D2) D(a, 8) < D(a,) + D, B);

(D3) D(a,B) = D(B, o);

possibly with the stronger version of (D1-):
(D1) a < B is a tautology iff D(«, 3) = 0.

In the other words, the semantics is based on a (pseudo)metric on the Lindenbaum-—
Tarski algebra of a classical propositional theory, i.e., on the quotient algebra ob-
tained by factoring Forg by the equivalence relation which identifies any two formu-
las provably equivalent in the theory. However, we propose a slightly more general
semantics based on the possible-world approach. A possible-world interpretation of
propositional language is specified by a nonempty set W of worlds and the truth
values of all propositional letters at each world, v: W x P — {0,1}. Given a world
w, the truth values of all propositional formulas is defined in the standard recursive
way, and we write v(w,«) for the truth value of a determined by the valuation
assigned to w. Given a possible-world interpretation (W, v), each formula « € Fore
defines a set of worlds [a] = {w : v(w,a) = 1}. Let F = {[a] | « € For¢}.

Definition 3.1. An LPM-model is a structure M = (W, v, d) where:

e W is a nonempty set of objects called worlds and v : W x P — {0, 1} provides
for each world w € W a two-valued evaluation of the propositional letters;

e d: FxF —[0,+00) is a pseudometric.
An LPM-model M = (W,v,d) is an LM-model if d is a metric.

Note that our semantics is completely analogous to the semantics for some pro-
babilistic propositional logics ([5]).

Definition 3.2. The satisfiability relation fulfills the following conditions for every
LPM-model or LM-model M = (W, v,d):

o if o € Forc, M = « iff for every w € W, v(w, a) = true,
e if o, f € Forc, M |= Ds(av, B) iff d([a], [B]) < s,

o if 0, € Forg, M = Dsy(a, B) iff d([al], [8]) > 5

o if A€ Forp, M = —A iff M £ 4,

1611



STOJANOVIC, IKODINOVIC AND DJORDJEVIC

o if ABeForyy, MEAABiff M= Aand M = B.

A formula ® € For is (LPM-satisfiable) LM-satisfiable if there is an (LPM-
model) LM-model M such that M |= ®. A set T of formulas is (LPM-satisfiable)
LM-satisfiable if there is an (LPM-model) LM-model M such that M = & for
every & € T'.

® is (LPM-valid) LM-valid if for every (LPM-model) LM-model M, M = ®.

We could further restrict the class of LM-models to those models whose distance
function fulfills some additional conditions. For instance, the following conditions
are motivated by the examples 2 and 3:

(D4) d([al, [a]) = 1;
(D5) if [8] N (7] = 0 then d([a], [8)) + d([al, []) < 1.

Such model will be called LM *-model. The equality d([«], [8]) + d([a],[-8]) =1 is
an easy consequence of (D2), (D3), (D4) and (D5): 1 = d([g], [=0]) < d([a], [B]) +
d([a],[-5]) < 1. Note that in general D<s and D4 are not interdefinable. But if we
consider LM T-models, then one type of our operators can be defined by the other:
e.g., Des(a, B) = Ds1-4(a,—f3). At the end of the next section, we will briefly
discuss a complete axiomatization with respect to LM T-models.

4 Sound and complete axiomatization

The set of all LPM-valid formulas can be characterized by the following set of axiom
schemata:
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and inference rules:
(R1) From ® and & — ¥ infer ¥,
(R2) From « « f infer D_o(c, B),

(R3) From A — D<s+%(a, B), for every positive integer k, infer A — D<¢(a, (),

(R4) From A — D>S_%(a, B), for every positive integer k > %, infer A — D>s(a, )
(s #0).

We denote this axiomatic system by Azx.

Let us shortly discuss the above axioms and rules. The classical propositional
logic is a sublogic of our logics, because of the axioms (A1), (A2) and the rule (R1).

The axioms (A3), (A4), (A5) and the rules (R3), (R4) force the range of (pseudo)-
metrics to be the set of non negative reals, [0, 4+00). The rules (R3) and (R4) are
the infinitary inference rules. Each of them has a countable set of assumptions and
one conclusion. The rules correspond to the Archimedean axiom for real numbers.

The axioms (A6), (A7) and the rule (R2) describe the conditions (D1-), (D2)
and (D3). The rule (R2) can be considered as the rule of necessitation in modal
logics, but it can be applied on the classical propositional formulas only.

Definition 4.1. A formula ® is deducible from a set T of formulas (T ®) if there
is an at most countable sequence of formulas ®q, ®1,...,® such that every ®; is an
axiom or a formula from the set T', or it is derived from the preceding formulas by
an inference rule.

A formula @ is a theorem (- @) if it is deducible from the empty set, and a proof
for @ is the corresponding sequence of formulas.

A set T of formulas is consistent if there is at least one formula from Forg,
and at least one formula from For,; that are not deducible from T', otherwise 1" is
inconsistent.

A consistent set T of formulas is said to be maximal consistent if for every
A € Foryy, either A€ T or mAeT.

A set T is deductively closed if for every ® € For, if T + ®, then & € T.

Lemma 4.1. Let T be a mazximal consistent set of formulas, and o, 3 € Forg. If
TFa< 3, then D—g(a, ) € T.

PrOOF. If T+ a <+ B, then T'F D—_y(«, 5) by the rule (R2). If D_q(c, 8) ¢ T, then
—D—o(c, ) € T (since T' is maximal) which contradicts the consistency of 7. [
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Theorem 4.1. (Deduction theorem). If T is a set of formulas, ® is a formula, and
TU{®} - U, then T+ & — U, where ® and ¥ are either both classical or both
metric formulas.

PrROOF. We use the transfinite induction on the length of the proof of ¥ from
T U{®}. The classical cases follow as usual.

Suppose that ¥ = D_y(a, ) is obtained from T'U {®} by an application of the
inference rule (R2) and ® € Forj,. In that case:

TU{®P}Fa+p

TU{®} F D_y(a, 5), by (R2).

However, since o <» 3 € Forg, and @ € Forys, ® does not affect the proof of
a <+ [ from T U {®}. Note that a classical propositional formula can be inferred
only by the rule (R1) applied on classical formulas. Thus, we have:

THa+ g3

TH D:()(Oé7,8), by (RQ)

T+ D_y(a, ) = (® — D—o(e, B)), by (A2), since p — (¢ — p) is a tautology,

TH®— D_y(a,B), by (R1)

TH® > U

Next, let us consider the case where ¥ = A — D<(a, ) is obtained from TU{®}
by an application of (R3), and ® € Fory;. Then:

TU{P}+HA— D<s+%(a, B), for every positive integer k

TH® - (A—D
thesis

TH(@®ANA) —D_ k( ,3), every positive integer k

TH(®ANA) — DgS(OZ B), by (R3)

TH®— (A— Dgs(a, )

TH® > U

The case concerning formulas obtained by (R4) can be proved in the same way.

O

The perceptive reader might think that it is a bit strange having a deduction
theorem in the presence of an analogue of the necessary rule. However, we assure
the reader that this is a common situation in probabilistic logics. Please see [18],
and the references therein.

<s+%(a, B)), every positive integer k, by the induction hypo-

Theorem 4.2. (Soundness theorem). The axiomatic system Ax is sound with re-
spect to the LPM-models (and therefore to the LM-models).

PROOF. Soundness of the axiomatic system Ax follows from the soundness of propo-
sitional classical logics and from the properties of pseudometrics. We can show that
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every instance of an axiom schemata holds in every L PM-model, while the inference
rules preserve validity.

It is easy to see that if « is an instance of a classical propositional tautologies,
then for every model M = (W,v,d), M = a. The axioms (A3-7) concern the
properties of the ordering on Qf and the conditions (D2) and (D3), and these
axioms obviously hold in every LPM-model.

The rule (R1) is validity-preserving for the same reason as in classical logic.
Consider Rule (R2) and suppose that a formula o <+ /3 is valid. Then [a] = [5] holds
in any LPM-model and hence D—y(«, 5) must be true in that LPM-model. The rules
(R3) and (R4) preserves validity because of the Archimedean property. O

Theorem 4.3. Fvery consistent set of formulas can be extended to a maximal con-
sistent set.

PROOF. Let T be a consistent set of formulas and let Ag, A1, Ao, ... be an enume-
ration of all formulas from For;;. We define a sequence of sets T;, ¢ = 0,1,2,... as
follows:

(1) To = T U Cong(T) U{D=p(ar, 5) : @ <> p € Conc(T)}, where Cong(T) is the
set of all classical consequences of T' (Cong(T) C Fore);

For every ¢ > 0,
(2) if T; U{A;} is consistent, then T;41 = T; U{A; };
(3) otherwise, if T; U {A;} is inconsistent, we have:

(a) if A; is of the form B — Dgs(a, ), then Tiyy = T; U {—4;,B —
D%_%(a,b’)}, where k is a positive integer chosen so that 7}, is con-
sistent;

(b) if A; is of the form B — Dxs(o, ), then T4y = T; U {-A4;,B —
Dgs_%(a,ﬁ)}, where k is a positive integer chosen so that T, is con-
sistent;

(c) otherwise, Tj4; = T; U {—A;}.

Note that at each stage we extend the previous set of formulas by finitely many
formulas.

Let T = U2 ,T;. The rest of the proof is divided into tree parts.
Claim 1. T; is consistent for each ¢ > 0.

Proof of Claim 1. The sets obtained by the steps (1) and (2) are obviously
consistent. The sets obtained by the step (3c) are consistent by classical arguments:
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if T; U {A4;} F L, by the deduction theorem we have T; - —A;, and since T; is
consistent, so it is T; U {—A4;}.

Let us consider the step (3a).

If T, U{B — D<s(c,)} is not consistent, then the set 7; can be consistently
extended as it is described above. Suppose that it is not the case. Then

T;,~(B = D<s(c,8)), B — _\D<S+%(O¢,,B) F L, for every positive integer k

Ti, ~(B = D<s(a, B)) F =(B = =D
the deduction theorem

T;,~(B — D<s(a,8)) F B — D<8+%(a,ﬁ), for every positive integer k, by the
classical tautology —(p — q) — (p — —q)

T, ~(B = Dy(ay 8)) B — Deyl(a,B), by (R3)

The last line contradicts the consistency of T;. In the same manner we prove that
the step (3b) produces consistent sets. Thus, the proof of the Claim 1 is completed.
Claim 2. T™* is deductively closed.

Proof of Claim 2. We can show that T* is a deductively closed set.

Let ® be a formula from For. It can be proved by induction on the length of the
inference that if 7% F+ ®, then ® € T*. Note that if T; - A and A = A,,, it must be
A € T* because Tinax(n,i}+1 i consistent.

Suppose that the sequence @1, Po, ..., P is a formal inference of ¢ from T™*.

If the sequence is finite, there must be a set T; such that T; - &, and ® € T*.
Thus, suppose that the sequence is countable infinite. We can show that for every i,
if ®; is obtained by an application of an inference rule, and all the premises belong
to T, then it must be ®; € T™*.

If the rule is a finitary one (either (R1) or (R2)), then we conclude ®; € T*
by reasoning as above. Next we consider the infinitary rule (R3). Let ®; = B —
D<(a, B) be obtained by (R3) from the premises & = B — D<S+%(a,ﬂ) e T*, for

every positive integer j. Assume ®; ¢ T™*. The step (3a) of the construction of T*
provides a positive integer k, such that B — —|D<S+%(o¢, B) € T*. Thus, there is m,
such that T}, contains both B — D<s+%(a,6) and B — —|D<s+%(a,ﬁ). It follows
that T, U {B} is not consistent. T,, - B — L implies T, - B — D<s(«, 3), and
hence B — D¢gs(a, B) € T*, i.e. ®; € T* which contradicts the assumption ®; ¢ 7.
The case when ®; = B — D>,(«, 3) is obtained by (R4) follows similarly.
Henceforth, the set T* is deductively closed.
Claim 3. T™* is maximal consistent.
Proof of Claim 3. It is easy to see that T does not contain all formulas. If
a € Foreo, by the definition of Ty, o and -« cannot be simultaneously in Ty. If for
some A, both A and —A belong to T%, then there is a set T; such that A,—~A € T;,
contrary to the consistency of 7;. In summary, for a formula ®, either ® € T*

<S+%(a, B)), for every positive integer k, by
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or =® € T*, and the set T* does not contain both. Thus, T* is consistent. The
construction guarantees that it is maximal. Note that T™ could not be complete for
classical formulas, in the sense that T™ may contain neither a nor —a. O

The next lemma gives some auxiliary statements which will be needed for the
proof of the completeness theorem.

Lemma 4.2. Let T* be a mazimal consistent set of formulas as in the proof of the
previous theorem. Then the following hold:

(i) T* is deductively closed, and consequently contains all valid formulas.
(i) T* contains either A or =A (and certainly not both), for each A € Fory.
(iii) A,B € T* iff ANB € T*, for every A, B € Foryy;.

(iv) inf{s € QF | D<s(, B) € T*} < 7 iff Dy(av, B) € T*, for every nonnegative
rational number r.

(v) inf{s € Qf | D<s(a,8) € T*} < r iff Dey(a,B) € T*, for every positive
rational number r.

PRrOOF. The statements (i) and (ii) were already proved. The proof of the statement
(iii) is standard. Assume inf{s | D<s(c, 5) € T*} < r in order to prove the nontrivial
part of the statement (iv). If D, (o, 8) ¢ T, then ~Dg,.(a, f) € T*, and by the
step (3a) there is a positive integer k such that D>r+%(a,ﬂ) € T*. Because of the

consistency of T, there is no rational s < r + % such that Des(a, 8) € T, but
that is in contradiction with the assumption. Finally, let us prove the nontrivial
part of (v). If Dey(a, ) € T%, then D<, (o, ) € T*, by (A5) and (i), and hence
inf{s | Des(ar,8) € T*} < r, by (iv). The equality inf{s | Des(cr,3) € T*} =
r implies D_,_1(a, ) ¢ T*, and therefore D_._1(«a,) € T*, for every integer
n > 1. By the rule (R4), we obtain Ds,(a,3) € T*, a contradiction. We thus get
inf{s | Des(a, B) € T*} < r. O
Theorem 4.4. (Completeness theorem for LPM-models) Every consistent set T' of
formulas has an LP M -model.

PrROOF. Let T be a consistent set of formulas, and 7™ its maximal consistent
extension as in the proof of Theorem 4.3. Using 7%, we define a tuple M = (W, v, d),
where:

e W contains all classical propositional interpretations (valuations of proposi-
tional letters) that satisfy the set Cong(T) of all classical consequences of
T;
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e v: W x P — {0,1} is an assignment such that for every world w € W and
every propositional letter p € P, v(w,p) = 1 iff w |= p,

e d: FxF —]0,+00), such that d([a],[B]) = inf{s : D<s(c, B) € T*}.

Remember [ = {w € W : w = a} and F = {[a] : a € For¢}.
Claim 1. M is an LPM-model.
Proof of Claim 1. For every formulas «, 8 € Forg,

d([al,[8]) = inf{s : Dcs(a, B) € T} 2 0,

because Dxg(a, §) is an axiom, and D>o(«,5) € T* by the statement (i) in the
previous lemma. Therefore, d fulfills the non-negativity constraint.

(D1-) Assume [a] = [5]. Then, for every w € W, w = «a iff w = f, and
consequently Conc(7') F « < (3, by the Completeness theorem for the classical
propositional logic. Thus, a <+ 5 € Cong(T) and D—g(«, 5) € Ty C T™*. It follows
that

d([a], [A]) = inf{s : D<s(a, ) € T*} = 0.
(D2) Let
d([a],[7]) = inf{s : D<s(a,7) €T} = 51
and
d([7], [8]) = inf{s : D<s(v,8) € T"} = so.
According to the statement (iv) of the previous lemma, for every rationals r > s;
and t > s, Dep(a,v) € T* and D(y,5) € T*. The axiom (A6) and (i) in the
previous lemma imply that De,i¢(c, 8) € T*, i.e.

d([a], [B]) = inf{s : D<s(a, B) € T*} < r+t, for all rationals r > s1,t > sa.

Therefore, d([a], [8]) < 51 + 2 = d([a], [1)) + d((], [8]):

(D3) In this case we omit details which are the same as above. If d([a], [f]) =
inf{s : D<s(cv,B) € T*} = s0, then for any rational r > sg, D<,(a, 5) € T, and so
D, (B,a) € T*, by the axiom (A7). It follows that d([g], [@]) = inf{s : D<s(B, ) €
T*} < sp. If there were a rational ¢ < sg, such that D<;(5,«) € T*, we would have
Dy(a, B) € T*, a contradiction. This gives d([5], [a]) = so = d([e], [F]).

Claim 2. For every formula &, M = & iff & € T™*.

Proof of Claim 2. For every a € Fore:

M E aiff w | a, for every w € W
iff Conc(7T) F a, by the definition of W
iff € Ty
iff o € T".
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For every «, 8 € Forc, and r € Qg

M k= Do (a, B) if d([al, [8]) < r
iff inf{s: D<s(a,3) € T*} < r, by the definition of d,
iff D¢, (o, B) € T™, by the statement (iv) of Lemma 4.2;
M k= Dsr(a, B) iff d([al],[8]) > r
iff d([e], [B]) < r does not hold
iff inf{s: D<s(a, ) € T*} < r does not hold
iff Do, (a,8) ¢ T*, by the statement (v) of Lemma 4.2
iff Doy (o, 8) € T

For every A, B € Fory,:

Ml AABiff M Aand M = B
ifft A€ T* and B € T*, by the induction hypothesis
ifft AN B € T", by the statement (iii) of Lemma 4.2;

ME-AfM}EA
ifft A¢ T*, by the induction hypothesis
iff A € T*, by the statement (ii) of Lemma 4.2.

O

Theorem 4.5. (Completeness theorem for LM-models) Every consistent set T of
formulas has an LM -model.

PROOF. The main points in this proof are the same as in the proof of Theorem 4.4.
We first extend T to a maximal consistent set. But, the extension given in the proof
of Theorem 4.3 will be slightly changed. The sequence of sets T;, « = 0,1,2,... is
now defined as follows:

(1) To =T U Cong(T) U{D=o(c, ) : a <> 8 € Cong(T)}, where Cong(T) is the
set of all classical consequences of T' (Cong(T) C Forg);

For every ¢ > 0,
(2) if T; U{A;} is consistent, then T;41 = T; U{A4;};

(3) otherwise, if T; U{A;} is inconsistent, we have:
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(a) if A; is of the form B — Dgs(a, ), then Tjyy = T; U {—4;,B —
D>S+%(a,ﬁ)}, where k is a positive integer chosen so that T),1 is con-
sistent;

(b) if A; is of the form B — Dsg(o, ), then T;yy = T; U {-A4;,B —
Dgsfi(avﬁ)}’ where k is a positive integer chosen so that T),1 is con-
sistent;

(c) if A; is of the form D_g(«, ), then T; 11 = T; U {—=A4;, = (a < B)};
(d) otherwise, Tj+1 = T; U {—-A;}.

We show that the step (3c) produces consistent sets.

Suppose T; U {—A4;,~(a + p)} F L, ie, T, U{-A;} F a < (. Since a +» 8 € Forg,
a <> [ belongs to Cong, and consequently D_g(«, 5) € Ty, which contradicts the
consistency of Tj.

The rest of the proof is the same as for Theorem 4.4. O

The fact that the axiomatic system Az is sound and complete with respect to
two different classes of models is quite similar to the one for probabilistic logics
(see [18]), or from the modal framework where, for instance, the modal system K is
characterized by the class of all models, but also by the class of all irreflexive models.
Consequently, our syntax cannot expresses differences between the mentioned classes
of distance models, LPM-models and LM-models.

Note that with the LPM-semantics, as well as LM-semantics the set formulas
{D.s(a, ) : s € Qf} is satisfiable (in a model where d([a],[3]) is an irrational
number). Although there are no formal reasons why this would be problematic, it
is possible to determine, at syntax level, a countable range of distance functions. If
we want the range to be Qg , the rule (R3) should be replaced with the following
rule:

(R) From A — D4(a, 8), for every s € Qg , infer —A.

Following the ideas given in the previous theorems, one could prove the completeness
theorem for LPM-models (LM-models) with Qf-valued pseudometrics (metrics).
If we extended Az with the following axioms:

(A8) D<i(e, B),
(A9) D_i(a, nx),
(AlO) DZO(/B /\’% J—) A D}S(avﬁ) — Délfs(aafy)a s < 17

we would be able to prove the completeness theorem with respect to the class of
LM " -models.
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5

Conclusion

In this paper we have introduced propositional metric logics with binary metric ope-
rators and provided strongly complete axiomatizations. One of interesting problems
for further investigation might be to find axiomatization of a logic that allows the
iterations of metric operators and mixing of classical and metric formulas. Namely,
allowing iterations of the metric operators can help us formalize many things. Ano-
ther direction for research might be extending our logic to corresponding first order
logics. All these formalizations could be useful tool in modelling and understanding
real-world problems.
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Abstract

The Laplace transform is an algebraic method that is widely used for an-
alyzing physical systems by either solving the differential equations modeling
their dynamics or by evaluating their transfer function. The dynamics of the
given system are firstly modeled using differential equations and then Laplace
transform is applied to convert these differential equations to their equivalent
algebraic equations. These equations can further be simplified to either obtain
the transfer function of the system or to find out the solution of the differential
equations in frequency domain. Next, the uniqueness of the Laplace transform
provides the solution of these differential equations in the time domain. The
traditional Laplace transform based analysis techniques, i.e., paper-and-pencil
proofs and computer simulation methods are error-prone due to their inherent
limitations and thus are not suitable for the analysis of the systems. Higher-
order-logic theorem proving can overcome these limitations of these techniques
and can ascertain accurate analysis of the systems. In this paper, we extend our
higher-order logic formalization of the Laplace transform, which includes the
formal definition of the Laplace transform and verification of its various classi-
cal properties. One of the main contributions of the paper is the formalization
of Lerch’s theorem, which describes the uniqueness of the Laplace transform
and thus plays a vital role in solving linear differential equations in the fre-
quency domain. For illustration, we present the formal analysis of a 4-7 soft
error crosstalk model, which is widely used in nanometer technologies, such as,
Integrated Circuits (ICs).
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1 Introduction

The engineering and physical systems exhibiting the continuous-time dynamical be-
haviour are mathematically modeled using differential equations, which need to be
solved to judge system characteristics. Laplace transform method allows us to solve
these differential equations or evaluate the transfer function of the signals in these
systems using algebraic techniques and thus is very commonly used in system anal-
ysis. Taking the Laplace transform of differential equations allows us to convert the
time-varying functions involved in these differential equations to their correspond-
ing s-domain representations, i.e., the integral and differential operators in time
domain are converted to their equivalent multiplication and division operators in
the s-domain, where s represents the angular frequency. These algebraic equations
can then be further simplified to either obtain the transfer function of the system
or solution of the differential equations in frequency domain. In the last step, the
uniqueness of the Laplace transform is used to obtain the solution of these differential
equations in time domain.

Traditionally, the Laplace transform is used for analyzing the engineering and
physical systems using paper-and-pencil proofs, numerical methods and symbolic
techniques. However, these analysis techniques cannot ascertain accuracy due to
their inherent limitations, like human-error proneness, discretization and numerical
errors. For example, the Laplace transform based analysis provided by the computer
algebra systems, like Mathematica and Maple, and Symbolic Math Toolbox of Mat-
lab use the algorithms that consider the improper integral involved in the definition
of the Laplace transform as the continuous analog of the power series, i.e., the in-
tegral is discretized to summation and the complex exponentials are sampled [38].
Given the wide-spread usage of these systems in many safety-critical domains, such
as medicine, military and transportation, accurate transform method based anal-
ysis has become a dire need. With the same motivation, the Laplace transform
has been formalized in the HOL Light theorem prover and it has been successfully
used for formally analyzing the Linear Transfer Converter (LTC) circuit [38], Sallen
key low-pass filters [39], Unmanned Free-swimming Submersible (UFSS) vehicle [27]
and platoon of the automated vehicles [31]. Similarly, the Fourier transform [10]
has also been formalized in the same theorem prover and has been used for formally
analyzing an Automobile Suspension System (ASS) [26], audio equalizer [29] and
MEMs accelerometer [29]. However, both of these formalizations can only be used
for the frequency domain analysis. In order to relate this frequency-domain analysis
to the corresponding linear differential equations in the time domain, we need the
uniqueness of the Laplace and Fourier transforms and Lerch’s theorem fulfills this
requirement for the former. However, to the best of our knowledge, Lerch’s theo-
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rem has not been formally verified in a theorem prover so far. We overcome this
limitation in this paper with the motivation that the verification of Lerch’s theorem
along with the existing formalization of the Laplace transform [38, 27] would facili-
tate the formal reasoning about the time domain solutions of differential equations
in the sound core of a theorem prover and thus the formal analysis of many engi-
neering systems [40]. For this purpose, we extend our formalization of the Laplace
transform in higher-order logic [38, 27], which includes the formal definition of the
Laplace transform and verification of it various classical properties. We present a
new definition of the Laplace transform [27, 28], which is based on the notion of
sets. Moreover, we formally verify its various properties, which include time scal-
ing, time shifting, modulation, Laplace transform of n-order differential equation
and transfer function of a generic n-order system [27], in addition to the properties,
which were verified using the older definition namely linearity, frequency shifting,
and differentiation and integration in time domain [38].

Lerch’s theorem [12, 22] provides the uniqueness for the Laplace transform and
thus allows to evaluate the solution of differential equations using the Laplace trans-
form in the frequency domain [24]. Mathematically, if

LUF(D)] = F(s) = /OOO f(t)e~"tdt, Res>~ (1)

is satisfied by a continuous function f, then there is no other continuous function
other than f that satisfies Equation (1). The complex term L[f(t)] = F(s) in the
above equation represents the Laplace transform of the time varying function f. The
above statement can alternatively be interpreted by assuming that there is another
continuous function g, which satisfies the following condition:

Lla(t) = 6(s) = | Tghetdt,  Res >y 2)

and if L[f(t)] = L[g(t)], then both of the functions f and g are the same, i.e.,
Ft)=gt)in0<t [12,9].

We found a couple of paper-and-pencil proofs of Lerch’s theorem [12, 22] in
literature and both are mainly based on the following lemma.

Let ¢ : R — R be a continuous function on [0, 1] and

/1 2" p(z)dr =0, for n=0,1,2,... (3)
0

Then
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In both the cases, the authors adopt different strategies for the proof of the
above lemma. Cohen [12] considers splitting the region of integration, i.e., interval
[0, 1] into three regions, namely, [0, a|, [a, b] and [b, 1], and uses approximation
of the function ¢(z) with the corresponding polynomials in each of the regions.
However, the author does not provide a way to handle the singularity problem of
the logarithm function at the value 0 in the interval [0, 1]. We propose to cater for
this singularity problem by considering the notion of right-hand limit and continuity
at one-sided open interval, and the notion of the improper integrals. On the other
hand, Orloff [22] provides the proof of the lemma by approximating the function ¢(x)
with a polynomial p(z) in the interval [0, 1]. This can be achieved by either using
the Stone-Weierstrass theorem [19] or by using the approximation of the function
¢(x) with a polynomial p(z) with respect to L? norm and is based on LP spaces. In
this paper, we adopt the strategy based on LP spaces [7] because of the availability of
a rich formalization of LP spaces in HOL Light [5]. Whereas, in the case of Cohen’s
proof, we need to verify the properties of the improper integrals. The formal proof
based on this strategy is more efficient, i.e., it requires less effort in the form of lines-
of-code and man-hours as will be elaborated in Sections 4 and 5. Moreover, it is
more generic than the other two methods, i.e., it considers an arbitrary interval [a, ]
as the region of integration and thus can be directly used for the formal verification
of the uniqueness property of the Fourier transform, which is our next goal.

The formalization presented in this paper is developed in higher-order logic
(HOL) using the HOL Light theorem prover. The main motivation behind this
choice is the availability of the multivariate calculus [18] (differentiation [3], integra-
tion [4] and LP spaces [5]) and Laplace transform theories [38, 27]. The proposed
formalization is presented using a mix Math/HOL Light notation to make the pa-
per easy to read for non-experts of HOL Light. The complete HOL Light script is
available at [25] for readers interested in viewing the HOL Light code. In order to
demonstrate the practical effectiveness of the Laplace transform theory in reasoning
about the system analysis problems, we use it to conduct the formal analysis of a
4-m soft error crosstalk model, which is widely used in integrated circuits (ICs).

The rest of the paper is organized as follows: Section 2 provides a brief introduc-
tion about the HOL Light theorem prover and the multivariable calculus theories
of HOL Light, which act as preliminaries for the reported formalization. Section 3
provides the formalization of the Laplace transform. We describe the formalization
of the lemma, given in Equations (3) and (4), for Lerch’s theorem in Section 4. Sec-
tion 5 presents the formalization of Lerch’s theorem. Section 6 presents our formal
analysis of the soft error crosstalk model. Finally, Section 7 concludes the paper.
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2 Preliminaries

In this section, we present an introduction to the HOL Light theorem prover and
an overview about the multivariable calculus theories of HOL Light, which provide
the foundational support for the proposed formalization.

2.1 HOL Light Theorem Prover

HOL Light [14, 17] is an interactive theorem proving environment for conducting
proofs in higher-order logic. The logic in the HOL Light system is represented in
the strongly-typed functional programming language ML [23]. Various mathemat-
ical foundations have been formalized and saved as HOL Light theories. A HOL
Light theory is a collection of valid HOL Light types, constants, axioms, definitions
and theorems. A theorem is a formalized statement that may be an axiom or could
be deduced from already verified theorems by an inference rule. It consists of a finite
set 2 of Boolean terms, called the assumptions, and a Boolean term S, called the
conclusion. Soundness is assured as every new theorem must be verified by apply-
ing the basic axioms and primitive inference rules or any other previously verified
theorems/inference rules. The HOL Light theorem prover provides an extensive
support of theorems regarding, boolean, arithmetics, real analysis and multivariate
analysis in the form of theories, which are extensively used in our formalization. In
fact, one of the primary reasons to chose the HOL Light theorem prover for the
proposed formalization was the presence of an extensive support of multivariable
calculus theories [1].

2.2 Multivariable Calculus Theories in HOL Light

A N-dimensional vector is represented as a RY column matrix with each of its
element as a real number in HOL Light [18, 15]. All of the vector operations can
thus be performed using matrix manipulations and all the multivariable calculus
theorems are verified for functions with an arbitrary data-type RY — RM. For
example, a complex number is defined as a 2-dimensional vector, i.e., a R? column
matrix.

Some of the frequently used HOL Light functions in our work are explained
below:

Definition 2.1. Cx and ii
FV a. Cx a = complex (a, &0)
F ii = complex (&0, &1)
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Cx is a type casting function from real (R) to complex (R?), whereas the & operator
type casts a natural number (IN) to its corresponding real number (R). Similarly,
ii (iota) represents a complex number having the real part equal to zero and the
magnitude of the imaginary part equal to 1 [16].

Definition 2.2. Re, Im, lift and drop
FV z. Re z = z$1

FVz. Imz=2$2
FV x. 1ift x = (lambda i. x)
F V x. drop x = x$1

The functions Re and Im accept a complex number and return its real and imaginary
part, respectively. Here, the notation z$i represents the it component of vector z.
Similarly, the functions 1ift : R — R! and drop : R! — R map a real number to a
1-dimensional vector and a 1-dimensional vector to a real number, respectively [16].
Here, the function lambda is used to construct a vector componentwise [18].

Definition 2.3. Exponential, Complex Cosine and Sine

F V x. exp x = Re (cexp (Cx x))

FV z. ccos z = (cexp (ii % z) + cexp (——ii * z)) / Cx (&2)

FVz. csin z = (cexp (ii % z) - cexp (——ii % z)) / (Cx (&2) * ii)

The complex exponential, real exponential, complex cosine and complex sine are
represented as cexp : R? — R?, exp: R — R, ccos : R? — R? and csin : R? — R?
in HOL Light, respectively [2].

Definition 2.4. Vector Integral and Real Integral
FV f i. integral i f = (@y. (f has_integral y) i)
FV f i. real_integral i f = (Qy. (f has_real_integral y) i)

The function integral represents the vector integral and is defined using the Hilbert
choice operator @ in the functional form. It takes the integrand function f : RN —
RM | and a vector-space i : R — B, which defines the region of integration, and
returns a vector RM, which is the integral of £ on i. The function has_ integral
represents the same relationship in the relational form. Similarly, the function
real integral accepts an integrand function f : R — R and a set of real numbers
i : R — B and returns the real-valued integral of the function f over i.
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Definition 2.5. Vector Derivative and Real Derivative
F V f net. vector_derivative f net =
(ef’. (f has_vector_derivative f’) net)
FV f x. real_derivative f x =
(ef’. (f has_real_derivative f’) (atreal x))

The function vector derivative takes a function £ : R' — RM and a net :
R! — B, which defines the point at which f has to be dlﬁerentlated and returns
a vector of data-type RM, which represents the differential of f at net. The func-
tion has_vector_ derivative defines the same relationship in the relational form.
Similarly, the function real derivative accepts a function £ : R — R and a real
number x, which represents the point where £ has to be differentiated, and returns
the real-valued differential of f at x.

Definition 2.6. Limit of a Vector and a Real function
FV f net. 1lim net £ = (@1. (f — 1) net)
F V f net. reallim net f = (@1. (f — 1) net)

The function 1im accepts a net with elements of an arbitrary data-type A and a
function £ : A — RM and returns 1 : RM, i.e., the value to which £ converges at the
given net. Similarly, the function reallim accepts a net with elements of data-type
R and a function £ : R — R and returns 1 : R, i.e., the value to which £ converges
at the given net.

In order to facilitate the understanding of the paper, we present the formalization
of the Laplace transform, Lerch’s theorem and the associated lemma using a mix
Math/HOL Light notation. Some of the terms used, listed in Table 1, correlate with
the traditional conventions, whereas the others are considered only to facilitate the
understanding of this paper.

Table 1: Conventions used for HOL Light Functions

HOL Light Mathematical | Description

Functions Conventions

lift x X Conversion of a real number to 1-dimensional
vector

drop x X Conversion of a 1-dimensional vector to a real
number

Cx a ES Type casting from real (R) to complex (R?)
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exp X e” Real exponential function
cexp X * Complex exponential function
integral Integral of a vector-valued function

has_integral

Integral of a vector-valued function (Relational
form)

real_integral

Integral of a real-valued function

has_real_integral

Integral of a real-valued function (Relational
form)

—
lim lim Limit of a vector-valued function
real_lim lim Limit of a real-valued function
abs x x| Absolute value of a variable x
norm ¥ IE4] Norm of a vector x
vsum i Summation of a vector-valued function
sum Z Summation of a real-valued function
vector_derivati- g Derivative of a vector-valued function f w.r.t t
ve f (at t)
real_derivative % Derivative of a real-valued function f w.r.t t
f (at t)
=7
arf

higher_vector_de-
rivative n f t

dt?

n'" order derivative of a vector-valued function
fwrtt

higher_real_deri-
vative n f t

&°f

dat?

n'" order derivative of a real-valued function £
w.ortt

We build upon the above-mentioned fundamental functions of multivariable cal-

culus in HOL Light to formalize the Laplace transform theory in the next sections.

3 Formalization of the Laplace Transform

Mathematically, the Laplace transform is defined for a function f: R! — R? as [9]:

LIFE) = F(s) = [ fOdt, s e € (5)

We formalize Equation (5) in HOL Light as follows [27]:
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Definition 3.1. Laplace Transform
F V s f. laplace_transform f s =

7?5(“) f(t)dt, v = {t | 0 < t}
;

The function laplace_transform accepts a complex-valued function f : R! — R?
and a complex number s and returns the Laplace transform of £ as represented by
Equation (5). In the above definition, we used the complex exponential function
¢ : R? — R? because the return data-type of the function f is R%. Here, the data-
type of t is R! and to multiply it with the complex number s, it is first converted
into a real number t by using drop and then it is converted to data-type R? using Cx.
Next, we use the vector function integral (Definition 2.4), i.e., [ to integrate the
expression f(t)e~™! over the positive real line since the data-type of this expression
is R?. The region of integration is vy, which represents the positive real line or the
set {t | 0 < t}. The Laplace transform was earlier formalized using a limiting
process as [38]:

—
F V s f. laplace_transform f s = lim efS(E) f(t)dt

b—oo Jo

However, the HOL Light definition of the integral function implicitly encompasses
infinite limits of integration. So, our definition covers the region of integration, i.e.,
[0,00), as {t | 0 < t} and is equivalent to the definition given in [38]. However,
our definition considerably simplifies the reasoning process in the verification of the
Laplace transform properties since it does not involve the notion of limit.

The Laplace transform of a function f exists, if f is piecewise smooth and is of
exponential order on the positive real line [38, 9]. A function is said to be piecewise
smooth on an interval if it is piecewise differentiable on that interval.

Definition 3.2. Laplace Existence
F Vs f. laplace_exists f s =

(V b. f piecewise_differentiable_on [5, E]) A

(EI M a. Re(s) >a A exp_order_cond f M a)

The function exp_order_cond in the above definition represents the exponential
order condition necessary for the existence of the Laplace transform [38, 9]:
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Definition 3.3. Exponential Order Condition
FVfMa. exp_order_cond f M a &

o<M A (Ve o<t [lEE)| <n )

We used Definitions 3.1, 3.2 and 3.3 to formally verify some of the classical prop-
erties of the Laplace transform, given in Table 2. The properties namely linearity,
frequency shifting, differentiation and integration were already verified using the
formal definition of the Laplace transform [38]. We formally verified these using
our new definition of the Laplace transform [27]. Moreover, we formally verified
some new properties, such as, time shifting, time scaling, cosine and sine-based
modulations and the Laplace transform of a n-order differential equation [27]. The
assumptions of these theorems describe the existence of the corresponding Laplace
transforms. For example, the predicate laplace_exists_higher_deriv in the the-
orem corresponding to the m-order differential equation ensures that the Laplace
of all the derivatives up to the n'® order of the function f exist. The function
diff_eq_n_order models the n-order differential equation itself. Similarly, the
predicate differentiable_higher_derivative provides the differentiability of the
function f and its higher derivatives up to the n* order. Moreover, the HOL Light
function EL k 1st returns the k*" element of a list 1st. The verification of these
properties not only ensures the correctness of our definitions but also plays a vital
role in minimizing the user effort in reasoning about the Laplace transform based
analysis of systems, as will be depicted in Section 6 of this paper.

Table 2: Properties of the Laplace Transform

Property [ Formalized Form
Integrability
efstf(t) integrable FVfs. Eglace_exists fs
on [0, 00) = ?75(5) f(t) integrable_on {t | 0 < t}
Linearity

FVYfgsab.
laplace_exists f s A laplace_exists g s
= laplace_transform (a x £(t) + b * g(t)) s =
a * laplace_transform f s +
b * laplace_transform g s
Frequency Shifting
FV f s so. laplace_exists f s

Llof(t) + Bg(t)] =
aF(s) + BG(s)

Lle*" f(t)] =

—2
F(s — s0) = laplace_transform (?SO(E) f(t)) s =

laplace_transform f (s - so)
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First-order Differentiation in Time Domain

F V f s. laplace_exists f s A
(V t. f differentiable at t) A

d (T
L [af(t)} = laplace_exists at s
sF(s) = f(0) d
= laplace_transform It s =
s * laplace_transform f s - f (5)
Higher-order Differentiation in Time Domain
FVfsn.
laplace_exists_higher_deriv n f s A
a (V t. differentiable_higher_derivative n f t)
L t)] =s"F(s arf
[dt" ®) - (s) = laplace_transform < — | s =
_yn k-1 4" f(0) dt
k=1 dx"F s" % laplace_transform f s -
=
s (e £2(0)
Zk:l s dtnfk

Integration in Time Domain

c [fot f(T)dT} - éF(s)

FVfs. 0<Res A laplace_exists £ s A
laplace_exists <ﬁf(7’)d7’) s A
(V x. f continuous_on interval [6,}{])
= laplace_transform (ﬁf(’T)dT) s =

—2
—— * laplace_transform f s
s

Time Shifting

LIf(t —to)u(t —to)] =
e F(s)

FV£fsty. 0<to A laplace_exists f s
= laplace_transform (shifted_fun f to> s =

—2

?_S(L") * laplace_transform f s

Time Scaling

cifen =37 (3).

0<c

FVYfsc. 0<c A laplace_exists £ s A
laplace_exists f (%)
C

= laplace_transform (f (c % t)) s =
2

1
?2

s
* laplace_transform f <?>

Modulation (Cosine and Sine-based)
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FV fs w. laplace_exists f s
= laplace_transform

L[f(t)cos(wot)] = 2 7 %7
F(s — iwo) (ccos (wo *(;) ) £ (t)) s =
. laplace_transform f (s —ii=x w_>02)
F(s+ iwo) Eﬂ
2 laplace_transform f (s + iix w_>02)
52

FV fs w. laplace_exists f s
= laplace_transform

L[f(t)sin(wot)] = e 7 X2
oo i) (csin (@(x) ) £ (1)) s =
2 ) laplace_transform f (s —ii=x %)2)
F(s+ iwo) =2 . -
— 9 2 xii 2
laplace_transform f (s+ii*wg)

—2
2 xii

n-order Differential Equation
FV f 1lst s n.
laplace_exists_higher_deriv n f s A

L:(Zn o dky _ (V t. differentiable_higher_derivative n f t)
k=0 k%lt’“ . = laplace_transform
F(s) Zk:k:o aEs (diff_eq_n_order n 1st f t) s =
n —
k=0 dk'iilf(()) laplace_transform f s x Z;’:O (EL k 1st  s*
g1 L B
dtk— = = (.. (&0
- Do |EL k1st x Y °  |s i

The generalized linear differential equation describes the input-output relation-
ship for a generic n-order system [6]:
ap—y(t) =) Br—7x(t), m<n (6)
o dt o
where y(t) is the output and z(t) is the input to the system. The constants ay and S
are the coefficients of the output and input differentials with order k, respectively.
The greatest index n of the non-zero coefficient «,, determines the order of the
underlying system. The corresponding transfer function is obtained by setting the
initial conditions equal to zero [20]:

Y(s) ZZL:O Brs”
X(s) S, apsk ™

We verified the transfer function, given in Equation (7), for the generic n-order
system as the following HOL Light theorem [27].
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Theorem 3.1. Transfer Function of a Generic n-order System
FVyxmn inlst outlst s.
(V t. differentiable_higher_derivmn x y t) A
laplace_exists_of_higher _derivmn xy s A
zero_init_conditions m n x y A
diff_eq_n_order_sys m n inlst outlst y x A

—2 ——
A > eo (EL k outlst = sk> +

—2
laplace_transform x s # 0 0

m
laplace_transform y s _ . o (EL k inlst * s¥)
laplace_transform x s ZE:O (EL k outlst * sk)

The first assumption ensures that the functions y and x are differentiable up to
the nt"* and m!" order, respectively. The next assumption represents the Laplace
transform existence condition up to the n'" order derivative of function y and m!*
order derivative of the function x. The next assumption models the zero initial
conditions for both of the functions y and x, respectively. The next assumption
represents the formalization of Equation (6) and the last two assumptions provide
the conditions for the design of a reliable system. Finally, the conclusion of the above
theorem represents the transfer function given by Equation (7). The verification of
this theorem is mainly based on n-order differential equation property of the Laplace
transform and is very useful as it allows to automate the verification of the transfer
function of any system as will be seen in Section 6 of the paper. The formalization,
described in this section, took around 2000 lines of HOL Light code [25] and around
110 man-hours.

4 Lemma for Lerch’s Theorem

We formally verify the lemma (Equation (4)) involved in verifying Lerch’s theorem
for a function f as the following HOL Light theorem:

Theorem 4.1. Lemma for a Vector-valued Function
FVfs.
bounded s A

||f(x)||* integrable_on s A
_>
(V n. [x"f(x) = Eﬂ)
= negligible {x | x IN s A £(x) # 0
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The above theorem is the general version of the lemma (Equations (3) and (4))
and it is verified for a vector-valued function f : R! — R? and an arbitrary interval,
i.e., set s. The first assumption of Theorem 4.1 ensures that the set s is bounded.
The next assumption models the integrability condition for Hf (x)||>. The next as-
sumption ensures that the integral of the complex integrand x" f(x) over the region
of integration s is zero. Finally, the conclusion models the condition, which says
that the size of the set containing all the values x € s at which the function f is
zero is negligible. Alternatively, it means that the function f is zero at every x €
s. We proceed with the proof process of Theorem 4.1 by transforming the HOL
Light function negligible into its counterpart for the real-valued functions, i.e.,
real_negligible, which mainly requires the properties of vectors and negligible
sets. Next, its proof is mainly based on the properties of integration along with the
real-valued version of Theorem 4.1, i.e., for the functions of data type R — R, which
is represented as:

Theorem 4.2. Lemma for a Real-valued Function
FVfs.

real_bounded s A

[f(x)]2 real_integrable_on s A

(v n. [x"f(x) = o)

= real_negligible {x | x IN s A f(x) # O}

where all the assumptions of the above theorem are same as that of Theorem 4.1.
However, they hold for the real-valued function £ : R — R. We start the proof
process of the above theorem by converting the set s in to an interval, which directly
implies from the first assumption of Theorem 4.2, i.e., real_bounded s and it results
into the following subgoal:

Subgoal 4.1. real_negligible {x | x IN [a,b] A £(x) # 0}

Next, we assume f(x) = f’ and verify that the function £’ belongs to the L?
space, which is represented in HOL Light as:

£’ IN lspace ([3,bl) (2)

where the predicate 1space accepts a set (interval) s and a real number p, which rep-
resents the order of the space and returns the corresponding LP space, i.e., it returns
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the set of functions f such that each f is measurable and || f(x)||? is integrable on s.
Its verification requires the properties of integration along with some real arithmetic
reasoning and its serves as an assumption for the verification of Subgoal 4.1. Next,
the following subgoal directly implies from Subgoal 4.1 as:

Subgoal 4.2. real negligible {x | x IN [a,b] A [£(x)]* # Bﬂ}

After applying the properties of the integrals and negligible sets along with some
real arithmetic reasoning, it results into the following subgoal:

Subgoal 4.3. PE®P < e

Now, the function f can be approximated by a polynomial p(x) with respect to
L? norm and we further verify:

Jop(®)E(x) = 0

The above result after verification also serves as an assumption for Subgoal 4.3.
After applying transitivity property of real numbers, Subgoal 4.3 results into the
following subgoal:

Subgoal 4.4. [P[f(x)]?dx < [P([£(x)]* - p(x)£(x))dx A

P (P - ptx)dx < e

The proof of the above subgoal is based on the properties of the integrals, LP
spaces along with some real arithmetic reasoning. This concludes our proof of The-
orem 4.2 and thus the lemma for Lerch’s theorem. The details about the proof of
the lemma can be found in the proof script [25].

5 Formalization/ Formal Proof of Lerch’s Theorem

This section presents our formalization of Lerch’s theorem using the HOL Light
theorem prover. We formally verify the statement of Lerch’s theorem as the following
HOL Light theorem:
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Theorem 5.1. Lerch’s Theorem
FVEgr.

(V s. Re(r) < Re(s) = laplace_exists f s)
(V s. Re(r) < Re(s) = laplace_exists g s)
(V s < Re(s) =

laplace_transform f s = laplace_transform g s)

= (V t. 0 <t = f(t) = g(t))

A
A

|t

where f and g are vector-valued functions with data type R! — R2. Similarly,
r and s are complex variables. The first assumption of Theorem 5.1 ensures the
non-negativity of the real part of the Laplace variable r. The next two assumptions
provide the Laplace existence conditions for the functions £ and g, respectively.
The last assumption presents the condition that the Laplace transforms of the two
complex-valued functions £ and g are equal. Finally, the conclusion of Theorem 5.1
presents the equivalence of the functions f and g for all values of their argument ¢ in
0 < t since t represents time that is always non-negative. The proof of Theorem 5.1
mainly depends on the alternate representation of Lerch’s theorem, which is verified
as the following HOL Light theorem:

Theorem 5.2. Alternate Representation of Lerch’s Theorem
FYfgNabec.
a+1<NA

f continuous_on {t | 0 < ;} A
g continuous_on {t | 0 < ;} A
(vt 0 <t = [[£x)]| < et A [lg(t)]| < cet) A
(V n. N <n =

laplace_transform f ? = laplace_transform g Eﬂ)

N (v t. 0 <t = £(t) =g(t)>

where the first assumption models the upper bound of the exponent a of the expo-
nential function. The next two assumptions provide the continuity of the complex-
valued functions f and g over the interval [0, 00), respectively. The next assumption
presents the upper bounds of the functions f and g, which is very similar to the
exponential order condition (Definition 3.3). The last assumption describes the con-
dition that the Laplace transforms of the two functions £ and g are equal. Finally,
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the conclusion presents the equivalence of the functions £ and g. We proceed with
the proof of Theorem 5.2 by applying the properties of sets along with some complex
arithmetic simplification, which results into the following subgoal:

Subgoal 5.1. Vit tIN {x | 0<x} = 1f(t)-gt) = L8

The proof of the above subgoal is mainly based on the following lemma:

Lemma 5.1. - V £ s a. convex s A
(interior s = {} = s = {}) A
f continuous_on s A
negligible {x | x IN s A £(x) # a}
= (Vx. xINs:>f(x)=a)

The application of the above lemma on Subgoal 5.1 results into a subgoal, where
it is required to verify all the assumptions of Lemma 5.1. The first three assump-
tions are verified using the properties of continuity and sets along with some complex
arithmetic reasoning. Finally, the fourth assumption results into the following sub-
goal:

Subgoal 5.2. negligible {t | 0 <t A (£(t) - glt) # Bﬂ}

The proof of the above subgoal is mainly based on the following theorem by
setting the value of the function h(t) = f(t) — g(t):

Theorem 5.3. Generalization of Lerch’s Theorem

FVhsa.
h measurable_on {t | 0 < ;} A
a+1<NA
(Vt. 0 <t = |ht)]] < pe) A

<
2
(V n. N < n = laplace_transform h w? = 6> )
= negligible {t | 0 < t A h(t) # O
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where the first assumption models the condition that the function h is measurable
on the interval [0, 00). The next two assumptions provide the upper bounds of the
exponent a and the complex-valued function h. The last assumption describes the
condition that the Laplace transform of the function h is equal to zero. Finally, the
conclusion uses the predicate negligible to model the condition that the function
h(t) is equal to zero. We proceed with the proof of Theorem 5.3 by verifying the
following subgoal:

Subgoal 5.3. (V n. N < n = g n measurable_on (6,T)> A

(an.Ngn/\xIN(a,T)éHganSb)

where,

e () (&)

The proof of the above subgoal is mainly based on applying cases on N < n
along with the following lemma:

a-1

Lemma 5.2. - V h a b s.
h measurable_on {t | 0 < ;} A
a+ 1< Re(s) A
(Vt. 0<zt= |h) < be®)

-2
s— 1

= h(—(log(x))) ((_;c)ﬂ) measurable_on (0,1) A
(v e w00~ | of-eEw)) (@2)”2

<)

The singularity of the logarithm function at value 0 in the above lemma is handled
by taking the measurability of the function h(—log )z~ over the interval (0, 1).
The verification of Subgoal 5.3 serves as one of the assumption for the verification
of Theorem 5.3. Next, we simplify the conclusion of Theorem 5.3 using all the
assumptions and properties of the sets, to obtain the following subgoal:
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Subgoal 5.4.  negligible {x | x IN 0 1) A gNx # 0}

The proof of the above subgoal is mainly based on the main lemma (Theo-
rem 4.1), properties of integration and sets along with some complex arithmetic
reasoning. This concludes our formal proof of Lerch’s theorem.

Our proof script of the formalization, presented in Sections 4 and 5, consists of
about 700 lines-of-code and it took about 45 man-hours for the verification. One of
the major difficulties faced in the reported formalization was the unavailability of a
formal proof for Lerch’s theorem. Most of the mathematical texts on Laplace trans-
form, e.g., [9] and [35], mention the uniqueness property of the Laplace transform
without presenting its proof. We only found a couple of analytical paper-and-pencil
proofs [12, 22] of Lerch’s theorem, which formed the basis of the reported formaliza-
tion. Secondly, we verified Lerch’s theorem for the complex-valued function (L[f(¢)]
or F(s)), whereas the available paper-and-pencil proofs [12, 22] were based on a real-
valued function. The formalization of Lerch’s theorem enabled us to formally verify
the solutions of the differential equations, which was not possible using the formal-
ization of the Laplace transform presented in [38, 27]. We illustrate the practical
effectiveness of our formalized Laplace transform theory by presenting the formal
analysis of a 4-7 soft error crosstalk model for ICs in the following section.

6 Formal Analysis of a 4-7 Soft Error Crosstalk Model
for Nanometer Technologies

With the advancement in the Complementary Metal-oxide Semiconductor (CMOS)
technologies, nanometer circuits are becoming more vulnerable to soft errors, such
as, clock jitters [37], soft delays [13], coupling noise, crosstalk noise pulses that are
caused by Single Event (SE) particles [32], signal cross-coupling effects [8, 34] and
voltage drops in power supply, and can badly effect the integrity of the signals. These
circuits usually contain a huge amount of interconnection lines, in addition to the
transistors, due to the scaling down of the deep submicron CMOS technology. More-
over, these lines can interfere with each other, contributing to the degradation of
the performance of the circuit and thus cannot be considered as electrically isolated
components. The increase in the heights of wires and reduction in the distances
between the adjacent wires are the main causes of this interference, which can result
in to crosstalk noise and signal delays. Modeling of these crosstalk noise and delays
caused by SE particles and other sources can be helpful in identifying them and also
in rectifying their effects on the CMOS technology. It also enables the designers to
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develop a low-power and energy efficient CMOS circuit. Due to the wider utility of
CMOS technologies in safety and mission critical applications, such as medicine [11],
military [36] and avionics [21], the formal modeling and analysis of the soft error
crosstalk in these technologies is of utmost importance as the verification of these
models enhances the reliability and security of the overall system.

A 4-7 interconnect circuit, depicted in Figure 1, models the SE crosstalk effect in
the CMOS technologies [32, 33]. It mainly consists of two 2-7 circuits that model the
aggressor and victim lines (nets), respectively. Here, R, and Ry, are the resistors
corresponding to the aggressor net, whereas, C1,, Co, and Cs, are the respective
capacitors. Similarly, in the case of the victim net, Ry, and Rs, are the resistors, and
C1v, Cyy and Cs, are the respective capacitors. Also, C, is the coupling capacitor
used between the aggressor and the victim nets.

Rth 1 Rla 2 R2a 3

Vin @ —— C1a —— Cua — Ca,
= = £ o =
Gng or Vggq
T Rq 4 Ry 5 Rov  Vou
AVAYAY
p— O —— Cyy — C3

Figure 1: 4-7 Interconnect Circuit Modeling the SE Crosstalk Effect [32]

6.1 Formal Analysis of Passive Aggressor

Based on the 4-7 interconnect circuit (Figure 1), the passive aggressive model for
analyzing the crosstalk noise and delay, is depicted in Figure 2, which is obtained
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as a result of applying the decoupling approach [32, 33]. The resistance Ry, is
the effective resistance of the aggressor driver [32]. For the analysis of the passive
aggressor, we first need to formalize its dynamical behaviour in the form of its
governing differential equation in higher-order logic. We use the generic differential
equation of order n, to model the differential equation of the passive aggressor as
follows:

Rth 1 Rla 2 RZa 3
AVAYAY AVAYAY AVAYAY

Vin @ —— Cia — O — (s,

Figure 2: Passive Aggressor Model [33]

Definition 6.1. Behavioural Specification of Passive Aggressor
|_ v Rla R2a CQa C3a-
inlst_pass_aggres Ri, Roa Coa Csza = [?2; Kﬂ; Eﬂ; 32]
FV Rla R2a R'th Cla C2a CSa-
outlst_pass_aggres Ria Roa Rin Cia Coa Cza =
5 05 ES Fs G B
F V Rtn Cia V2 Ria Roa Co2a C3a Vin t.
pass_aggressor_behav_spec Ris Roa Rin Cia Coa C3a Vip Vo t &
diff_eq_n_order 5
(outlst_pass_aggres Ria Roa Rin Cia Coa Csza) Vo t =
diff_eq_n_order 3
(inlst_pass_aggres Riz Roa Coa Cza) Vin t

where Vi, is the input voltage having data type R! — R2. Similarly, Vs, is the voltage
at node 2 and is considered as the output voltage. The elements A, B, C, D, E, F, G
and H of the lists inlst_pass_aggres and outlst_pass_aggres are:
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A = R1a(C2a + Cza) + 2R24Ca4
B = R2aC3a(2R1aC2a + R1aCsa + R2aC3a)
= R1aR24°C2aC3a>
D = 2R1,(C2a + C3a) + 2R2aC3a + Ren(C1a + C2a + C3a)
E = 2R1,C2a(2R2aC3a + RenCia + RenCaa) + 2RnCsa(R1aCta + R2aCia + R2aCoa) +
(Ria® + RiaRen)(C2a® + C3a®) + R2aC3a”(Roa + Ren) + 2R1aC3a (R1aCoa + R2aCaa)

F = 2R12R22C22C3a(R1aC2a + R1aC3a + R2aCsa + 2RenCia)+
2R1aR¢nCa(R2aC2a” + R2aC2aC3a + R1aC1aC2a + R2aC1aCaa)+
R1a’RenC1a(C2a” + C3a”) 4 Roa®RenC3a”(C1a + C2a)
G = R1aR2a’C2a°C3a®(R1a + Ren) + 2R1aR2aRenC1aC2aC3a (R1aCoa + R1aCsa + R2aCaa)
H = R1a’R2a”RtnC1aC20°Caa”

We verified the transfer function of the passive aggressor as follows:

Theorem 6.1. Transfer Function Verification of Passive Aggressor
v Rla R2a R'th Cla C2a C3a Vin V2 S.

O < Rja A O <Rya ANO<Rey A

0 < Cia A0 < Coa ANO<Czqa A

2
laplace_transform Vi, s # 6> A

Hs5+ st + Fs®+ Es2+ Ds+ 1 + T2 A
zero_initial_conditions Vi, Vo A

(V t. differentiable_higher_derivative Vi, V, t) A
laplace_exists_higher_deriv Vi, Vo s A

(V t. pass_aggressor_behav_spec Riy Roa Rin Cia Coa C3a Vip Vo t)

laplace_transform V; s

laplace_transform Vi, s
2 2 2 2
? s3—|—§> S2+K> s—|—?
2 2 2 2 —2 —2
" S5+ 0 s+ F s3+f s?2+ D s+ 1

The first eight assumptions present the design requirements for the underlying sys-
tem. The next assumption models the zero initial conditions for the voltage functions
Vin and Vo. The next two assumptions provide the differentiability and the Laplace
existence condition for the higher-order derivatives of Vi, and Vy up to the orders
3 and 5, respectively. The last assumption presents the behavioural specification of
the passive aggressor. Finally, the conclusion of Theorem 6.1 presents its required
transfer function. A notable feature is that the verification of Theorem 6.1 is done
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almost automatically using the automatic tactic DIFF_EQ_2_TRANS_FUN_TAC, which
is developed in our proposed formalization.

Next, we verified the differential equation of the passive aggressor based on its
transfer function using the following HOL Light theorem:

Theorem 6.2. Differential Equation Verification of Passive Aggressor
F V Ria Roa Ren Cia Coa Cza Vin Vo T.
O <Rig AO<Rya AO<Rip AO<Cia AOKCoa AOKCaa A
(V s. Re(r) < Re(s) = laplace_transform Vi, s # 82) A
(V s. Re(r) < Re(s) =
Hs" + st + Fs®+ Es2+ Ds+ 1 + Bﬂ) A
zero_initial_conditions Vi, Vo, A
(V t. differentiable_higher_derivative Vi, Vy t) A
0 < Re(r) A
(V s. Re(r) < Re(s) = laplace_exists_higher_deriv 3 Vi, s) A
(V s. Re(r) < Re(s) = laplace_exists_higher_deriv 5 V; s) A

<V s. Re(r) < Re(s) =

laplace_transform V; s

laplace_transform Vi, s
2 2 2 2
T+ B2+ A s+ 1T
2 2 2 2 —2 —2
s+ @ s4+? s3+f s2+ D s+ 1

= (V t. 0 < t = pass_aggressor_behav spec

Ria Roa Rin Cia Coa Cza Vin Vo t>

The first ten assumptions are the same as that of Theorem 6.1. The next as-
sumption ensures that the real part of the Laplace variable r is always positive. The
next two assumptions describe the differentiability condition for the functions Vi,
and V, and their higher derivatives up to the order 3 and 5, respectively. The last
assumption provides the transfer function of the passive aggressor. Finally, the con-
clusion presents the corresponding differential equation of the passive aggressor. The
verification of Theorem 6.2 is done almost automatically using the automatic tactic
TRANS_FUN_2_DIFF_EQ_TAC, which is also developed in our proposed formalization.
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6.2 Formal Analysis of Passive Victim

Based on the 4-7 interconnect circuit, Figure 3 depicts the passive victim model for
analyzing the crosstalk noise and delay. The resistance Ry, is the effective resistance
of the victim driver [32, 33].

V,
1.
Gnd or Vdd
T Rq 4 Ry 5 Rov  Vou

— C1v J— CZV J— C3v

Figure 3: Passive Victim Model [33]

We model the dynamical behaviour, i.e., the modeling differential equation of
the passive victim using the n-order differential equation as follows:

Definition 6.2. Behavioural Specification of Passive Victim
F V Riv Ray Ra Cc Civ Cay.
. . S L L
inlst_pass_victim Ryy Roy Rg Cc Cyy C3y = [0 ; A" 5 B 5 C' ]
l_ v Rlv R2v R'd Cc c1v CZV CBv-
outlst_pass_victim Rq Ryy Roy Cc Ciy Coy C3y =
3o =2 =2 2 2
[T D0 B Fj & |
|_ v V2 Vout Cc Clv C2v CBV Rd R1v R-2v t.
pass_victim_behav_spec Rjy Roy Rqg Cc Ciy Coy Cay Vo Voue t &
diff_eq_n_order 4
(outlst_pass_victim Ryy Ryy Rq Ce Civ Coy Czy) Vour t =
diff_eq_n_order 3
(inlst_pass_victim Ryy Roy Rq Cc Ciy C3y) Vo t

where V5 and Voyue are the input and output voltages, respectively, having data types
R! — R2. The elements A’, B/, ¢/, D/, E/, F’ and G’ of the lists inlst_pass_victim
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and outlst_pass_victim are:

A" = (Rq + Riy)Cc
B’ = RyCcCay(Ra + Riv) + RaR1yCcCiy
C’ = RqR1yR2yCcCi1yCay
D’ = Rq(Cc + C1y + Cov + Cay) + R1y(Cc 4 Cav + Cay) + 2R2yCay
E’ = RqR2yCay(2Cc + 2C1y + 2C2y + Cay) + RiyRoyCay(2C2y + 2Cc + Cay)+
RqR1vC1v(Cc + Coy + Cav) + Ray?Cay®
F’ = RaRi1yR2yC1yCay (2Cc + 2Coy + Cay )+
R2v2C3y? [Ra(Cc + Ciy + Cav) + Riy(Ce + Coy)]
G’ = RqR1vR2v*C1yCay>(Cc + Cav)

We verified the transfer function of the passive victim as follows:

Theorem 6.3. Transfer Function Verification of Passive Victim
I_ v Rlv R-2v Rd Cc Clv CQV C3V v2 Vout S.

0 <Ry NO <Ryy ANO <Ry A

0 <Ciy NO<Cyy NO<C3y NOKC. A

—2
laplace_transform Vo s # 0 A

?234 + ?2s3 + ?252 + B’ﬂs + 77 + T A
zero_initial_conditions Vy Voue A
(V t. differentiable_higher_derivative Vy Vyuy t) A
laplace_exists_higher_deriv V; Voue 8 A
(V t. pass_victim_behav_spec Ryy Roy Ry Cc Ciy Coy Cay Vo Vouy t)
52 —2 —2
laplace_transform Vou S _ S(C/ s?+B s+ A )
=2 —2 —2 —2 =
G s*+F s34+ FE s24D s+ 1

laplace_transform V; s 2

The first nine assumptions present the design requirements for the underlying sys-
tem. The next assumption models the zero initial conditions for the voltage functions
Vo and Vgoui. The next two assumptions provide the differentiability and the Laplace
existence condition for the higher-order derivatives of Vo and Voy: up to the orders
3 and 4, respectively. The last assumption presents the behavioural specification
of the passive victim. Finally, the conclusion of Theorem 6.3 presents its required
transfer function.

Now, we verified the differential equation of the passive victim based on its
transfer function using the following HOL Light theorem:
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Theorem 6.4. Differential Equation Verification of Passive Victim
v Vout V2 R'1v RZV Rd Clv c2v CBv Cc r.

0 <Riy ANO<Ryy ANO<Ry ANOK<C. A

0 < Ciy N O <Cyy NO <Czy A

2
(V s. Re(r) < Re(s) = laplace_transform V; s # I ) A

(V s. Re(r) < Re(s) =

—2 —2 —2 —2 2 2

¢ s+ F s +Es2+Ds+ 1 #6})/\
zero_initial_conditions Vy Voue A
(V t. differentiable_higher_derivative Vy Vou t) A
0 < Re(r) A
(V s. Re(r) < Re(s) = laplace_exists_higher_deriv 2 V, s) A
(V s. Re(r) < Re(s) = laplace_exists_higher_deriv 4 Viu s) A

(

V s. Re(r) < Re(s) =

- 2

e B e
laplace_transform Vous S _ S(C st B s+ A ) >
— —2 —2 —2 —2
G s*+F s3+E s2+D s+ 1

laplace_transform V; s

= (V t. 0 < t = pass_aggressor_behav_spec

Vo Veur Cc Civ Cov Cay Riv Rov Ry t)

The first eleven assumptions of the above theorem are the same as that of The-
orem 6.3. The next assumption ensures that the real part of the Laplace variable
r is always positive. The next two assumptions model the existence condition of
the Laplace transform for the functions Vy, Voue and their higher derivatives up to
the order 3 and 4, respectively. The last assumption provides the transfer function
of the passive victim. Finally, the conclusion presents its corresponding differential
equation. The verification of Theorem 6.4 is done almost automatically using the
automatic tactic TRANS_FUN_2_ DIFF_EQ_TAC.

Finally, the transfer function of the overall system is represented by the following
mathematical equation.

‘/out(s) _ ‘/out(s) % VQ(S) (8)
Vin(s) — Va(s)  Vin(s)
We also verified the above transfer function and its corresponding differential equa-
tion based on our formalization and the details about their verification can be found
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in the proof script [25]. The formal analysis of the 4-7 soft error crosstalk model is
done almost automatically, thanks to our automatic tactics DIFF_EQ_2_TRANS_FUN_
TAC and TRANS_FUN_2_DIFF_EQ_TAC, which are developed as part of the reported
work and illustrate the usefulness of our proposed formalization of the Laplace trans-
form in the analysis of safety-critical systems. The distinguishing feature of The-
orems 6.2 and 6.4 is the relationship between the differential equation, which is
expressed in the time domain, and the corresponding transfer function, which is
expressed in frequency domain. However, Theorems 6.1 and 6.3 verified using our
earlier formalization [38, 27| are completely based on the frequency domain and no
relation with the commonly used differential equation is established. The formally
verified Lerch’s theorem allowed us to transform the problem of solving a differential
equation in time domain to a problem of solving a linear equation in the frequency
domain. This linear equation can be solved to determine constraints on the values
of the components to ensure a low-power and energy efficient designing of the ICs.
Moreover, all the verified theorems are of generic nature, i.e, all the variables and
functions are universally quantified and can thus be specialized to any particular
value for the analysis of a system. Similarly, the high expressiveness of the higher-
order logic enabled us to model the dynamical behaviour of the system, i.e., the
differential equation in its true form and to perform its corresponding analysis.

7 Conclusions

This paper presents a formalization of Lerch’s theorem using the HOL Light theo-
rem prover. This result extends our formalization of the Laplace transform, which
includes the formal definition of the Laplace transform and verification of its various
classical properties such as linearity, frequency shifting, differentiation and integra-
tion in time domain, time shifting, time scaling, modulation and the Laplace trans-
form of a n-order differential equation. Lerch’s theorem describes the uniqueness of
the Laplace transform and thus can be used to find solutions of linear differential
equations in the time domain, which was not possible with our earlier formalization
of the Laplace transform. We used our proposed formalization for formally analyzing
a 4-7 soft error crosstalk model for the nanometer technologies.

In the future, we aim to formally verify the uniqueness of the Fourier transform
using the reported formalization of Lerch’s theorem. The region of integration for
the case of Fourier transform is (—oo,00) [26], whereas, the one in the case of
Laplace is from [0, 00). We can split region of the integration for the integral of the
Fourier transform into two sub-intervals: (—o0,0] and [0,00). The uniqueness of
the first integral can be directly handled by Lerch’s theorem, whereas, for the case
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of (—o0, 0], the integral can be first reflected and then the formally verified Lerch’s
theorem can be used to verify its uniqueness as well. Another future direction is to
use this formalization in our project on system biology [30], for finding the analytical
solutions of the differential equation based reaction kinetic models of the biological
systems.
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BILATERALISM DOES PROVIDE A PROOF THEORETIC
TREATMENT OF CLASSICAL LOGIC (FOR
NON-TECHNICAL REASONS)
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1 Introduction

In [6], Michael Gabbay attempts to refute the claim, believed by many adherers
of Proof-Theoretic Semantics (PTS) [4], that in being harmonious, the bilateral
presentation! of classical natural deduction (ND) ([4]) produces a proof theoretic
“kosher” certificate for classical logic. To the contrary, Gabbay claims that in spite
of being harmonious, bilateralism does not provide a PTS-acceptable justification
of classical logic. I assume here familiarity with Bilateralism, and with the above
mentioned bilateral ND system.

In this short note, I argue that Gabbay’s alleged refutal fails, and the bilateral
ND system mentioned above does justify classical logic from the point of view of PTS.
I would like to stress that this claim, for me, does not constitute an endorsement of
classical logic, that, I believe, should be rejected, though for other reasons, together
with intuitionistic logic.

2 A bilateral bullet

The basis of Gabbay’s refutation of the above mentioned claim is that in spite of
being harmonious, the bilateral ND system is inconsistent. To substantiate this
claim, Gabbay considers a polarised version of the O-ary connective ‘e’ The unilat-
eral version of this connective was introduced in [10]. This connective is paradoxical,

I thank an insistent referee, whose constructive pedantry led to a considerable improvement of the
presentation.
A slight variation of Rumfitt’s original presentation in [12].
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since it has I/FE-rules while still forming an atomic proposition, in contrast to stan-
dard atomic propositions having no I/E-rules internal to the system. A criticism
of e’s “credentials” as a connective can be found in [2]. For the sake of the current
argument, [ will accept ‘e’ as a connective.

Gabbay’s polarised bullet is governed by the following polarised I/FE-rules, re-
garded by Gabbay as bilateral rules. I present the rules in a slightly modified
notation. The meta-variable ¢ ranges over object language formulas.

) T e W
To BB DB (B = (eEy) @

Those rules are clearly harmonious (under Dummett’s original conception of har-
mony [1], namely, the presence of a derivation reduction removing maximal formu-
las); furthermore, those rules are shown by Gabbay as derived rules (in the bilateral
classic ND system) by means of Rumfitt’s structural “bilateral reductio” rules (SR):

[—¢li [l [+l [+eli

+d} _:¢ i +7/) _:¢ i
— T (SR ——p (SR (3)

In those rules, square brackets embrace a discharged assumption, indexed by a dis-
charge index; the latter marks the instance of a rule application discharging the
assumption.

To conclude Gabbay’s argument, he now presents the following derivations, es-
tablishing inconsistency.

[+e]1
- (

[+e]1
+

e

(o) - =

(e L) (e L)
— SRY) SRY)

T (E7) = (oF7) 0

3 Bilateralism and harmony

The following (rhetoric) question immediately poses itself: Are the I/E-rules above
indeed bilateral 1/E-rules (for 4/ —e’)?
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More generally, does an arbitrary marking of premises and conclusions by ‘+/—’
(polarising) constitute legitimate bilateral rules? The negative answer to this ques-
tion, together with a criterion for “proper polarisation”, based on ‘bilateral harmony’
(explained below) constitute the main basis for my rejection of Gabbay’s attack.

The first hint towards a negative answer to the above questions is the observation
of the “suspicious” pair of rules (¢/~) and (e/™), introducing both the acceptance
and the rejection of ‘e’ from the same premises! Similarly, the two pairs of rules
(eE;") and (e E;") conclude both the acceptance and the rejection of the same formula
from identical premises.

No wonder this system produces inconsistency. Inconsistency is built into it to
start with.

So, what is going on here?

If ‘accepting’ and ‘denying’, the primitives of bilateralism underlying polarisa-
tion, deserve their names, no ¢ can have identical grounds for assertion and grounds
for denial, or both asserted and denied conclusion. Recall that grounds, both for
assertion and for denial, are defined in terms (mainly) of the I-rules, based on the
notion of canonical derivations (see [4], Section 5.2.1). Here ‘®’, in contrast to “reg-
ular” atomic sentences, has such grounds.

Avoiding model-theoretic considerations (a methodological point about seman-
tics shared by Gabbay and myself), what can be a yardstick to which such grounds
can be compared? A key concept here is coherence of a bilateral position, introduced
by Restall [11]. A position is a sequent of the form IT = [I" : A], where I' contains the
sentences (formulas) asserted in the position II, while A contains the sentences de-
nied in II. The position II is incoherent in case TNA # (), and is coherent otherwise.
In other words, it is incoherent to assert and deny the same sentence!

It is coherence which underlies the (SR)-rule: if denying ¢ in some context leads
to incoherence, ¢ can only be asserted in that context, and vice versa, if asserting
@ in a context leads to incoherence, ¢ can only be denied in that context.

Gabbay’s polarised rules lead to incoherence, as seen immediately from the ob-
servations above.

So, no arbitrary polarisation of rules can reflect bivalence correctly.

Let me return to harmony. When Dummett first proposed this criterion as a
condition of an ND system to qualify as meaning conferring, he did not think of
bilateral rules. His only concern was what I call the “vertical balance” between
I/E-rules. The latter is indeed captured by the presence of a reduction eliminating
maximal formulas (together with stability).

However, once polarised rules enter the picture, this notion of harmony is no
more adequate. In order for ‘4’ and ‘—’ to capture, respectively, acceptance and
denying, there must be some “horizontal balance” between any pair of (I™) and

1655



FRANCEZ

(I7) for the same connective! Only such a balance can constitute a proof theoretic
justification of the polarisation and make polarisation reflecting properly acceptance
and denial. A formalisation of this horizontal balance is briefly delineated in the
next section.

I have presented such an extended bilateral harmony in [4] (Section 4,4.1.5)
(first presented in [3]). It will be too space consuming to repeat the full details
here, but in the next section some more details are presented; but let me note that
Gabbay’s proposal of bilateral rules for ‘e’ fail to meet this criterion, as hinted by
the above observations, while Rumfitt’s original bilateral classical ND system meets
both vertical and horizontal harmony. As far as the horizontal harmony is concerned,
in a sense it is implicit in [12] for the classical connectives (Rumfitt did not consider
arbitrary bilateral ND-systems as I do). This can be seen from his noticing that in
the presence of his bilateral structural rule, not all the rules of his original system are
needed, and he presents a smaller system still generating classical logic harmoniously.
He sees that introducing a rejection of a conjunction and introducing its acceptance
are tightly related, as are their respective eliminations.

4 Horizontal harmony

The material in this section is a reformulation of an extraction from [3].

In continuation to Gentzen’s remark to the effect that (unilateral) I-rules are self-
justifying, and E-rules are justified by the I-rules by the vertical inversion principle,
one can see the positive I-rules as a definition that should justify also the negative
I-rules. To that end, I introduce a horizontal inversion principle, the definition of
which is based on the form of the positive I-rules.

To simplify, the formulation of the horizontal inversion principle below is for the
case where the positive I/E-rules for a connective originate from some unilateral
ND-system, to be extended into a bilateral one.

A positive rule is combining if it has more than one premise and is splitting oth-
erwise. It is categorical if it does not discharge any assumptions, and is hypothetical
otherwise..

The horizontal inversion principle:

constants with categorical /-rules: Let ‘*’ be any constant.

1. Any denial of a premise of a positive categorical combining I-rule for ‘¥’
is a premise for a negative I-rule of ‘x’.
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Example 1. Conjunction ‘A’ has a positive categorical combining I-rule

+p 49
+(pA1)) (FAD)

Therefore, its negative I-rules are

(Al —Y (—AD)

—(pAY) —(pAY)

For example, the omission of one of those two rules, or a rule in which
both premises of (+AI) are negated in an alleged (—AI) rule — violate the
horizontal balance of the conjunction I-rules.

2. The collection of denials of the premises of a categorical positive splitting
I-rules for ‘x’ are joint premises of a negative I-rule of ‘x’.

Example 2. Disjunction ‘V’ has positive categorical splitting I-rules.

+ +
— (4+V[ —— (+VI
Fovp) Y Tpugy VR
Therefore, its negative I-rule is
—p ¥ (—VI)

—(pVe)

3. The collection of conclusions of the denials of the conclusions of the pos-
itive categorical splitting F-rules for ‘x’ are a joint conclusion of the neg-
ative E-rule for ‘x’.

Example 3. Conjunction has two positive categorical splitting F-rules

+(i21/)) (+AE1) +(f:;¢) (+AE3)

Therefore, its negative I-rule is

—(pA1p) f f
§

(—AE)

4. Any denial of a conclusion of a categorical combining E-rule for ‘«’ is a
conclusion of a negative E-rule for ‘x’.
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The first principle indicates that the negative I-rules of ‘x’ a categorical com-
bining ‘*’ are neither too weak nor too strong relative to the positive I-rules of
‘x”. The second principle assures the same for a categorical splitting logical con-
stant. This balance can be seen as a generalization of (classical) De-Morgan’s
laws, specifically relating negation and the dual pair of conjunction/disjunc-
tion. The other two principles relate the positive and negative E-rules to each
other.

The fact that the required balance between positive and negative rules is a
generalization of De-Morgan’s rules comes as no surprise. This fact just reflects
the connection between the force of denial and top-level negation. The same
holds for the ability to define negation in terms of denial, as done by Rumfitt
in [12]. When defining negation this way, De-Morgan’s rule are imposed by
the horizontal inversion principle merely due to the form of the ‘A’-rules and
‘V’-rules, a form also responsible to their duality as discussed above.

constants with a hypothetical I/FE-rule: The discharge of assumptions
involves an additional technicality, and I skip the details, available in [4] (Sec-
tion 4,4.1.5) or [3].

Definition 1. (bilateral harmony) A bilateral ND-system is bilaterally harmo-
nious iff it satisfies both the vertical? and the horizontal inversion principles.

The notion of ‘bilateral harmony’ is summarized by the following diagram.

(I+ horizontal I_)

inversion

verticallinversion verticallinversion (5)

(E.+) i?orizm?tal (E,)
wmuversion

The arrows in the diagram represent justification (in Dummett’s original sense in the
positive, unilateral case). Note that similar diagrams, but with different orientations
of the arrows, are possible (see [5]). I chose here to consider the (I)-node as the
root to be consistent with Gentzen’s own view (in the unilateral case, of course).

A simple inspection of the positive and negative I-rules for ‘@’ shows that, having
identical premises, they do not meet the horizontal inversion principle and are not
bilaterally harmonious.

2Note that this requires the negative I/E-rules to be vertically harmonious too, not discussed
above.
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This can be seen? as follows. Suppose we take as the point of departure is
Gabbay’s (eI™) in (1):
T —
o (o)

By horizontal inversion from (eI1), we get the following(e~)-rules:

o) =)

By vertical inversion from (eI1), we get the following(eE™)-rules:

+e —e

To (CEN) 5 (eF)
Finally, by horizontal inversion from (e £™) (and vertical inversion from (e/7)), we
ger the following (e F~)-rule:

[+eli [=¢l;
—e ))(( X (_ ° Ei’j)

This is a bilaterally harmonious set of I/E-rules for ‘eo’, essentially differing from
Gabbay’s rules. It certainly does not support Gabbay’s “derivation” in (4).

5 Bilateral tonk

Another argument Gabbay brings up does not depend on the bilateral ‘e’; rather
he considers a bilateral version of Prior’s ‘tonk’, brought forward in [9] as a counter
argument to he view that any ND system can serve as meaning conferring.

The original I/E-rules for ‘tonk’

p tonk ¢
0 (6)

had a devastating effect on the proof system, trivialising it via the following
derivation, that has an irreducible maximal formula.

¥

(tonk E)

¥
————— (tonk I)
p tonk
— (tonk E) (7)

31 thank an anonymous referee who worked out those edtails, that I have initially omitted.
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with the effect that ¢t for any ¢ and .

Consider next a bilateral version of this connective. In a natural polarisation,
the original rules are turned into assertion rules. Gabbay does not present the denial
rules, but a natural choice is the following, which also satisfy horizontal harmony.

+¢ +(p tonk )

74_(90 tork 0) (tonk IT) — (tonk ET) (8)
—p onk I- —(p tonk ) .

(g tonk ) LomF ) =g (tomk B7) (9)

Now we have both +¢F + ¢ and —pk — ).
Now Gabbay comes to ‘a more general problem with harmony and bilateralism’.
He claims the derivation below provides the “missing reduction” for (7).

[+ tonk ¥)1

iy (tonk ET)

(¢
(SR?)

e
+(p tonk 1)

(tonk IT) (SRY)

(i tonk ¥)

+¢ (10)

As noted by Gabbay, this derivation involves two vacuous discharges in both appli-
cations of (SR).

I claim that the derivation (10) does not qualify as a reduction of a maximal
formula. The argument has two parts.

e First, as noted by Gabbay himself, the maximality involved in the derivation
of +1 from +¢ does not vanish; rather it is just “spread out” in the derivation.
It still constitutes a detour and is not canonical. As a result, Gabbay asks that

A bilateralist must show that somehow such uses of SR are not
legitimate.

I claim that there is no need to show that such uses are illegitimate, they just
do not constitute reductions of maximal formulas.

e Furthermore, let us remember that the notion of ‘reduction’ (in the context
of harmony, not just a normalisation step) originates from Prawitz’ inversion
principle [7]:

Let p be an application of an elimination rule that has 1 as con-
clusion. Then, the derivation that justifies the sufficient condition
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[...] for deriving the major premiss of of p, when combined with the
derivations of the minor premises of p (if any), already “contain” a
derivation of 1; the derivation of v is thus obtainable directly from
the given derivations without the addition of p.

In a later paper [8], Prawitz makes the notion of containment in this principle
more precise. I repeat this explication below, adapted to natural deduction
derivations? and to my notation.

— the derivation D is immediately extracted from the set D of derivations if
and only if either

1. D is a derivation in D or a sub-derivation of some derivation in D,
or

2. D is the result of substituting a term for the occurrences of a free
variable in a derivation in D, or

3. D is the result of composing two derivations Dy and Dy in D, that is,
D is the result of replacing some open assumptions ¢ in Dy by Dy,
the latter having ¢ as a conclusion.

— D is contained in a set D of derivations, iff there is a sequence of deriva-
tions D] --- , D), where D], = D, and for each i < n, D] is immediately

extracted from DU{D]--- ,D._,}.

I see no way of understanding ‘contains’ in that principle (as defined above)
as applying to the derivation (10) being contained in a derivation of +¢!

6 Conclusion

I conclude that Gabbay’s attempt to reject the bilateral classical ND presentation
(the polarised rules of which do meet the horizontal harmony criterion) by means
of a bilateral ‘e’ and a bilateral ‘tonk’ - fails. Bilateralism does not constitute an
arbitrary polarisation of I/E-rules. Any such polarisation has to respect coherence
via horizontal harmony.

Acknowledgment
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4Prawitz’s explication is for a more general notion of an argument.
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Abstract

In this paper we determine the complexity of a broad class of problems that
extend the temporal constraint satisfaction problems classified by Bodirsky and
Kara. To be more precise, we study problems Poset-SAT(®) where ® is a given
set of quantifier-free <-formulas. An instance of Poset-SAT(®) then consists of
finitely many variables and constraints on them expressible in ®; the question
is then whether this input can be satisfied in some partial order or not. We
show that every such problem is either NP-complete or in P, depending on the
constraint language ®.

All Poset-SAT problems can be formalized as constraint satisfaction prob-
lems of reducts of the random partial order. We use model-theoretic concepts
and techniques from universal algebra to study these reducts. In the course of
this analysis we establish a dichotomy that we believe is of independent interest
in universal algebra and model theory.
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1 Introduction

1.1 Poset-SAT

Reasoning about temporal knowledge is a common task in various areas of computer
science, for instance in Artificial Intelligence, Scheduling, Computational Linguistics
and Operations Research. A lot of research in those areas only concerns linear models
of time. Knowledge about temporal constraints is then expressed as collections of
relations between time points or time intervals and a typical computational problem
is to determine whether such a collection is satisfied by some linear order. A complete
complexity classification of all such temporal constraint satisfaction problems was
achieved in [13].

However, it has been observed many times that more complex time models are
helpful, for instance in the analysis of concurrent and distributed systems or certain
planning domains. A possible generalisation is to model time by partial orders as
discussed in [24] and [3]. Some cases of the arising satisfiability problems have
already been studied in [20]. We will give a complete classification in this paper.

Speaking more formally, let ® = {¢1, ¢2,..., ¢} be a finite set of quantifier free
<-formulas. Our aim is then to determine the complexity of deciding whether con-
straints expressible in ® can be satisfied by some partial order. This computational
problem will be denoted by Poset-SAT(®) and is defined as follows:

Poset-SAT(®):

INSTANCE: A finite set of variables X = {zj,...,z,} and a formula
U(z1,...,2n) = 1 A ... Ay where each ¢; for 1 < i < [ is obtained from
one of the formulas ¢ in ® by substituting the variables of ¢ by variables from
X.

QUESTION: Is there a partial order (A;<) and an assignment of variables
f:X — Asuch that ¥(f(z1),..., f(xz,)) holds in (A; <)?

Note that in the above definition we can assume without loss of generality that
(A; <) has at most n many elements. Thus every Poset-SAT(®) problem is in NP:
For an input with n many variables, we can “guess” a partial order (A;<) with
|A] < n and an assignment f : X — A and then check in polynomial time if
U(f(z1),..., f(xy)) holds in (A; <) or not. The main result of our paper is to give
a full complexity classification of the Poset-SAT(®) problems, proving the following
dichotomy.

Theorem 1.1. Let ® be a finite set of quantifier-free <-formulas. Then Poset-
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SAT(®) is in P or NP-complete.

The proof of our result is based on a variety of methods and results. A first step
is that we give a description of every Poset-SAT problem as constraint satisfaction
problem over a homogeneous structure, the random partial order.

1.2 The random partial order and its reducts

The notion of homogeneity plays a key role when tackling constraint satisfaction
problems over partial orders or also other classes of structures. A relational struc-
ture is called homogeneous if every isomorphism between finite substructures can
be extended to an automorphism of the entire structure. Countable homogeneous
structures are uniquely determined by the finite structures that embeds into them;
two prominent examples of such structures are the rationals as totally ordered set
(Q; <) (given by the class of linear orders) and the random graph (given by finite
graphs). The random partial order P = (P; <) is defined as the unique countable
homogeneous partial order that embeds all finite partial orders. As the “generic”
order, representing all finite partial orders it is an object that is both of theoretical
and practical interest.

What does this imply for our Poset-SAT(®) problems? Let ® = {¢1,..., ¢}
be a finite set of quantifier free <-formulas. We can associate with ® the structure
Py = (P; Ry, ..., Rg) that we obtain by defining the relations R; = {(a1,...,q;) :
P E ¢i(a1,...,a;)}. Then, as P embeds all finite partial orders, it is straightforward
to see that an input ¢;, (-+-) A+ A ¢, (---) in variables x1,...,x, is accepted by
Poset-SAT(®) if and only if P = Jz1,...,20(Riy(-+-) A -+ A R;,(--+)). Hence
Poset-SAT(®) translates directly to the constraint satisfaction problem (CSP) of
Pg. i.e. the problem of deciding primitive positive sentences in Pg.

Following an established convention from [32] we call a structure whose relations
are all first order definable in P a reduct of P. In this terminology the present article
provides a complexity classification of the CSPs of reducts of the random partial
order. It might seem at first that rephrasing Poset-SAT problems in this way is just
an artificial complication. However this approach has already proven successful in
other similar classification, for instance for the class of linear orders [13], the class
of graphs [16], and the class of leaf structures of binary trees [11]. This relies on
the fact that homogeneous structures are highly symmetric and come with several
pleasant model theoretical properties. In particular homogenous structures in a
finite relational language have quantifier-elimination, i.e. every formula is equivalent
to a quantifier-free formula, and they are w-categorical, i.e. the relations that are
first-order definable are exactly those that are invariant under the action of the
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automorphism group. For background on homogeneous and w-categorical structures
we refer to the survey [26] and the textbook [22].

1.3 Proof strategy

Our proof follows to a large extent the method invented in [16] to study the constraint
satisfaction problems of reducts of the random graph. The first key component to
this strategy is the use of the universal algebraic approach: instead of studying
the reducts themselves, we investigate their polymorphism clones, i.e. the algebras
consisting of all the operations preserving the structure. This approach originally
stems from the study of finite CSPs, where it recently resulted in the proof of the
long standing CSP dichotomy conjecture in [33] and [21].

The other foundation is the usage of Ramsey theory - in our case, a result of
Paoli, Trotter and Walker [29] - and the concept of canonical functions introduced
in [15]. This allows us to systematically investigate the polymorphism clones of
reducts of P, focussing only on operations with very regular behaviour. We remark
that a helpful result has also already been established in the form of the classification
of the closed supergroups of the automorphism group of the random partial order
in [27]. This will be the starting point for our analysis and help to discuss the unary
part of the appearing polymorphism clones.

On a technical level, there is however some novelty in the present proof. It
turned out that all our hardness results can be traced back to the NP-hardness of
the constraint relation Low(x,y, 2) := (z < yAyLlay)V(z < zAyLlzz), we are going
to discuss this part of the proof in Section 6. Using this fact we could avoid tedious
case distinctions that we expected due to the already quite involved proofs in [27].
Similar observations could be also simplify future classification proofs. However we
remark that this fact might be tied to particular properties of the random partial
order; a similar statement does not hold for the random graph [16].

1.4 Overview

This paper has the following structure: In Section 2 we introduce basic notation and
give an introduction to the universal-algebraic approach and canonical functions. In
Section 3 we study the unary part of closed clones containing Aut(P), which will
allow us to reduce several cases to already known complexity classifications. In
Section 4 and 5 we classify the reducts where < and the incomparability relation
1 are pp-definable. In Section 6 we show that all the remaining reducts induce
NP-complete CSPs. In Section 7 we then summarize our results and discuss how
our complexity dichotomy corresponds to a stronger algebraic dichotomy regarding
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the structural properties of reducts of P.

2 Preliminaries

2.1 General notational conventions

In this section we fix some standard terminology and notation. A relational language
T is a set of symbols together with an arity function ar: 7 — N. A relational structure
in language 7 is an object of the form I' = (D; (R") ge,) where D is a set (the domain
of T') and all R" € D% () are relations of arity ar(R) over D. When A and I are two
T-structures, then a homomorphism from A to I' is a mapping A from the domain
of A to the domain of I' such that for all R € 7 and for all (z1,...,z;) € R®
we have h(x1,...,z;) € R''. Injective homomorphisms for which also the converse
implication holds are called embeddings. Bijective embeddings from A onto itself
are called automorphisms of A. When working with relational structures it is often
convenient not to distinguish between a relation and its relational symbol. We will
also do so on several occasions, but this should never cause any confusion.

The relation symbol < will always denote a partial order, i.e. a binary relation
that is reflexive, antisymmetric and transitive. Let < be the corresponding strict
order defined by x < y Az # y. Further x Ly will always denote the incomparability
relation defined by —(z < y) A =(y < z). Sometimes we will write z < y; -y,
for the conjunction of the formulas = < y; for all 1 < ¢ < n. Similarly we will use
xlyy -y, if zly; holds for all 1 < i < n.

2.2 Constraint satisfaction problems

A first-order formula ¢(z1,...,z,) in the language 7 is called primitive positive if it
is of the form Jz1,...,zk (Y1 A -+ Atby,) where 91, ..., 1, are atomic, i.e. of the
form y; = yo, or R(y1,...,Yyn), for not necessarily distinct variables y;.

For a structure I in finite relational language 7, the constraint satisfaction prob-
lem of I, or short CSP(I") is the problem of deciding whether a given primitive
positive sentence is true in I' or not.

We say a relation R is primitively positive definable or pp-definable in I' if there
is a primitive positive formula ¢(z1,...,x,) such that (a1,...,a,) € R if and only
if ¢(ai,...,a,) holds in I'. Then the following observation holds:

Lemma 2.1 (from [23]). Let ' be a relational structure in finite language, and let
I be the structure obtained from T by adding a relation R. If R is primitive positive
definable in T', then CSP(T") and CSP(IV) are polynomial-time equivalent. O
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By (I'),p we denote the set of all primitively positive definable relations on I'.
So for two structures I' and A the problems CSP(I') and CSP(A) have the same
complexity if (I'),, = (A)pp. This means that in our analysis we only have to study
reduct of the random poset up to primitive positive definability.

2.3 Polymorphism clones

Let I' be a relational structure with domain D. By I'" we denote the direct product of
n-copies of I'. This is, we take a structure on D™ with same signature I'. Then for n-
tuples 21, ... () we set that (z(V), ..., 2®)) € R if and only if (xl(l), o ,xgk)) €ER
holds in I" for every coordinate 1 < i < n.

Then an n-ary operation f is called a polymorphism of I" if f is a homomorphism
from I'" to I'. Unary polymorphisms are called endomorphisms. For every relation
R on D we say f preserves R if f is a polymorphism of (D; R). Otherwise we say f
violates R.

For a given structure I' the set of all polymorphisms Pol(I") contains all the pro-
jections 7/ (x1,...,x,) = x; and is closed under composition. Every set of operation
with these properties is called a clone or function clone (cf. [31]). Pol(T") is called the
polymorphism clone of I'. We write Pol(I')(*) for the set of k-ary functions in Pol(T")
and we write End(T") for the monoid consisting of all endomorphisms of I'. The clone
Pol(T") is furthermore closed in the topology of pointwise convergence. In this topol-
ogy, the closure F' of a set of operations F is given by all function f: D*¥ — D, such
that for every finite subset A C D* there is a function g € F with f | A=g¢ | A.
We say a set of operation F' generates an operation g if g is in the smallest closed
clone containing F'.

Now primitive positive definability in w-categorical (and finite) structures can
be characterized by preservation under polymorphisms:

Theorem 2.2 (from [14]). Let I' be an w-categorical structure. Then a relation is
pp-definable in I' if and only if it is preserved by the polymorphisms of T.

Thus, by Lemma 2.1 the complexity of CSP(T") only depend on the polymorphism
clone Pol(I") for w-categorical I'. We finish this section by the following observation
that states that whenever a relation is not pp-definable, this can be witnessed by
polymorphisms of bounded arity.

Theorem 2.3 (from [13]). Let I be a relational structure and let R be a k-ary rela-
tion that is a union of at most m orbits of Aut(I') on D*. IfT' has a polymorphism
f that violates R, then I' also has an at most m-ary polymorphism that violates R.
O
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2.4 Canonical functions and Ramsey theory

As pointed out in the previous section, the complexity of CSP(T") only depends on
Pol(T"). It further turns out that in our analysis of such clones only functions that
are highly symmetric, i.e. canonical, are relevant. We define canonical functions
and explain their usage in this section.

Definition 2.4. Let I" be a structure. Then the type of an n-tuple a = (ay, ..., ay)
in I' is the set of all formulas ¢(z) = ¢(z1,...,z,) such that ¢(a) holds in T'.

In countable w-categorical structure I' two n-tuples have the same type if and
only if they are in the same orbit with respect to Aut(I') acting on the set of n-tuples.

Definition 2.5. Let I' and A be two structures and f a function from the domain
of ' to the domain of A. The behaviour of f is defined as the set of all pairs (p, q),
where p is an n-type of I, ¢ is an n-type of A, and there is a tuple a of type p such
that f(a) is of type q. More generally we define the behaviour of an m-ary function
f as all tuples of types (p1, ..., Pm, q), such that there are tuples a; € p1,...am € pm
such that f(ai,...,am,) € ¢ Whenever the behaviour of f is a total function, i.e.
tuples of the same type are mapped to tuples of the same type, we call f canonical.

Now Ramsey theory allows us to build canonical functions starting from an
arbitrary function. This will simplify our analysis, reducing the task of classi-
fying reducts to a mere combinatorial analysis. Besides its application to CSPs
(e.g. [13], [16], [11]), this method has also been applied many times to the classifi-
cation of first order reducts (e.g. [25], [1], [2]). As it is not needed for our proof we
are going to skip the definition of Ramsey structures - for background on Ramsey
theory we refer to the survey [9]. For Ramsey structures the following holds:

Theorem 2.6 (from [18]). Let I' be an ordered homogeneous Ramsey structure with
domain D and let A be w-categorical with domain F. Then, for every function
f: D" — F, there is a function g: D™ — F, such that g € Aut(A) o f o (Aut(I'))?
and g is canonical from T to A. O

The random partial order P = (P; <) itself is not a Ramsey structure. However,
it is well known that there exists an expansion of IP in finite language that is Ramsey:

Theorem 2.7 (from [29]). Let (P;<,<) be the homogeneous structures embedding
all structures (A; <,=<) such that (A;<) is a partial order and < is an extension
of < to a linear order. Then (P;<) is isomorphic to the random partial order and
(P; <, <) has the Ramsey property. O

1669



KOMPATSCHER AND VAN PHAM

Furthermore also every expansion of (P;<,<) by finitely many constants is a
Ramsey structure. From that and Theorem 2.6 we draw the following conclusion for
the random partial order:

Lemma 2.8. Let ci,...,c, be elements of P and let f: P™ — P be an arbitrary
function. Then there is a function g: P™ — P, such that

e g is canonical from (P;<,<,c1,...,¢,) to P,

e g€ Aut(P)o fo(Aut(P; <, <,¢1,...,¢n))™. O

In practice we will use Lemma 2.8 as follows: Assume that a polymorphism
clone Pol(I") does not preserve a certain relation R. This can be witnessed by a
function f € Pol(I') on a finite set {ci,...,¢,}. Now Lemma 2.8 guarantees that
there is a function g € Pol(T") witnessing it, which is furthermore canonical from
(P;<,<,¢1y...,¢p) to P

2.5 Model-complete cores

Let A and T be to structures with the same signature. We say A is homomorphically
equivalent to I if there is a homomorphisms from A to I' and a homomorphism from
I' to A. Since homomorphisms preserve primitive positive formulas, the constraint
satisfaction problems CSP(A) and CSP(I") encode the same computational problem
for homomorphically equivalent structures A and I'.

A structure A is called a model-complete core if its endomorphism monoid is
equal to the topological closure of the automorphism group. Now every CSP with
w-categorical template can be reformulated as a CSP on a template with model-
complete core by the following theorem:

Theorem 2.9 (from [7]). Every w-categorical structure I' is homomorphically equiv-
alent to a model-complete core which is unique up to isomorphism. This core is
w-categorical or finite. O

Thus model-complete cores can be thought of as “minimal” representants of a
class of homomorphic equivalent structures. To identify the model-complete core
of T' can be a very helpful simplification in analysing the complexity of CSP(T).
Furthermore, by the following theorem of Bodirsky we can add constants to a model-
complete core without increasing the complexity (this is however not true for general
structures).

Theorem 2.10 (from [7]). Let I be a model-complete w-categorical or finite core,
and let ¢ be an element of T'. Then CSP(I") and CSP(T', ¢) have the same complezity,
up to polynomial-time many-one reductions. O
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2.6 Primitive positive interpretations

A further tool to compare the complexity of CSPs of structures, that generalises
the concept of pp-definitions, to structures on possibly different domains are pp-
interpretations. We say A is pp-interpretable in I if there is a n > 1 and a partial
map I : [ — A such that

e [ is surjective,

e the domain of [ is pp-definable in I,

e the preimage of the equality relation in A is pp-definable in T,

e the preimage of every relation in A is pp-definable in T'.

Then the following result holds:

Theorem 2.11 (see [8]). If A is pp-interpretable in I' then CSP(A) can be reduced
to CSP(I") in polynomial time.

In summary, for w-categorical and finite structures A and I'' we have a polynomial
reduction from CSP(A) to CSP(T") if

1. A is the model-complete core of I.

2. I' is a model-complete core and A is obtained by adding finitely many constants

to the signature of T'.

3. A is pp-interpretable in I.

In our proof we are going to use the reductions (1)-(3) to prove NP-hardness. In
particular we are going to use the NP-complete problem NAE-SAT (see [30]), which
can be written as CSP({0,1}; NAE, 0, 1) with NAE := {0,1}?\ {(0,0,0),(1,1,1)}.
For the remaining cases we are going to use the method of canonical functions to
obtain structural information about the underlying reducts and show tractability.
This dichotomy corresponds also to an algebraic dichotomy, which we will discuss
in the summary in Section 7.2.

3 A pre-classification by model-complete cores

In this section we start our analysis of reducts of the random partial order P = (P; <
). Our aim is to determine the model-complete core for every reduct I' of P, therefore
we are going to study the endomorphism monoids End(I') O Aut(P). Part of the
work was already done in [27] where all the automorphism groups Aut(I') O Aut(P)
were determined. Whenever our proof just replicates arguments therefrom, we are
going to directly refer to the corresponding proof steps in [27].

We start by giving descriptions of the group reducts. If we turn the partial order
P upside-down, then the obtained partial order is again isomorphic to P. Hence
there exists a bijection J: P — P such that for all z,y € P we have z < y if and
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only if J (y) <3 (z). By the homogeneity of P it is easy to see that the monoid
generated by J and Aut(IP) does not depend on the choice of the bijection J.

The class of all finite structures (A4; <, F'), where (A; <) is a partial order and
F' is an upwards closed set, is an amalgamation class. It induces a homogenous
structure that is isomorphic to P with an additional unary relation F. We say F
is a random filter on P. Note that F' and I = P\ F are both isomorphic to the
random partial order. Furthermore for every pair x € I and y € F' either x < y or
x_Ly holds.

We define a new order relation <p on by setting z <r y if and only if

o x.yc Fand z <y or,

e x.ye Il and x < y or,

e xcF yelandzly.

It is shown in [27] that the resulting structure (P;<p) is isomorphic to (P, <).
Let us fix a random filter F and a function O: P — P that maps (P; <) isomorphi-
cally to (P, <p). Using the homogeneity of P one can prove that the smallest closed
group generated by O and Aut(P) does not depend on the choice of the random
filter F.

For B C Sym(P), let (B) denote the smallest closed subgroup of Sym(P) con-
taining B. For brevity, when it is clear we are discussing supergroups of Aut(P), we
may abuse notation and write (B) to mean (B U Aut(P)).

Theorem 3.1 (Theorem 1 from [27]). Let T be a reduct of P. Then Aut(T") 2 Aut(P)
is equal to one of the five groups Aut(P), (1), (D), (I, O) or Sym(P). O

In this section we are going to show the following extension of Theorem 3.1:

Proposition 3.2. Let I" be a reduct of P. Then for End(I") at least one of the
following cases applies:
1. End(T") contains a constant function,
2. End(T") contains a function g that preserves < and maps P onto a chain,
3. End(T") contains a function g, that preserves L and maps P onto an antichain,
4. The automorphism group Aut(T') is dense in End(I"), i.e. T is a model-
complete core. So by the classification in Theorem 3.1, End(I") is the topologi-
cal closure of Aut(PP), (1), (O), (I, O) or Sym(P) in the space of all functions
PP,

Before we start with the proof of Proposition 3.2 we want to point out its rele-
vance for the complexity analysis of the CSPs on reducts of P. Constraint satisfaction
problems on reducts of (Q; <) are called temporal constraint satisfaction problems.
The CSPs on reducts of a countable set with a predicate for equality (w;=) are
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called equality satisfaction problems. For both classes a full complexity dichotomy
is known, see [13] and[12]. As a corollary of Proposition 3.2 we get the following
pre-classification of CSPs reducing all the cases where I' is not a model-complete
core to temporal or equality satisfaction problems:

Corollary 3.3. Let I' be a reduct of P. Then one of the following holds
1. The model-complete core of T' has one element and CSP(T") is in P;
2. The model-complete core of T is a reduct of (w;=),
so CSP(I') is equal to an equality satisfaction problem;
3. The model-complete core of T is a reduct of (Q; <),
so CSP(T") is equal to a temporal constraint satisfaction problem;
4. End(T") is the topological closure of Aut(P), (1), (D) or (I, D).

Proof. If there is a constant function in End(T"), then I" is homomorphically equiv-
alent to a one-element structure. In this case, an instance of CSP(I") is accepted if
and only if it contains no relation symbol that corresponds to an empty relation.
Hence CSP(T) is in P. So let us from now on assume that End(I") contain no constant
function.

Assume that g, € End(T"). Since g preserves L, the image of (P;_L) under g;
is isomorphic to a countable antichain, or in other word, a countable set w with a
predicate for inequality (w;#). Thus, for every reduct of ' the image g, (I') can be
seen as a reduct of (w; #). Now clearly I and g, (I') are homomorphically equivalent.
It is shown in [12] that every reduct of (w;#) without constant endomorphisms is a
model-complete core. So we are in the second case.

Now assume that g« € End(T") but g; ¢ End(T"). Since g< preserves < and is
a chain, the image of (P;<) under g. has to be isomorphic to the rational order
(Q; <). Thus for every reduct of I' the image g-(I') can be seen as a reduct of Q.
Now clearly I and g-(I") are homomorphically equivalent. It is shown in [13] that
the model-complete core of every reduct of (Q, <) is either trivial, definable in (w, #)
or the reduct itself. So we are in the third case.

Note that also in the case where End(I') = Sym(P) we have that e; € End(I).
So by Proposition 3.2 we are only left with the cases where End(T") is the topological
closure of Aut(P), (1), (O) or (I, D). O

Let us define the following relations on P:

Betw(z,y,2) =(x <yAy<z)V(z<yAy<z).
Cycl(z,y,2) =(x <yANy<z)V(y<zAz<z)V(z<zAz<y)V
(x<yANzlay)V(y<zAzlyz)V(z<zAylzz).
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Par(z,y,2) ==(x <yz Aylz)V(y<zzAylz)V(z <zyAzly)V
(x>yzANylz)V(y>zzAylz)V(z>zyANaxly)V
(zlyANylzAylz).

Sep(z,y, 2,t) :=(Cycl(x,y, z) A Cycl(y, z,t) A Cycl(z,y,t) A Cycl(z, z,t))V
(Cycl(z,y,z) A Cycl(t, z,y) A Cycl(t,y, z) A Cycl(t, z, x)).

In Lemma 3.5 we are going to give a description of the monoids (1), (O) and (J, O)
as endomorphism monoids with the help of the above relations. We remark that
Cycl and Par describes the orbits of triples under (©) and Sep describes the orbit
of a linearly ordered 4-tuple under ({, O).

Lemma 3.4. The incomparability relation L is pp-definable in (P; <, Cycl) and Par
is pp-definable in (P;Cycl).

Proof. To proof the first part of the lemma, let ¢(x,y,a,b,c,d) by the following
formula:

r<a<chzr<b<dAy<cAy<dACycl(z, a,y) A Cycl(z,b,y)
A Cycl(y, ¢,b) A Cycl(y, d, a) A Cycl(b, d, c) A Cycl(a, ¢, d).

We claim that z_ly is equivalent to Ja,b,c,d ¥(z,y,a,b,c,d). It is not hard to
verify that x Ly implies Ja, b, ¢,d ¥ (x,y,a,b,c,d). For the other direction note that
¥(x,y,a,b,c,d) implies that x # y because Cycl(z, a,y) is part of the conjunction
1.

Let us first assume that = < y and 9(z,y,a,b,c,d) holds for some elements
a,b,c,d € P. Then Cycl(z,a,y) implies that a < y, symmetrically we have b < y.
Since y < ¢,d we have that a < d and b < ¢. Then Cycl(b, d, ¢) implies d < ¢ and
Cycl(a, ¢,d) implies ¢ < d, which is a contradiction.

Now assume that y < x and ¢(z,y, a, b, ¢, d) holds for some elements a, b, c,d € P.
Then we have y < a,b by the transitivity of the order. Then Cycl(y, ¢, b) implies
¢ < b and Cycl(y,d, a) implies d < a. But this leads to the contradiction a < ¢ < b
and b < d < a.

For the second part of the lemma let s, € P be two elements with s < ¢.
Then the set X = {& € P : s < & < t} is pp-definable in (P;Cycl,s,t) by the
formula ¢(x) := Cycl(s,z,t). By a back-and-forth argument one can show the two
structures (X; <) and (P; <) are isomorphic. The order relation, restricted to X is
also pp-definable in (P;Cycl, s,t) by the equivalence

y <|x z < ¢(x) A g(z) A Cycl(y, 2,t).
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Since L is pp-definable in (P;<,Cycl), we have that its restriction to X has
a pp-definition in (P;Cycl,s,t). Therefore also the relation R = {(z,y,2) € X3 :
xlyAxlzAzly}is pp-definable in (P; Cycl, s,t). Let 9(s,t,u, v, w) be a primitive
positive formula defining R.

We claim that 3z, y ¥ (x, y, u, v, w) is equivalent to (u, v, w) € Par. Let (u,v,w) €
Par. The relation Par describes the orbit of a 3-element antichain under the action
of () € End(P; Cycl). So we can assume that (u,v,w) is a 3-antichain, otherwise
we take an image under a suitable function form (). Now let us take elements s < ¢
such that s < wvw and wvw < t. Then clearly (s, t, u,v,w) has to hold.

Conversely let (s,t,u,v,w) be a tuple such that (s, t,u,v,w) holds. We can
assume that s < t (otherwise we take the image of (s,t,u,v,w) under a suitable
function in (O)). By what we proved above, (u,v,w) is antichain, hence it satisfies
Par. O

Lemma 3.5. -
1. End(P; <, 1) = Aut(P)
2. End(P;Betw, 1) = (])

(
3. End(P; Cycl) = (O)
4. End(P;Sep) = (1, 0)

Proof.

1. Clearly Aut(P) C End(P; <, L). For the other inclusion let f € End(P; <, 1).
Let A C P be an arbitrary finite set. The restriction of f to a finite subset
A C P is an isomorphism between posets. By the homogeneity of P there is
an automorphism a € Aut(P) such that f [ A=« [ A.

2. Since ] preserves Betw and L, we know that () C End(P;Betw, L) holds.
For the opposite inclusion let f € End(P;Betw, L). If f preserves <, then
f € End(P;<, 1) and we are done. Otherwise there is a pair of elements
c1 < cg with f(c1) > f(c2). Let di < dg be an other pair of points in P. Then
there are a1,as € P such that ¢; < ¢ < a1 < ag and di < dg < a1 < as.
Since f preserves Betw, f(a1) > f(a2) holds and hence also f(d1) > f(dz2). So
f inverts the order, while preserving L. Therefore § of € End(P;<,1). We

conclude that f € ().

3. Tt is easy to see that (O) C End(P;Cycl). So let f € End(P;Cycl). Clearly
f is injective and preserves also the relation Cycl'(z,y, 2) := Cycl(y, z, 2). By
Lemma 3.4, f also preserves the relation Par. It follows that End(P;Cycl)
also preserves the negation of Cycl. In other words, f is a self-embedding of
(P; Cycl). So, when restricted to a finite A C P, f is a partial isomorphism. By

the results in [28] we know that (P;Cycl) is a homogeneous structure. Hence
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for every finite A C P we find an automorphism a € Aut(P; Cycl) = (O) such
that f | A=a | A.

4. Let f € End(P;Sep). We claim that either f or  of preserves Cycl. If we

can prove our claim we are done by (3). First of all note that Sep(zx,y, z,u)
implies Cycl(z,y, z) +» Cycl(y, z, u).
Without loss of generality we can assume that there are elements x,y,z € P
with Cycl(z,y, z) and Cycl(f(z), f(y), f(2)); otherwise we look at ] of instead
of f. Let (r,s,t) be arbitrary tuple satisfying Cycl. We can always find
elements a < b < ¢ in P that are incomparable with all entries of (z,y, z) and
(r,s,t). Further we can choose elements u,v € P that are incomparable with
(@, b, c) such that z < v < v and Sep(z,y, 2, u) A Sep(y, z, u,v) holds. This can
be done by a case distinction and is left to the reader. By construction we
have

Sep(z,y, z,u) A Sep(y, z,u,v) A Sep(z, u,v,a) A Sep(u, v, a,b) A Sep(v, a, b, c).

So we have that (f(z), f(y), f(2)) € Cycl if and only if (f(a), f(b), f(c)) €
Cycl. Repeating the same argument for (7, s,t) gives us that (f(r), f(s), f(t)) €
Cycl. So f preserves Cycl.

O

Now we can return to the actual proof of Proposition 3.2. Recall that we obtain
an ordered homogeneous Ramsey structure (P;<,<) given by the class of finite
structures (A; <, <), where (A; <) is a partial order on A and < an extension of <
to a total order. We can regard this structure to be an expansion of P by a total
order. By Lemma 2.8 the following holds. Let g: P — P be an arbitrary function
and c1,...,c, € P be any points. Then there exists a function f: P — P such that

1. f € Aut(P) o g o Aut(P).

2. g(¢i) = f(¢) fori=1,...n.

3. Regarded as a function from (P;<,<,¢) to (P;<), f is a canonical function.
Let T" be a reduct of P. We are going to study all feasible behaviours of a canonical
function f : (P;<,<,¢) — (P;<) when f € End(I'). Note that the behaviour
of such f only depends on the behaviour on the 2-types because (P;<,<,¢) is
homogeneous and its signature contains at most 2-ary relation symbols. Since there
are only finitely many 2-types, the study of all possible behaviours of such canonical
functions is a combinatorial problem. We introduce the following notation:

Notation 3.6. Let A, B C P be definable subsets of (P; <, <, ¢) and let ¢1(z,y), ...,
¢n(x,y) be formulas. We then let pa ¢, . 4, (z,y) denote the (partial) type de-
termined by the formula x € AANy € BA ¢1(x,y) A... A ¢p(x,y). Using this
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notation, we can describe the 2-types of (P;<,<,¢). They are all of the form
pxvew = {(a,b) € P> :a € X,b € Y,¢(a,b) and ¢(a,b)}, where X and Y are
l-orbits of Aut(P;<,<,¢), ¢ € {=,<,>, L} and ¢ € {=,<,>}. For a definable
subset A of (P;<,<,¢) and functions f and g we are going to say that f behaves
like g on A, if the restriction of their behaviour to all types involving only elements
of A is equal.

If X and Y are two subsets of P we write XJ<‘Y if there are pairs (z,y), (¢/,y') €
X x Y with < y and 2’ Ly’. When it is convenient for us we will abuse notation
and write ¢ to describe the set containing all entries of the tuple c.

Observation 3.7. The structure (P; <, <, ¢) is homogeneous. If X is an 1-orbit of
Aut(P; <, <, ¢) with infinitely many elements, we claim that the induced substruc-
ture (X; <, <) is isomorphic to (P;<,<). From the homogeneity of (P; <, <,¢) it
follows that also (X; <, <) is homogeneous. So to prove the claim, we only need
to show that (X; <, <) embeds all finite linearly extended partial orders (A4; <, <).
Note that the type of the elements x of X is completely determined by a conjunc-
tion ¢(x,¢) of formulas of the form = < ¢;, x > ¢, xleg Ax < ¢, xLep AT = cp.
Now if some extended partial order (A; <, <) would not embed into (X; <, <), this
would imply that the structure (A U ¢; <, <) with ¢(a,c¢) for all a € A is not an
extended partial order. However it is not hard to see that this only happens if
already (A;<,<) or (¢;<,<) is not a linearly extended extended partial order -
contradiction.

Similarly, if X and Y are l-orbit of (P;<,<,¢) such that X iY holds, then
one can show that X UY is isomorphic to (P; <) with Y being a random filter. By
X <Y« 3drxeX,yeY :x<ywegetapartial order on the 1-orbits of (P; <, <, ¢)
(cf. Lemma 18 of [27]). But note that the 1-orbits of (P; <, <, ¢) are not necessarily
linearly ordered by <: There can be infinite 1-orbits X, Y and (z,y), (2/,y') € X XY
with z <y, Ly and v/ < 2/, 2/ Ly .

In the following lemmas let I be always be a reduct of P and let f € End(T") be
a canonical function from (P; <, <,¢) to (P;<).

Lemma 3.8. Let X be a 1-orbit of Aut(P; <, <,¢) with infinitely many elements.
Then f behaves like id or § on X, otherwise End(T") contains a constant function,
g< or gl

Proof. Note that (X; <, <) is isomorphic to (P;<,<). Then the statement follows
from the same arguments as in Lemma 8 of [27]. O

Lemma 3.9. Let X,Y two infinite 1-orbits of Aut(P; <, <,¢) with XJ<‘Y. Assume
f behaves like id on X. Then f behaves like id or Ox on X UY, otherwise End(T")
contains a constant function, g« or g, .
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Proof. Since X J<‘Y there are at most three types of pairs in X x Y, namely px y <,
px,y,1,< and pxy | ». Assume that f does not contains a constant function, g or
g1. Note that the union of X and Y is isomorphic to P with X being a random
filter of X UY. By following the arguments of Lemma 22 in [27] one can show that
we only have the two possibilities that

L. f(pxyv,<) =p<and f(pxy1,<)=pL or

2. fpxyy,<) =p1 and f(px,y,1,<) = P>
By Lemma 3.8 we may assume that f behaves like id or J on Y. But if f behaves
like J on Y, the image of y1,y2 € Y and z € X with < y; < y2, zLy; and z < yo
would be a non partially ordered set. So if the type px )y, | is empty, f behaves
like 7d or Ox on X UY and we are done.

If px,y,1 - is not empty, there are z € X and y € Y with z > y and x1ly. We
claim that in this case f(pxy,1,~) = f(px,y,1,«). We only prove this claim for (1),
the proof for (2) is the same.

Assume that f(pxy.is) = p<. Then let 2/ € X be an element such that
y < 2’ and x < 2’ and y1a’. The fact that such an element indeed exists can be
verified by checking that extension of {z,y} U ¢ by such an element 2’ still lies in
the age of (P; <, <, ¢). By our assumption we then have f(z) < f(2') < f(y), which
contradicts to f(x)Lf(y).

Now assume that f(pxy,1 ) = p>. Thenlet 2’ € X be such that z < y < 2’ and
x <y and ' Lzy. Again the fact that z’ exists can be verified by the homogeneity
of (P;<,<,¢). Then f(z) < f(y) < f(«'), which contradicts to f(z')Lf(z'). O

Lemma 3.10. FEither f behaves like id or ] on every single 1-orbit of Aut(P; <, <, ¢)
or End(T") contains a constant function, g« or g, .

Proof. For every two infinite orbits X, Y of Aut(P; <, <, ¢) such that X <Y there is
a infinite orbit Z with X J<‘Z and Z J<‘Y. For every two infinite orbits X LY there is
an infinite orbit Z with X < Z and Y < Z. So this statement holds by Lemma 3.9.
(cf. Lemma 23 of [27]) O

Lemma 3.11. Assume End(I') does not contains constant functions, g« or g, .
Then there is a g € (©,1) NEnd(T") such that g o f is canonical from (P;<,<,¢) to
(P; <) and behaves like id on every set (P \ ¢) U {c}, with c € ¢.

Proof. By Lemma 3.10, f behaves like id or ] on every infinite orbit. Without loss
of generality we can assume that the first case holds, otherwise consider { of.

Let XZY, Y2ZZ and X2Z or X < Z. If f behaves like id on X UY and
Y U Z it also has to behave like id on X U Z; otherwise the image of a triple
(r,y,2) € X XY x Z with < y < z would not be partially ordered. Let X < Z,
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Y < Z and X 1Z. Again, if f behaves like id on X UY and Y U Z it also has to
behave like id on X U Z, otherwise we get a contradiction.

By Lemma 3.9 f either behaves like ¢d or like Ox on the union of two orbits
XJ<‘Y. In the second case © € End(T"). Theset A={z € P:y <aVylzforall yec
f(Y)} is a union of orbits of Aut(P;<,<,¢) and a random filter of P. So 04 of
is canonical and behaves like id on X UY. Repeating this step finitely many times
gives us a function g € (O) such that g o f behaves like id on the union of infinite
orbits, by the observations in the paragraph above.

It is only left to show that g o f behaves like id between a given constant ¢ in ¢
and an infinite orbit X. Assume for example that ¢ < X and go f(pe x,<) = p1. Let
A C P with a € A. By homogeneity of P we find an automorphism of P that maps
a to c and all points that are greater than a to X. If we then apply go f and repeat
this process at most |A|-times we can map A to an antichain. Thus ¢g; € End(I)
which contradicts to our assumption.

Similarly all other cases where g o f does not behave like id between ¢ and X
contradict our assumptions. We leave the proof to the reader. Hence g o f behaves
like id everywhere except on c. O

Now we are ready to proof the main result of the section.

Proof of Proposition 3.2. Let I' be a reduct of P such that End(T") does not contains
constant functions, g« or g;. We show that then End(T") is equal to Aut(P), (]),
(O) or (I, 0).

Flrst assume that End(I") contains a non injective function. This can be wit-
nessed by constants ¢; # ¢ and a function f € End(I") with f(c1) = f(c2) that is
canonical as function f: (P;<,<,c1,c2) = (P;<). By Lemma 3.11 we can assume
that f behaves like id everywhere except from ¢y, co. But this is not possible, since
there is a point in @ € P with a_Lc; but —~(aLlcy). Since f(c1) = f(c2) either < or L
is violated, which contradicts to f behaving like id everywhere except on {ci,ca}.
So from now on let End(I") only contain injective functions.

Assume End(I") violates Sep. This can also be witnessed by a canonical function
f:(P;<,<,¢) = (P; <) such that ¢ € Sep but f(¢) ¢ Sep. By Lemma 3.11 we can
assume that f behaves like id on every set (P\c)U{c}, with ¢ € ¢. If there are ¢; < ¢;
with f(c;)Lf(cj) it is easy to see that End(I") generates g which contradicts to our
assumptions. If there are ¢; < ¢; or ¢;Le; with f(¢;) > f(cj) let a be an element
of (P \ ¢) with a < ¢; and a_lc;. Then the image of a,¢;, ¢; under f induces a non
partially ordered structure - contradiction.

So End(T) preserves Sep. By Lemma 3.5 we know that End(T') C (§,0). If
End(I") violates Cycl and Betw or Cycl and L we can proof as in the paragraph
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above that End(T") = (J, ©). Similarly, if End(T") preserves Cycl but violates Betw
or L we can show that End(I") = (O). If End(T") preserves Betw and L but violates
Cycl, then End(T") = (}). Finally, if End(T") preserves Betw, | and Cycl we have
End(T") = Aut(P). O

4 The case where < and 1 are pp-definable

Throughout the remaining parts of this paper we are going to study the complexity
of CSP(I") for reducts I' of P that are model-complete cores. We start with the case
where End(T") is the topological closure of Aut(IP). In this case the two relations <
and 1 are pp-definable by Theorem 2.3. In the following we are going to discuss
some of the CSPs that can appear then: In Section 4.1 we describe two classes of
tractable problems. In Section 4.2 we show that whenever Low(z,y,z) = (z <
y A zLlxy)V (r < z A ylxz) is pp-definable we have an NP-complete CSP. As we
will prove later on in Section 5 these are in fact the only two cases that can appear.

Observation 4.1. The binary relation xiy defined by « < y V Ly is equivalent
to the primitive positive formula 3z (z < y A z_Lx). Hence xiy is pp-definable in I.

4.1 Horn tractable CSPs given by e. and e<

By e« we denote an embedding of the structure (P;<)? into (P; <) and by e< we
denote an embedding of (P;<)? into (P; <) (using the homogeneity of the random
partial order it is not hard to verify that such maps indeed exists). Both the maps e~
and e< are canonical from (P;<)? — (P; <), we can even pick them to be canonical
from (P;<, <)% — (P; <). They have the following behaviour on binary types:

e« |= < > 1 e<|= < > 1
== 1 1 1 == < > 1
< |61l < 1L 1 << < 1 10
> 1L 4L > 1 > 1> 1L > 1
S e e S e e e

We will show in this section that if one of them is a polymorphisms of I', then
the problem CSP(T") is tractable. In both cases CSP(I') belongs to the class of
Horn-tractable problems described in [10].

Let A and A be relational structures of the same signature. We say a map
h: A — Ais a strong homomorphism if T € R > h(Z) € R. By A we denote the
expansion of A that contains the negation —R for every R is in A.
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Theorem 4.2 (from [10]). Let A be an w-categorical structure and let I' be a reduct

A

of A. Suppose CSP(A) is tractable. If T' has a polymorphism that is a strong
homomorphism from A? to A, then also T' is tractable. O

By definition e is a strong homomorphism from (P;<)? — (P;<) and e< s
a strong homomorphism from (P;<)? — (P;<). Let # respectively £ denote the
negation of the order relation < respectively <. One can see that every input to
CSP(P;<,¢) and CSP(P; <, L) is accepted as long as it does not contradict to
the transitivity of < respectively <. But this can be checked in polynomial time,
thus the two problems are tractable. So by Theorem 4.2 every template I' with
polymorphism e. or e< gives us a tractable problem.

In addition we can also give a syntactic characterisation of these tractable prob-
lems via Horn formulas, we refer also to [10] for the proof.

Proposition 4.3. Let I' be a reduct of P. Suppose that e< € Pol(I'). Then CSP(I")
is tractable and every relation in T is equivalent to Horn formula in (P;<):

Tiy S Tjyp NTiy < Ty N-o o Ny, S Ty, — Ty < Xy OT

l‘l’lSl‘jl/\l'iQ§$j2A"'A$ik§$jk—>J_

Suppose that e« € Pol(I'). Then CSP(I') is tractable and every relation in I' is
equivalent to a Horn formula in (P; <), i.e. a formula of the form:

Tiyp < XTjy NXjy 2 Tjp A= A Xy, g T4y, — Tippr k41 Tjpyq OT

Ty < XTjy NXjy 2 Tjp A= A Xy, g X5y, — 1,

where <; € {<,=} foralli=1,...,k+1. O

4.2 The NP-hardness of Low
Let Low be the ternary relation defined by
Low(z,y,2) == (x <y Azlzy)V(z < zAylzxz).

It is not hard to see that L and < are pp-definable in Low, hence (IP; Low) is a
model-complete core with endomorphism monoid Aut(PP). In this section we prove
the NP-hardness of CSP(P;Low).

Lemma 4.4. Let us define the relations

Abv(z,y,z) :=(x >y ANzylz)V(z >z Azxzly)
U(z,y,2) =y <zVz<z)A(ylz)

Then Abv and U are pp-definable in Low.
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Proof. Note that the formula ¢(z,y, z,v) := Ju (uLv ALow(u,y, z) A Low(y, z,v) A
Low(z, x,v)) holds if and only if v Lx and y.L z, y is smaller than exactly one element
of {x,v}, z is smaller than exactly one element of {z,v}, and v is not greater than
both z and y. With that in mind one can see that Jvi,ve (¢(z,y, 2, v1)Ap(x, Y, v2, 2))
is equivalent to Abv(z,y, z) and Jv ¢(z,vy, z,v) is equivalent to U(z,y, 2). O

Proposition 4.5. Let a,b € P with alb. There is a pp-interpretation of the struc-
ture ({0,1}; NAE,0,1) in (P;Low,a,b). Thus CSP(P;Low) is NP-hard.

Proof. Let D :={x € P: Low(z,a,b)},Dy:={x €D :x<a},Dy:={x €D :zx<
b}. Note that Dy L D;. Let I : D — {0,1} be given by:

0 if D
I(z) := et
1 ifxe Dy

Clearly the domain D of I is pp-definable in (P;Low,a,b). Since the order
relation < is pp-definable in Low also the sets Dy and D; are pp-definable. Let
R={(z,y,z,t) e P*: (z>yVa>zVe>t)Ay#zAy#tAz#th We claim
that the relation R is pp-definable in Low. Observe that (z,y, z,t) € R is equivalent
to

Ju,v (Abv(z,u,v) NU(z,y,u) NU(x,z,u) NU(x, t,v) Ny # 2z ANy #t ANz #t).

Inequality is pp-definable in Low by the fact that (P; Low) is a model-complete core.
Therefore R is pp-definable in Low by Lemma 4.4. By the definition of R we have
that I(cy,c2,c3) € NAE if and only if (a,c1,c2,c3) € R and (b, ¢1,¢2,¢3) € R. Thus
the preimage of NAE is pp-definable in (P; Low, a,b). O

5 Violating the relation Low

We saw in Proposition 4.3 that CSP(T") is tractable if e« or e< is a polymorphism of
I'. By Proposition 4.5 we know that CSP(I") is NP-complete if Low is pp-definable
in I'. In this section we are going to show that these results already cover all possible
reducts where < and | are pp-definable.

Proposition 5.1. Let I' be a reduct of P such that L and < are pp-definable in T'.
Then Low is not pp-definable in T if and only if Pol(T') contains one of the functions
e< ore<.

Proof outline. Note that by Theorem 2.3, Low is not pp-definable in I' if and only
if there is a binary g € Pol(I') violating Low. In other words, there are tuples
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(a,b,c) € Low and (a’,V/,¢') € Low, such that (g(a,a’),g(b,b'),g(c,d)) ¢ Low.
Without loss of generality we can assume that a < bAabLc. Then a’ < ¢ Aa’d LY has
to hold, otherwise this would contradict to the fact that < and L are preserved under
Pol(T"). By the homogeneity of P there is an automorphism 5 € Aut(I") mapping a
to a’, b to ¢ and ¢ to b/. Let us define the polymorphism f(z,y) := g(x, B(y)).

Then we either have f(a,a) < f(b,c) A f(a,a) < f(e,b) or f(a,a)Lf(b,c) A
f(a,a)Lf(c,b). Only these two cases appear since f preserves i and 1, see Observa-
tion 4.1. Furthermore we can assume that a < b < ¢; otherwise, by the homogeneity
of P, we can find an automorphism o € Aut(PP) such that a(a) < a(b) < a(c). Then
we consider the map (z,y) — f(a™!(x),a"1(y)) with constants a(a), a(b) and a(c)
instead of a, b, c.

By Lemma 2.8 we can assume that f is canonical as a function from (P; <, <
,a,b,c)? to (P;<). We are going to show that the existence of such a canonical
function implies that Pol(I") contains e« or e<. In Subsection 5.1 we start with the
analysis, by studying canonical functions from (P; <, <)? to (P; <), which will turn
out to be helpful further on. We will then prove Proposition 5.1 for the two cases
in Lemma 5.10 and Lemma 5.17 respectively. 0

5.1 Canonical binary functions on (P; <, <)

A first step in analysing the binary part of Pol(I") is to look at the special case
of canonical functions. So in the following subsection we are going to study the
behaviour of binary functions f € Pol(I') that are canonical seen as functions from
(P; <, <)% to (P;<). We are going to specify conditions for which Pol(I") contains
€< Or e<.

Definition 5.2. Let f: P2 — P be a function. Then f is called dominated by the
first argument if

o f(z,y) < f(a/,y) for all x < 2’ and

o f(z,y)Lf(2',y) for all x Lz’
We say f is dominated if either f or (x,y) — f(y,z) is dominated by the first
argument.

In this subsection we are going to prove the following lemma:

Lemma 5.3. Let I" be a reduct of P in which < and L are pp-definable. Let f(x,y) €
Pol(T") be canonical when seen as a function from (P; <, <)% to (P;<). Then at least
one of the following cases holds:

e f is dominated

e Pol(T") contains e«
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o Pol(T") contains e<

First of all we make some general observations for binary canonical functions pre-
serving < and 1. We are again going to use the notation introduced in Notation 3.6.
Let us fix a function — : (P; <, <) — (P; <, <) such that x < y <> —y < —z holds.
It is easy to see that such a function exists.

Lemma 5.4. Let f: (P;<,<)? — (P;<) be canonical and f € Pol(I'). Then the
following statements hold:

1.
2.
3.

NS S

fp<:p<) =p<, f(p1.p1) =p1

f(p,a) = —f(=p,—q), for all types p,q.

f(p<sp1<), f(p<,p1), f(PLs:p<) and f(pL <,p<) can only be equal to p<
orpy.

At least one of f(p<,p1 <) and f(p1 «,p<) is equal to p; .

At least one of f(p<,p1 ) and f(p1 <,p>) is equal to p; .

It is not possible that f(p<,ps) = p= holds.

fi<,p<)=p1L = f(pL,p=) =p1L

Proof.

1.

o

This is clear, since f is a polymorphism of I' and hence preserves < and L.

2. This is true by definition of —.
3.
4. Assume f(p<,pi <) = f(pL~<,p<) = p<. Let a1 < az < a3 with a1 < ag,

This is true since f preserves the relation J<‘, see Observation 4.1.

aslaias and by < by < by with by < b3, byLbsbs. By our assumption
fla1,b1) < f(az,b2) < f(as,bs) holds, which contradicts to f preserving L.
This can be proven similarly to (4).

. Assume that f(p<,p>) = p= holds. Let a1 < az < ag with a1 < a3, a2 < as,

a1las and by = by = bg with by > b3, by > b3, by Lby. Then f((ll, bl)J_f(CLQ, bg)
but also f(a1,b1) = f(as,bs) = f(az,a2) have to hold, which is a contradiction.
Assume that there are a;Lag and b such that f(a1,b) < f(az,b) holds. Then
we take elements a3 and 0 with as < a3, ajlas , a1 < a3 and V' > b.
Then f(a1,b) < f(az,b) < f(as,b’) holds. But f(pi ,p<) = pi implies
that f(a1,b)Lf(as,b'), a contradiction!

O

By Lemma 5.4 (2) we only have to consider pairs of types where the first entry

is p—

, P< or p| - when studying the behaviour of f. Further Lemma 5.4 implies

that f(z,y) # f(2,y') always holds for x # 2’ and y # ¥/.

Lemma 5.5. Let f € Pol(T"). Then the following are equivalent:

1.

fp<,p>) = p<
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2. f(p<,pL>)=Dp<
3. f(p<,q) = p< for all 2-types q
4. f is dominated by the first argument

Proof. 1t is clear that the implications (4) — (3) — (2) and (3) — (1) are true.

(1) — (3) Let a1 < as < az and b1bg < by. Then f(al,bl) < f(ag,bg) < f(ag,b3)
has to hold regardless if the type of (b1,b3) is pi <, p1 s or p—. So f(p<,q) = p<
for all 2-types q.

(2) — (1): Let a1 < a9 < ag and by > by > b3 with by > b3, boLbibs. Then
flar,b1) < f(az,b2) < f(as,bs) implies f(a1,b1) < f(as,b3) and so f(p<,p>) = p<.

(3) — (4): We have to consider all the pairs of 2-types where the first entry is
pi,<- By Lemma 5.4 (4) and (5) we know that f(pi,<,p<) = f(p1,<.p>) = p1.
From Lemma 5.4(7) follows that f(p,,p=) =pJ.

We want to point out that we did not require f to be canonical; it can be easily
verified that all proof steps also work for general binary functions. O

Lemma 5.6. Let f: (P;<,<)? — (P;<) be canonical and f € Pol(T"). If f is not
dominated the following statements hold:

1. f(p<,p>) = f(p<,p1) = f(PL,<:P>) =DP1-

2. f(p<,p=) =p< or f(p<,p=) =p1.

3. f(pi,<,p=) =pL or f(pi<,p=) =p<.

Proof.

1. is a direct consequence of Lemma 5.5.

2. Suppose there are a1 < ag and b such that f(a1,b) > f(a2,b). Then we take
elements ag, b’ € P with as Las as > a3, a1 < ag and a b’ > b. Then f(az,b) <
f(a1,b) < f(as,b’) holds, which is a contradiction to f(agz,b)Lf(as,b).

3. Assume that there are aj_lag, a; < ag and b such that f(ai,b) > f(a2,b)
holds. There are elements ag and b’ with as > as, a1 Llas, a1 < a3 and ¥’ < b.
Then f(ag,b) > f(as,b’) and f(a1,b)Lf(as,b’). But this contradicts to our
assumption.

]

Definition 5.7. Let us say a binary function is 1 -falling, if it has the same be-
haviour as e< respectively e< on pairs of partial type (p,p+).

Lemma 5.8. Let f € Pol(I') be a canonical function f: (P;<,<)? — (P;<) of
L-falling behaviour. Then Pol(I') contains e« or e<.

Proof. From Lemma 5.4 (7) follows that f(p,,p=) = py and f(p=,p1) = p1. By
Lemma 5.6 we further know that f(p<,p=), f(p=,p<) € {p.1,p<}. So we have to do
a simple case distinction:
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o If f(p=,p<) = f(p<,p=) = p1, then f behaves like e, hence e~ € Pol(T").

o If f(p=,p<) = p< and f(p<,p=) = p1, the function (z,y) — f(f(z,y),x) has
the same behaviour as e, thus e« € Pol(T").

e Symmetrically if f(p—,p<) = p, and f(p<,p=) = p<, the function (z,y) —
f(f(y,x),y) has the same behaviour as e, thus e~ € Pol(I").

o If f(p=,p<) = p< = f(p<,p=) = p<, then f has the same behaviour as e<,
thus e< € Pol(I).

O

We now give a criterion for the existence of a canonical |-falling function in
Pol(I'). This criterion will allow us to finish the proof of Lemma 5.3 and also help
in the proof of Proposition 5.1.

Lemma 5.9. Assume that for every k > 1, every pair of tuples a,b € P* and every
indices p,q € {1,2,...,k} with a, < aq and —(b, < by) there exists a binary function
g € Pol(I") such that g(ap, by)Lg(aq,by) and for alli,j € {1,2,... k}:

1. a; < a; implies g(a;,b;) < g(a;,bj) or g(ai, b;)Lg(a;,bj),

2. a;La; implies g(a;, b;)Lg(aj,b)).
Then Pol(I') contains e« and e<.

Proof. We only need to show that for all a,b € P* there is a binary function f €
Pol(T") that is L-falling on (@,b). To be more precise we want to construct an
f € Pol(T") such that:

° f(al-, bl) < f(aj,bj) if a; < a; and b; < bj,

° f(ai, bi)Lf(aj,bj) if a; < a; and ﬁ(bp < bq).

° f(al-, bl-)J_f(aj,bj) if aZ-J_aj and bl 75 bj

By a compactness argument there exists a h € Pol(T') that is L-falling on P2.
By Lemma 2.8 this function generates a canonical functions, which then clearly also
has to be L-falling. By Lemma 5.8 we have that e. or e< is an element of Pol(T").
In order to prove the above claim let @, b € P* be arbitrary tuples. We are going to
construct f by a recursive argument.

Let fO(z,y) = ¢O(z,y) = z and a® = fO(a,b). If already f(© has the
desired properties we set f(z,y) = (% (z,y) and are done. Otherwise, in the (k+1)-
th recursion step, we are given a function f*) (z,y) and a tuple ak) = fk) (a,b).

Let us assume that there are indices p,q with ap < a4, —(b, < by) and az()k) <

agk). Then by our assumption there is a function ¢g*+1)(z,y) € Pol(T') such that

9" () b,) Lg® (@) b,). We set fETD(z,y) = g®(F®)(z,y),y) and a® =

F®) (@, b).
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Note that by the properties (1) and (2) of the function g* the only possible cases
for f¥ being not L-falling is the case above. It is clear that the recursion ends after
finitely many steps. O

Proof of Lemma 5.3. Let f: (P;<,=<)? — (P;<) be canonical and f € Pol(T).
Let us assume that f is not dominated. By Lemma 5.6 we know f(p<,ps) =
flr<;pry) = flpL<,p>) =pL.

By Lemma 5.4 (3) and (4) we have to look at the following cases:

L. f(p<,p1<) = f(pL<:p<)=p1.

2. f(p<7PJ_,<) = p< and f(PJ_,<aP<) =Dl

3. flp<,p1,<) =p1 and f(p1 <. p<) = p<.
In the first case f has |-falling behaviour therefore we are done by Lemma 5.8.

For the remaining cases we can restrict ourselves to (2), otherwise we take the
function that maps (x,y) to f(y,x). From Lemma 5.4 (7) follows that f(p,,p=) =
p1. Thus f(py,q) = p1 holds for every 2-type q.

We are going to show that then the conditions in Lemma 5.9 are satisfied. Let
a,b € P* be two tuples of arbitrary length k and let p, ¢ € {1,2,..., k} such that ap <
aq, by, < by and b, Lb, hold. Then let v € Aut(P) with (by) > a(bg). Such an auto-
morphism exists by the homogeneity of P. Then we set g(z,y) = f(z,a(y)). Clearly
g(ap, bp) Lg(ag, by), since a(by) = a(by). Also the other conditions in Lemma 5.9 are
satisfied, by the properties of f. Therefore Pol(I') contains e« or e<. O

5.2  f(a,a) < f(b,c) A f(a,a) < f(c,b)
The aim of this subsection is to prove the following lemma.

Lemma 5.10. Let f € Pol(T') be canonical as a function from (P;<,<,a,b,c)? to
(P;<). If f(a,a) < f(b,c) A f(a,a) < f(e,b) then Pol(I') contains e« or e<.

We are going to prove Lemma 5.10 by contradiction; so assume that I" contains
such an f, but neither e« nor e<. By Lemma 5.3 we can assume that every binary
function in Pol(T"), which is canonical from (P; <, <) to (P; <), has to be dominated.
Every infinite 1-orbit of Aut(P; <, <, a, b, ¢) induces a substructure of (P; <, <) that
is isomorphic to (P; <, <) by Observation 3.7. Thus every restriction of f to an
infinite 1-orbit of Aut(P;<,<,a,b,c) has to be dominated, which motivates the
following notation:

Notation 5.11. Let f: P2 — P be a function and X,Y, X’ Y’ be subsets of P
such that both the restriction of f to X x Y and to X’ x Y’ are dominated. We say
that f has the same domination on X x Y and X’ x Y’ if f is dominated by the
first argument on both X x Y and X’ x Y/ or dominated by the second argument
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on both X xY and X’ x Y'. Otherwise, we say that f has different domination on
X xY and X' x Y.

We define the following two sets:

e Bi:={zeP:x>chNzlanzlb},

e By:={xecP:x>bANz>c}

Then observe that By and By are both 1-orbits of Aut(P; <, <,a,b,c) with in-
finitely many elements. By Observation 3.7 both (Bj;<,<) and (Bsy;<,<) are
isomorphic to (P;<,<). Furthermore BliBg, thus by Observation 3.7 also the
union of By and By is an isomorphic copy of (P; <, <), in which B; forms a random
filter.

Lemma 5.12. The restriction of f to B; x Bj is dominated for every i,j € {1,2}.

Proof. For a contradiction we assume that the restriction of f to some B; x B, is
not dominated. Since (B;; <,<) and (Bj; <, <) are isomorphic to (P;<, <) there
are a : P — B; and  : P — Bj such that a is an isomorphism from (P; <, <) to
(Bi;<,<) and f is an isomorphism from (P; <, <) to (Bj;<,<). Let g: P* — P
be given by g(z,y) := f(a(z),B(y)). Such g would be canonical from (P; <, <) to
(P; <) and not dominated, which contradicts to Lemma 5.3. O

Lemma 5.13. f has the same domination on all sets B; X Bj, i,j € {1,2}.

Proof. We claim that f has the same domination on B; X By and By x By for
any k € {1,2}. For a contradiction we assume that f does not have the same
domination on By x B and By X Bi. Without loss of generality we can assume
that f is dominated by the first argument on B; x By and dominated by the second
argument on By X By. Let x,y € Bj,z,t € Bs be such that x < y Ay < z Az Lt.
Let 2/,y/, 2/, t' € By, be such that 2/ Lt/ ANy’ < 2/ Az < t'. Since f is dominated by
the first argument on By x By we have f(z,2') < f(y,4’). Since f is dominated by
the second argument on By x By we have f(z,2") < f(t,t'). Since f preserves < we
have f(y,y') < f(z,2'). Thus f(z,2’) < f(t,¢'), a contradiction to the fact that f
preserves .

By considering the map (z,y) — f(y, z) we have that f has the same domination
on By x By and By x Bs for every k € {1,2}. This implies that f has the same
dominations on all products B; x Bj,4,j € {1,2}. O

In the rest of this section we assume that f is dominated by the first argument

on B; x Bj for every i,j € {1,2}. The other case can be reduced to this case by
considering the map (z,y) — f(y,z).
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Lemma 5.14. Let u,v € By and v’ € By, v’ € By be such that w < vV ulv. Then
flu,w') Lf(v,0").

Proof. First we claim that f(u,u') > f(v,v") V f(u,u)Lf(v,v"). For a contradic-
tion we assume that f(u,u’) < f(v,v'). Since f preserves < we have f(c,b) <
f(u,u’). Therefore f(a,a) < f(c,b) < f(u,v') < f(v,v'), a contradiction to the
1 -preservation of f. Thus the claim follows.

The proof is completed by showing that f(u,u’) > f(v,v’) is impossible. For
a contradiction we assume that f(u,u’) > f(v,v’). Let s,t € B; be such that
sltANs<vAu<t Lets € By,t' € By be such that s’ 1t'. By the domination of
f we have f(s,s') < f(v,v") A f(u,u') < f(t,t'). Tt follows from f(u,u') > f(v,v)
that f(s,s’) < f(t,t'), a contradiction to L-preservation of f. O

Lemma 5.15. Let u,v € By be such that ulv. Then for every u',v' € By U By we
have f(u,u)Lf(v,0").

Proof. For a contradiction we assume that —(f(u,u')Lf(v,v")). Without loss of
generality we assume that f(u,u’) < f(v,v"). Let s,t € By be such that s < uAv <
t Aslt. Let s’,t' € By U By be such that s’ Lt/, s, 4 are in the same orbit and ¢/, v’
are in the same orbit. By the domination of f we have f(s,s") < f(u,u')A f(v,v") <
f(t,t"). Since f(u,u’) < f(v,v") we have f(s,s’) < f(t,t'), a contradiction to the
L-preservation of f. O

Lemma 5.16. Let u,v € By and u',v" € By U By be such that u < v. Then
fu,u') < fv, o)V fu, ') Lf(v,0").

Proof. For a contradiction we assume that f(v,v") < f(u,u’). Let s,t € By be
such that t < v Au < s Aslt. Let s',t' € By U By be such that s'Lt/, s, u/
are in the same orbit and ¢,v’ are in the same orbit. By the domination of f
we have f(t,t') < f(v,v') A f(u,u’) < f(s,s'). Since f(v,v") < f(u,u’) we have
f(t,t) < f(s,s'), a contradiction to the L-preservation of f. O

Now we are ready for the proof of Lemma 5.10:

Proof of Lemma 5.10. We are going to show that Pol(I") contains a function that
behaves like e~ or like e< by checking the conditions of Lemma 5.9.

So let a,b € P* with a, < a; and —(b, < by). We set YV := {b; : b; > by}, Z =
{bi : =(b; > bp)}. By definition we have b, € Z. By the homogeneity of P there
is @ € Aut(P) such that a(Y) C By and a(Z) C B;. Let 8 € Aut(P) such that
B({a; : i€ {1,2,...,k}}) C By. Let g(z,y) :== f(B(z),a(y)). Clearly g € Pol(T').
By Lemma 5.14 we have that g(ayp, by) Lg(aq, by). Further we know by Lemma 5.16
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that g(a;, b;) < g(aj,b;) or g(a;, b;)Lg(aj,b;) holds for all a; < aj. By Lemma 5.15
we know that g(a;, b;)Lg(aj,b;) holds for all a; Laj. So the conditions of Lemma 5.9
are satisfied. Hence e~ or e< is a polymorphism of I'. O

5.3 fl(a,a)Lf(b,c)A f(a,a)Lf(c,b)

The aim of this subsection is to prove the following.

Lemma 5.17. Let f € Pol(T') be canonical as a function from (P;<,<,a,b,c)? to
(P;<). If fla,a)Lf(b,c) A f(a,a)Lf(c,b), then Pol®)(T) contains e« or e<.

We define the following sets.

Bi:={zreP:a<z<bAzlc}
By:={zeP:z<bAhz<cAhzlahz<a}.

Throughout the lemmata and corollaries below in this section we assume that ev-
ery binary canonical function in I" is dominated and f(a,a)Lf(b,c)A f(a,a)Lf(c,b).
Observe again that by Observation 3.7 the structure (B; U Bg; <, <) is isomorphic
to (P;<,<) with By being a random filter. By Lemma 5.3 we can again assume
that every binary canonical function in Pol(T") is dominated.

Lemma 5.18. f is dominated when restricted to B; x B; and has the same domi-
nation on all B; x Bj,i,j € {1,2}.

Proof. This can be shown as in the proof of Lemma 5.12 and Lemma 5.13. 0

In the rest of this section we assume that f is dominated by the first argument
on B; x Bj for every i,j € {1,2}. Similarly to Lemma 5.14 we have the following.

Lemma 5.19. Let u,v € By and v’ € By,v' € By be such that uw < vV ulv. Then
fu,u)Lf(v,0").

Proof. First we prove that f(v,v") < f(u,u")V f(v,v")Lf(u,u’). For a contradiction
we assume that f(u,u’) < f(v,v'). Since a < u A a < u' we have f(a,a) < f(u,u).
Since v < bAV' < ¢ we have f(v,v") < f(b,c). Thus f(a,a) < f(b,c), a contradiction
to the fact that f(a,a)Lf(b,c). Thus f(v,v") < f(u,u)V f(v,v")Lf(u,u).

The proof is completed by showing that f(u,u’) > f(v,v’) is impossible. For
a contradiction we assume that f(u,u’) > f(v,v). Let s,t € By be such that
sltAs<vAu<t. Let s € By, t' € By be such that s’ 1t'. By the domination of
f we have f(s,s') < f(v,v") A f(u,u') < f(t,¢'). Tt follows from f(u,u') > f(v,v)
that we have f(s,s") < f(t,t'), a contradiction to L-preservation of f. O
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Lemma 5.20. Let u,v € By be such that ulv. Then for every u’,v' € By U By we
have f(u,u’)Lf(v,v").

Proof. analogous to Lemma 5.15. O

Lemma 5.21. Let u,v € By and u',v' € By U By be such that u < v. Then

flu,u) < fo,0) V fu, o) Lf(v,0).
Proof. analogous to Lemma 5.16. ]

Now we are ready for the proof of Lemma 5.17

Proof of Lemma 5.17. We are again going to show that Pol(I") contains a function
that behaves like e~ or like e< by checking the conditions of Lemma 5.9.

So let @,b € P* with ap < ag and —(b, < by). We set Y := {b; : b > b,} and
Z = {b; : ~(b; > b,)}. By definition we have b, € Z. By the homogeneity of P there
is an o € Aut(PP) such that o(Y) C By and «a(Z) C Bs. Let 8 be an automorphism
such that S({a; : i € {1,2,...,k}}) C B; and let us define g(z,y) := f(B(x), a(y)).
Clearly g € Pol(T).

By Lemma 5.14 we have that g(ap,bp)Lg(aq,by). Further by Lemma 5.16 we
know that g(a;,b;) < g(aj,b;) or g(a;,b;)Lg(aj,b;) holds for all a; < a;. By
Lemma 5.15 we know that g(a;, b;)Lg(aj,b;) holds for all a; La;. So the conditions
of Lemma 5.9 are satisfied. Hence e. or e< is a polymorphism of T'. O

6 The NP-hardness of Betw, Sep and Cycl

In our analysis of reducts I' of P we are only left with the cases where End(I") is
equal to (1), (D) or (], ). By Lemma 3.5 and Theorem 2.3 in those cases one of
the relations Betw, Sep or Cycl is pp-definable in I'. In this section we are going to
show that these relations induce NP-complete CSPs.

Interestingly, we can treat all cases similarly: By fixing finitely many constants
c1,...,¢p on I' we obtain definable subsets of (I',cy,...,¢,) on which < and Low
are pp-definable. This enables us to reduce every such case to the NP-completeness
of Low.

Lemma 6.1. Let u,v € P with u < v. Then the relations < and Low are pp-
definable in (P,Betw, L, u,v).

Proof. It is easy to verify that there is a pp-definition of the strict order relation
x < y by the following formula:

Jda,b (Betw(a, u,v) A Betw(u, v, b) A Betw(a, z,b) A Betw(a, y, b) A Betw(a, z,y)).
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The two maps e« : P2 — P and e< : P2 — P do not preserve Betw, since for every
triple a = (al,ag,ag) with a1 < a9 < a3z and b = (bl,bg,bg) with by > by > b3,
the image of (a,b) forms an antichain. By Proposition 5.1 we have that Low is
pp-definable in (P, Betw, L, u,v). O

Lemma 6.2. Let ¢,d be two constants in P such that ¢ < d. Then there is a
pp-interpretation of (P;Low) in (P;Cycl, ¢, d)

Proof. Let X := {x € P : ¢ < © < d}. By using back-and-forth argument one
can show easily that (P; <) and (X; <|x) are isomorphic. We first show that X (as
a unary predicate) and <y are pp-definable in (P;Cycl,c,d). It is easy to verify
that the set X can be defined in (P;Cycl,¢,d) by ¢(x) := Cycl(c,z,d) and that
r <|x y < ¢(x) A o(y) A Cycl(e,z,y). Now a pp-interpretation of (P; <, Cycl) in
(P; Cycl, ¢,d) is simply given by the identity on X.

By Lemma 3.4 we have that L is pp-definable in (P;<,Cycl). It is easy to
verify that e« and e< do not preserve Cycl. Therefore, by Proposition 5.1, Low is
pp-definable in (P; <, Cycl), which concludes the proof of the Lemma. O

Lemma 6.3. Let ¢,d,u be constants in P such that ¢ < d < u. Then (P;Low) has
a pp-interpretation in (P;Sep,c,d,u).

Proof. Let X := {x € P:d < x < u}. By using a back-and-forth argument, one
can show easily that (X;<) and P are isomorphic. Similarly as in the proof of
Lemma 6.2, X and <|x are pp-definable in (P;Sep, ¢, d,u) as follows.

The set X can be defined by the formula ¢(z) := Sep(c,d,r,u), and <x can
be defined by x <|x y & ¢(z) A é(y) A Sep(c,d, x,y). Also Cycl(z,y,2)x can be
defined by the primitive positive formula ¢(z) A ¢(y) A ¢(2) A Sep(c, x,y,z) So a
pp-interpretation of (P; <, Cycl) in (P;Sep,c,d,u) is simply given by the identity,
restricted to X. By Lemma 6.2, Low is pp-definable in (P; <, Cycl), which concludes
the proof of the Lemma. O

Note that by the transitivity of pp-interpretations and Proposition 4.5 also
({0,1},NAE, 0,1) has a pp-interpretation in (P;Betw), (P;Cycl) and (P;Sep) ex-
tended by finitely many constants.

7 Main result and discussion

In this section we summarize the proof of the complexity dichotomy stated in The-
orem 1.1 and give criteria that allow us to decide whether a given reduct I' of P
has a tractable or an NP-hard CSP. Furthermore we phrase a stronger, structural
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dichotomy on the reducts of the random partial order that is in accordance with
the algebraic dichotomy conjecture for CSPs over finitely bounded homogeneous
structures stated by Bodirsky and Pinsker.

7.1 A complexity dichotomy

The main challenge of this paper was to determine the complexity for reducts of P
that are model-complete cores. We were able to show that the following dichotomy
holds:

Theorem 7.1. Let I' be a reduct of P in a finite relational language that is a model-
complete core. Then either
e one of the relations Low, Betw, Cycl, Sep is pp-definable in T’ and CSP(T") is
NP-complete or
e CSP(I") is in P.

Proof. If Low, Betw, Cycl or Sep are pp-definable in T", then CSP(I") is NP-complete
by Proposition 4.5 and Lemma 6.1, 6.2 and 6.3. By Theorem 3.2 the only remaining
case is the one, where < and L are pp-definable, but Low is not. In this case e
or e< is a polymorphism of I' by Proposition 5.1. Proposition 4.3 then implies that
the problem is tractable. O

As an immediate consequence of Theorem 7.1 and Corollary 3.3 we get the proof
of the dichotomy in Theorem 1.1. However even more holds, since we obtained a
finite list of relations that describe all NP-complete CSPs: We can algorithmically
determine whether for a given set ® the problem Poset-SAT(®) is NP-complete or
in P.

Corollary 7.2. Let I' be a reduct of P in a finite relational language. Under the
assumption P#NP the problem CSP(T') is either NP-complete or solvable in poly-
nomial time. Further the “meta-problem” of determining the complezity of CSP(T)
for a give I' is decidable.

Proof. By Proposition 3.2 we know that either I' is a model-complete core or is has a
constant function, g or g, as endomorphism. In the first case the dichotomy holds
by Theorem 7.1. In the other cases I' is homomorphically equivalent to a reduct of
(Q, <) and the dichotomy holds by the dichotomy result in [13] respectively [12], see
Corollary 3.3.

In order to decide the “meta-problem” note first that it is decidable to tell
whether I' is a model-complete core or not: we just need to check if all its relations
are preserved by a constant function, g, or g,. If I' is not a model-complete core
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we can decide the meta-problem due to the results in [13]. In the other case the
main result of [19] implies that it is decidable to tell whether Low, Betw, Cycl or
Sep are pp-definable in I". By Theorem 7.1 these are the only cases in which CSP(I")
is NP-complete. Hence the meta-problem is decidable. ]

7.2 An algebraic dichotomy

To state the structural dichotomy, we would like to recall that all complexity reduc-
tions we used were of three types: For finite or w-categorical structures A and I" the
complexity of CSP(A) reduces to CSP(I") if

1. A is the model-complete core of .

2. I' is a model-complete core and A is obtained by adding finitely many constants

to the signature of T'.

3. A is pp-interpretable in T'.

It was conjectured by Bodirsky and Pinsker that a CSP of a reduct I' of finitely
bounded homogeneous structures is NP-complete if and only if ({0,1};NAE,0,1)
and consequently all finite structures can be reduced to I' by the reductions (1)-(3)
and that CSP(T") is in P otherwise (see for instance [§]).

As pp-definability is characterised by inclusion of clones, pp-interpretation can be
characterized by clone homomorphisms. In particular I' pp-interprets the structure
({0,1}; NAE, 0, 1) if and only if there is a uniformly continuous clone homomorphism
to Pol(A) to 1 := Pol({0,1}; NAE, 0,1), the clone consisting of all projections on a
two element set (see [17]). It was shown in [6] that also the opposite case, where no
stabiliser of the model-complete core maps homomorphically to the projection clone
1, has a positive algebraic characterisation: In this case the clone Pol(A) satisfies a
non-trivial equational condition, namely the existence of a pseudo Siggers operation.

In our special case of the reducts of the random partial order we are able to give
an additional equational conditions that are equivalent to the existence of a pseudo
Siggers operation: In our analysis we saw that in the only tractable model-complete
cases the binary operations e« or e< appear. These that are symmetric modulo
composition with embeddings from the outside.

Furthermore ({0, 1}; NAE, 0, 1) can be reduced to A by the complexity reductions
(1)-(3) in arbitrary order if and only if there is a uniformly continuous hl-clone
homomorphism to 1 (see [5]). This lead to another conjecture stating that the only
source of NP-hardness for CSP(T") is that there is a uniformly continuous hl-clone
homomorphism from Pol(I') to 1. In the following theorem we summarize all the
algebraic characterisations of the tractable cases of reducts of IP:

Theorem 7.3. Let I' be a reduct of P and let A be the model-complete core of T.
Then the following are equivalent:
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1. For all c1,...,c, € A there is no uniformly continuous clone homomorphism
from Pol(A) onto 1.

2. There is a pseudo Siggers polymorphism, i.e. a function f € POI(A)(G) and
endomorphism ey, e € End(A) such that for all z,y, z:

el(f(x,y,a:, z,Y, Z)) = eQ(f(y7x7 Z,T, Z7y))'

3. There is a binary f € Pol(A) and endomorphisms ey, es € End(A) such that
for all x,y:

61(f(.’£, y)) = 62(f(y,$))

or there is a ternary f € Pol(A) and endomorphisms ey, e, e3 € End(A) such
that for all x,y:

61(f(3:,x,y)) = 62(f($,y,l')) = eg(f(y,x,m)).

4. There is no uniformly continuous h1-clone homomorphism from Pol(T") to 1.
5. There is no h1-clone homomorphism from Pol(T") to 1.

Proof. For all w-categorical structures (1) and (2) are equivalent by the results of [6],
furthermore they are equivalent to (4) for reducts of finitely bounded homogeneous
structures by [4].

If T is not a model-complete core, then the equivalence of (1) to (3) follows
from the analysis in [13]. If I is a model-complete core for which (1) holds, by our
analysis it contains the binary operations f = e~ or f = e<. But it is not hard to
verify that those operations satisfy the equation e (f(z,y)) = e2(f(y,z)) for some
e1, ez € End(I).

At last the equivalence of (4) to (5) is shown in [4], where explicit linear equations
are constructed from e~ and e< that prevent hl-clone homomorphisms to 1. O

We finish with an algebraic version of our dichotomy that is a direct implication
of our complexity analysis and Theorem 7.3:

Corollary 7.4. Let I' be a reduct of P in a finite relational language and let A be
its model-complete core. Then either
e all finite structures are pp-interpretable in A extended by finitely many con-
stant and CSP(T") is NP-complete; or
e one of the conditions (1)-(6) in Theorem 7.3 holds and CSP(I") is in P. [
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Abstract

Ancient medical diagnosis has been studied from different perspectives.
Analysis and translations of texts done by Asiriologists and Physicians shed
the light on ancient practices. Although their works is amazing, several aspects
remain mysterious. I propose here to study Akkadian medical diagnosis from
the perspective of philosophy and argumentation, and to compare it with the in-
ferences at stake in modern medical diagnosis. If we focus on inference, without
any preconceived thinking about rationality or irrationality of the Mesopotami-
ans, whether we talk about science or magic regarding ancient texts, it seems
that the two inferences at stake have the same structure. Modern medical diag-
nosis, in some cases or some phases, fits better within an abductive reasoning
than an inductive or a deductive one. The same holds for several examples
of Ancient medical diagnosis I will put forward in this paper. In these cases,
we face abductive inferences that work as ignorance preserving reasoning. A
number of problems are left unsolved and a deeper study of the inference in An-
cient Mesopotamian texts would help us understand how the medical practice
in early medical texts in History works.

1 Ancient Medical Practice

When we talk about Ancient medicine, we are usually referring to Greek medicine
as the start point of medical care in the History. Almost everyone would agree that
the Father of Medicine was the Greek Hippocrates. Most of the work attributed to
Hippocrates has been written between 430 and 330 B.C., and later [25]. Nevertheless,

I am grateful to the two anonymous referees and the editors for their constructive inputs. I thank
Matthieu Fontaine, Teresa Lopez-Soto and Angel Nepomuceno for their comments, corrections and
help and the participants of the conferences Issues in Medical Epistemology, Cologne, December
14-16, 2017 and Explanatory Practices: Interaction, Dialogues, and Cognitive Processes Workshop,
Lisbon, February 15-16, 2018.

*Sponsored by VPPI-US (Contrato de acceso al Sistema Espariol de Ciencia, Tecnologia e Inno-
vacién para el desarrollo del programa propio I4+D+i de la Universidad de Sevilla)

Vol. 5 No. 8 2018
Journal of Applied Logics — IFColLog Journal of Logics and their Applications



BARES-GOMEZ

there are texts of medical practice in Mesopotamia far before the most known text
of Hippocrates or Galen. It is true that there are no treatises of medicine as such in
Babylonian medicine (in the modern sense of medical treatise) and the imputation
of the concept of disease to Mesopotamian physicians is perhaps an anachronism
[1]. These are questions that still need to be answered and studied deeply. Despite
different concepts, there is a clear medical practice in Mesopotamia. In fact, the
first time the physician (in Sumerian a-zu or AZU) is attested is in texts as early
as Fara period (mid-third mill. B.C.) and the first medical prescriptions seem to
appear in the Ur III period (end- third mill B.C.). There are many medical texts
during the Mesopotamian period.

The ancient medicine in Mesopotamia has been widely studied [1, 19, 13]. The
main source has been the Diagnostic Handbook [16, 24|, written in Akkadian lan-
guage (a Semitic syllabic language written in cuneiform that also uses Sumerian
pictograms). This is a medical treatise created in Babylon in the middle of the
eleventh century B.C. and recopied through the first millenium B.C. as part of the
cuneiform tradition (see Heessel, N.P. in [19]). We also have different comments on
the Diagnostic Handbook that try to specify or complete the medical diagnosis com-
pendium [21, 14], these Uruk commentaries help the asdm-physician/asiputum or
masmassum (different names for practicians involved in medical diagnosis) to better
understand the symptoms ([13] p. 147), for example. All these medical diagnosis
texts are usually written as omen with conditional structures and in clay tablet. The
many thousands of tablets have survived because of the durability of the clay, which
makes Mesopotamian texts better documented than any other ancient society.

A question to be asked is whether Ancient medicine can be considered a sci-
ence or a magical practice. In fact, Mesopotamian medical practice is completely
“contaminated” by magical practices. The therapeutic medicine in the Akkadian
texts seems to be complemented with magical medicine and both aspects coexist.
Sometimes, the physician asdm is called to treat the patient with the figure of ex-
orcist masmassum or wasipum and the diviners baarum' Sometimes the illness is
considered as a divine punishment for a transgression, other times from a contact
with an ill man or an animal bite [22]. Usually, the name of the illness is of the form
“Hand of a God”, even if it does not mean a supernatural origin. Diagnostic texts
are organized as other divination texts. The presentation of symptoms follows the
identification of the illness and/or the prognosis. Regarding the pharmacological
texts, they are organized as mathematical texts, with the list of procedures. In the
tablets, they are sometimes mixed with incantations, too.

So, with this information in mind, we could consider that the Mesopotamian

'See “Maladies et medicins” in [10].
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medicine is more a magical practice than a rational one. In fact, it has usually been
said that Babylonians have hardly indulged in theory and that they have limited
themselves to practical speculation about the physical world, making no reference
to hypothetical generalizations or methodological rules. Babylonian medicine is
un-scientific and relates to magical practice. The problem has always been how
to recognize Babylonian epistemology and theory with the biased sources at our
disposal ([13] p. 11-12). Nevertheless, the question remains whether Babylonian
medicine should be considered as unscientific as it might seem.

Authors such as Geller[13] state that Babylonian medicine is actually a "science".
According to him, three prerequisites to scientific thinking - i.e. imagination, logical
deduction and observation? - are also present in Ancient medicine. However, my
point is not to discuss scientificity properly, but rather rationality. By understanding
medical diagnosis, not in terms of deduction and/or induction reasoning, but in
terms of abductive reasoning, we grasp similarities between Ancient and Modern
diagnosis. In other words, despite their differences, Ancient and Modern diagnoses
rely on the same inferences, namely abductions. In fact the medicine in Babylon is
a real practice, they do not have a theory as the Greek medicine, they experiment
even if they do not realize clinical trials. For that, I will quote Claude Bernard that
explain clearly the medical practice:

“Un médicin qui observe une maladie dans diverses circonstances, qui
raisonne sur l'influence de ces circonstances, et qui en tire des
conséquences qui se trouvent contrblées par d’autres observations;
ce médecin fera un raisonnement expérimental quoiqu’il ne fasse pas
d’expériences. Mais s’il veut aller plus loin et connaitre le mécanisme
interieur de la maladie, il aura affaire & des phénomenes cachés, alors il
devra expérimenter; mais il raisonnera toujours de méme” [4],p. 463.

If we focus on the inference, and not in the magical aspect, does the Babylonian
medical argumentation really differ from the medical diagnosis that we know nowa-
days? How to differentiate the ailment from the symptoms? What is the status of
the symptoms in relation with health and wellness (there are also treatises of health
and wellness in Babylon, physiognomy[6])*? How to chose a hypothetical disease?

2T will not enter into details about this characteristics. More information, see [13], p. 10 and ff.

3My translation: A physician who observes a disease in several circumstances, who reasons on
the influence of these circumstances, and who draws consequences which are controlled by other
observations; this doctor will make an experimental reasoning even though he does not experiment.
But if he wants to go further and know the inner mechanism of the disease, he will have to deal
with hidden phenomena, so he will have to experiment; but he will always reason anyway.

4Notice that for authors as Claude Bernard medical practice needs physiology, pathology and
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Is the inference in modern medicine so different from the one in Mesopotamia? For
example, it is just the formulation of the hypothesis that changes from malaria to
the “LUGAL.GIR.RA®? How to design one hypothesis or another? The background
theory, the medical knowledge and/or the cultural aspect? Do we face a difference
between rational and irrational or a difference between hypothesis and information
at the moment of the inference?

I will study the inference in Mesopotamian medical diagnosis from a descriptive
viewpoint. In what follows, I will explain the inference at stake in modern medical
diagnosis and why I consider it as an abductive inference. Then, I will put forward
different examples of Akkadian medical diagnosis and I will confront them with
abductive reasoning for medical diagnosis®. At the end I will analyse the possibility
to differenciate the modern general physician diagnosis and the Akkadian diagnosis
at the inference level.

2 Inference in Medical Diagnosis

Diagnosis is the art/science of recognizing possible diseases’ from their symptom-

s/signs®, distinguishing between them and indicating its prognosis and treatment

23, 20]. We could differentiate two methods of medical diagnosis?. One is based
[ g

therapeutics. Of course the ancient medical practices differs from the modern one, but there are
these three parts in Akkadian medicine too. There are treatises of health and wellness, the pathology
as ancient etiology and the treatment. “Por embrasser le problem medicale dans son entier, la
médicine expérimentale doit comprendre trois parties fondamentales: la physiologie, la pathologie
et la thérapeutique” ([4], p. 26) (To embrace the medical problem as a whole, experimental medicine
must include three fundamental parts: physiology, pathology and therapeutics, my translation). I
just want to enfatize that we are in front of a medical practice not a theorical approach to medicine.
Nevertheless, as I said before, these aspects of ancient medicine as science or experimental science
need to be treated in depth and it is beyond the propouse of this paper.

5Name attributed to cerebral malaria in Mesopotamia, it is a god associated with the god
Nergal, the god of pestilence. See example 3 in this paper.

51 want to clarify that this is a philosophical approach, not a Semitician approach. There are
really good studies of Mesopotamian medicine made by Orientalistic researcher, even in collabora-
tion with modern doctors. See for example [39]. My point in this paper is to study the medical
diagnosis in Akkadian from another perspective. Nevertheless, I will use the translation and studies
made by Assyriologists as a basis of my analysis.

I will not enter into debate about the concept of disease and its subcategories. For the moment,
I will use the general concept, even if it is not so clear. Nevertheless, a deeper study will be necessary
to take into account these different subcategories as for example disease, illness or sickness. See [40]
for more details.

81 will not establish a difference between signs and symptoms for the moment.

9T do not mention the pathophysiological reasoning used by other sciences as biophysics, genetics,
etc. because I will not use it for approaching Ancient Near Eastern medicine.
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on probabilistic induction and even if it could be successful, it is very hardly used
directly in everyday medical practice [23, 20]. The other is based on causal reasoning
for etiological diagnosis, which is the attribution of an observed symptom/sign to a
cause identified [20]. This medical diagnosis has often been modeled as hypothetical-
deductive process [7]: the doctors generate a set of diagnostic hypotheses and test
them by gathering further data. Unless the problem is solved, they generate new
hypotheses and test them again. However, the methodology would be better un-
derstood in term of non deductive inference. 1 will use as an example the case of
malaria diagnosis. A and B instantiate a common subject matters.

A = fever, headache, shivering, vomiting, jaundice, convulsions. . .

B = malaria.

_ — =1if then

Here: If A, then B.

e So if a patient has symptoms A, then he has the ailment B. From the viewpoint
of deduction, the reasoning would be like A—»B, A / B

But it would be more accurate to see the following: if a patient has malaria (B) he
will have the symptoms (A).

e In fact, in medical diagnosis, the reasoning is rather of the following form:
B—A, A / B. If a patient has malaria (B), he has the symptoms (A). He has
the symptoms (A), so he has malaria (B).

If we consider that this reasoning is a deduction, it would be no more than a fallacy,
namely the fallacy of affirming the consequent to put it Aristotle’s words. Indeed, it
might be the case that a patient had the symptoms described, but not the malaria,
e.g. yellow fever, enteric fever, etc. Nevertheless, this kind of reasoning is useful,
from the perspective of the economy of reasoning or when we seek explanation.
Hence, if this reasoning should be accepted, it is according to another criteria of
correct inference, i.e., a non-deductive criteria. In that case, the hypothetical and
defeasible status of the conclusion should be emphasized. Indeed, in our example,
we might be led to revise the conclusion that the patient has malaria on the bais of
new information (e.g. if he has enteric fever).

In fact, it seems that we are in front of a reasoning that has been called Abduc-
tion, since Peirce [33]. Abduction is a kind of reasoning based on hypothesis. It is
a defeasible reasoning because what we obtain is just a conjecture. We are not sure
of the result and it can be questioned or denied, in contrast to deduction that has a
sure conclusion. Abduction follows, in Peirce words, the next schema:

“The surprising fact, C, is observed;
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But if A were true, C would be a matter of course,

Hence, there is reason to suspect that A is true”. (Peirce CP 5.189)[33]

The aim of this kind of reasoning is to explain surprising facts. E.g., I see that the
road is wet. If it had been raining, this would have explained it. So, I abductively
infer it has been raining. However, the explanation might be different, e.g. the
gardener of the city hall might have watered the road. This is a defeasible reasoning,
we could go back because the conclusion is not definitive, it is a defeasible hypothesis.
Abduction is triggered by a question arising from a lack of information, a question
for which the agent has no answer in the background theory. The description of
a fact is not an explanation by itself; thus, we need a hypothesis that, together

with the background theory, would provide the explanation. The following schema

explains the abductive process':

1. T'Q(«)

2. ~ (R(K,T)) [Fact]

3. ~ (R(K=x,T)) [Fact]

4. H ¢ K [Fact]

5. H ¢ K+[Fact]

6. ~ R(H,T) [Fact]

7. ~ R(K(H),T) [Fact]

8. H~ R(K(H),T) [Fact]

9. H satisfies conditions S, ..., S, [Fact]
10. Then, C'(H) [Sub-conclusion, 1-7]
11. Then, H® [Conclusion 1-8]

Here, the first issue is the starting point that triggers the abductive process, T'Q(«)
. Then, an unanswered question remains: which illness produces this situation? T

10T will follow G-W schema for abduction because I consider that this schema give us more
features to analyze the process than the standard schema. For example, the enphasis on defeasibility
and the importance of the action. All these characteristic features of what Woods calls “third way
reasoning”, see [42, 11, 3, 28]. Besides, this abduction as inference from the best explanaton,
ignorance preserving inference and activation of the hypothesis fits better with Akkadian diagnosis.
I am interesed in abduction as a process from a pragmatic perspective.
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would be something that we would like to reach, in order to solve the problem, and «
would be the answer, the name of the malady. In fact, we are in front of an ignorance
problem. We do not know for sure what is causing the situation, in our case what
is triggering the vomiting, shivering, etc. This is a cognitive irritant, unpleasant
situation that we would like to solve. We are in a lack of knowledge situation and
we would like to overcome it, nevertheless we do not find a solution. Even if we do
not have the solution, we need to act, to do something, to overcome the situation.
We try to do something for the patient. Here, the step 2 which explains that the
current knowledge is not enough to solve the problem. The step 8 means that there
is no immediate successor of K that helps us to solve the ignorance problem. If we
would have this, we would just add some knowledge and we would solve the problem.
It would be something like checking and adding new information (maybe by making
some tests with modern methods, we would know that we are in front of a malaria
ailment). In the case that new information would be added, we would not be in an
abductive process. In fact, we would be in what Woods[42] calls subduance: new
knowledge would remove the initial ignorance. If, for example, we decide to give
up the problem, we will be in a surrender point. Abduction is triggered when we
are in a situation in which we do not have any answer, we still are in a lack of
knowledge, but we still want to continue. Then, to solve or better say, to overcome
the ignorance, we set a plausible solution which is a hypothesis. So, we hypothesize
something, but this is not a solution, it is just a hypothesis (step 6 and 7). This
is why the hypothesis relates only subjunctively to the cognitive-target (step 8).
In this case, we hypothesize the malaria illness and if this would be the case, it
could be an acceptable solution. The subjunctive relation means that If H was the
case, it would provide a solution. But abduction does not consist in providing a new
knowledge, only a hypothesis. Step 9 represents that some conditions could be added
to the hypothesis!'. So we conjecture the hypothesis that the patient has malaria
(C(H)). Nevertheless, we do not stop here because we activate the hypothesis H®
and we act in consequence by using it in further reasoning, we give a prognosis and
a treatment. Here, it is what Woods calls full abduction, while if we stop in step
10 we will have a partial abduction. If for example, we make the test to know if
we are in front of a malaria ailment and this confirms our hypothesis, we will stop
in a partial abduction and we will have a similar situation that we had in K* New
information is added'?. This will not trigger a full abduction because we do not
act in a ignorance-preserving way. Other situation would be the not-confirmation

1 Aliseda, for example, adds the following conditions: plain, consistent, explanatory, minimal
and preferential, see [2] .

128ee also the ST-Model where it is explained how induction and deduction inferences are used
at this point. More details in [26]. See also section 5 below.
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and at this point, we could give up or continue in an ignorance preserving situation
by reaching a full abduction. In fact, Gabbay and Woods’s abduction would be
better understood in terms of inference from the best explanation than in terms of
inference to the best explanation. We act from the best explanation that in this
case is malaria disease.

Medical diagnosis seems to have an abductive reasoning structure more than a
deductive or an inductive one, even if the two latter ones could also be used!?. In
fact, an illness starts with the symptoms/signs. We define what the symptoms/signs
exactly are in opposition to health and wellness. This is the starting point, the
starting question. These symptoms or signs act as a surprising fact that has to be
inserted in the background theory. This element is the beginning of a problem. We
can not explain the signs/symptoms with the knowledge at our disposal (we start
from a healthy state). We trigger a reasoning that helps us continue [12, 42, 3], what
leads to the abductive process. Pieces of evidence or just an evidence (symptoms,
surprising facts) start a process to solve a problem. But we do not really have the
answer, so we guess an hypothesis. This hypothesis is the conjecture of an illness.
One of the biggest problems in abduction is to know how to choose the correct
hypothesis or if it is possible to choose at all. What makes the doctor to choose
one over another hypothesis, disease? When the abductive inference is done and we
conjecture a hypothetical ailment, the prognosis and the treatment usually follow,
and the most of the time, this action is taken in an ignorance-preserving way'.
Does it mean that the epistemological status of the medical diagnosis is based more
in a lack of knowledge than in a knowledge? In fact it seems that sometimes it is'®.

Essentially, medical diagnosis seems to be nearer to what is call abductive reason-
ing or abduction. Although the analysis of medical diagnosis in terms of abductive
inference could clarify some aspects of it, abduction comes with its own difficulties.

131n fact, we could not say that medical diagnosis relies on only one kind of reasoning. Different
kind of reasoning could have a role in medical diagnosis, see for example the role of analogy in [15].
Here we just treat the general abductive schema, but it would be interesting to check the mix of
reasoning or the role for example that analogy has inside abductive reasoning, see [41].

14Unless the hypothesis is verified with modern techniques, in which case we would be in a
subduance point that add new information. This would be partial abduction [42]. This is not the
case in the example coming from Ancient Medicine we will study in this paper. And if we check
general modern medicine most of the times the doctor treats the patient making a full abduction.
They do not realize the test, they just act in an ignorance preserving way by hypotetizing the illness.
In fact, testability is not intrinsic to the making of succesful abductive hyptoheses, [12], p. 44.

5See [5] for two kind of ignorances depending on selective or creative abduction. See [29],
Chapter 3, for a discusion between ignorance and knowledge enhancing and the difference between
abducing fiction in literature and scientific models. And [27], chapter 2.1 and [29], chapter 1.1, for
the ignorance preserving character of abduction (or ignorance mitigating).
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Nevertheless, if modern medical diagnosis seems to be an abductive inference'®,

which kind of inference/inferences are used in medical diagnosis texts in Akkadian
literature [19, 39, 13]7 Are both inferences the same? What are their differences?

3 Akkadian Medical Diagnosis

Nowadays tools of modern medicine allow us to approach diagnosis in a more ac-
curate way. In fact, modern doctors have tools to confirm or verify the hypothesis
and more precise methods to recognize symptoms/signs. In ancient Mesopotamia
the resources were limited, they did not make autopsies'” and their knowledge of
infectious diseases, microorganisms, human body, etc. was different. Besides, the
immune defense mechanisms and the organisms may have mutated along time. In
spite of these differences, we could recognize descriptions of signs and symptoms that
closely seem to correspond to modern diseases'®. The asipu was still an intellectual
and he tried to recognize and named symptoms and signs or patterns of disease gath-
ering what we may call ancient etiologies. Nevertheless, the exact identification of
the disease is still doubtful. Sometimes the symptoms/signs are the same and nowa-
days we know that they can be provoked by two or more different illness. Other
times, one illness provokes different symptoms/signs and in Ancient Mesopotamia
they were considered as different illness. In what follows, I will present different
medical diagnosis. In the next section, I approach Ancient medical diagnosis from
a philosophical point of view by focussing in the inference at stake. The next four
examples of medical diagnosis are quite complete and elaborated:

ExXAMPLE 1. GALL BLADDER DISEASE!?

e ORIGINAL TEXT IN AKKADIAN: DIS NA GABA-su u $d-Sal-la-st KUM.MES
7U.MES-3 i-hi-la e-pis KA-si DUGUD NA BI ZE GIG ana TI-8i... (BAM

16See for example [34, 7, 26] or [8] for a compararison between medical and nursing diagnosis.

'7At least we do not know for sure about autopsies [13], p. 21 and ff. “(...) Although autopsies
were never written about (except for animals), we believe that some must have been preformed in
fatal cases of pneumonia in order to gain more information.” [39]p. 43

8For a complete study about this see [39].

®Notice that the approach to ancient medicine comes from Assyriologists and Doctors. Con-
cretely, I use [39]. This a great book that study the medical diagnosis in Akkadian trying to
understand the illness from a modern perspective. It does not mean that the modern medice is
the same as the Akkadian one but their analysis allows them to recognize ancient etiology with the
modern name’s illness. The evidences of this analysis could be found in their book. Here, I just
used their examples.
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578 150/ /BAM 159 i 38-39)2021

e TRANSLATION: “If a person’s breast and back are warm and his teeth ooze
blood and opening his mouth is difficult, that person (has) gall bladder disease,
to cure him..”

e COMMENTS: Gallbladder disease is a term used for several conditions that
affect the gallbladder. We do not know how (animal or human autopsy) but
the asipus were aware of the existence of the gall bladder??. The gallbladder is
a small pear-shaped sac located underneath the liver. The gallbladder’s main
function is to store the bile produced by the liver and pass it along to the small
intestine. Most of the problems are caused by inflammation of the gallbladder
wall (cholecystitis), gallbladder polyps, gallbladder cancer, gallbladder stones,
etc. Some of the symptoms are fever, nausea, vomiting, jaundice, pain in the
gallbladder region, disorientation, low blood pressure, etc. In fact, we do not
know how the asipus reaches the conclusion, but following the conclusion of
Scurlock, J. A. and Andersen, B. R. [39], it seems that they refer to this type
of disease.

ExXAMPLE 2. CONJUNCTIVA SUFFUSED WITH BLOOD - “HAND “ OF THE GOD
MARDUK - HEMORRHAGIC VIRAL INFECTIONZ3

o ORIGINAL TEXT IN AKKADIAN: DIS UB.MES-"s¢ DUg.MES SAG SA-s¢
di-ik-"$d¢ TUKU" pi-qgam la pi-gam MUD ina KA/KIR-5u A1-5i SIG.MES
NIG.ZL[IR] SUB.SUB-su IGI/!-5 MUD $u-un-nu- -a SU ‘AMAR.UTU a-
dir-ma GAM (DPS XXI1:34-35[AOAT 43.254)2*,

o TRANSLATION: “If his limbs are supple, his upper abdomen (epigastrium) has
a needling pain, blood incessantly flows from his mouth/nose, his arms are
continually weak, "depression” continually falls upon him, (and) his eyes are
suffused with blood, “Hand of Marduk”; he will be worried and die.”

e COMMENTS: It seems to be due to hemorrhagic viral infection “Hand of Mar-
duk”. These are infections that cause bleeding problems and usually they come

20T follow the conventions of Assyriology in the text writing. Akkadian words or phonetic com-
plements are in italics separated by hyphens. Sumerian word-signs are in capital letters separated
by periods.

21See [39], p. 138, example 6.113; and [30]

221 follow Scurlock, J. A. and Andersen, B. R. affirmation, see [39], p. 136-138.

23Even if our knowledge of the viruses date from the end of the XIX century, it does not mean
they do not exist. In fact they are as old as animal and they were already present in Ancient
Mesopotamia. The ancient doctor recognizes their symptoms and treats them.

218ee [39], p.189,190; [16].
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from other animals like monkeys as primary host. We know that monkeys are
kept as pets in Ancient Mesopotamia. These fevers are Lassa fever, Ebola,
Marburg virus, Crimean-Congo hemorrhagic fever and yellow fever 2°. The
symptoms are high fever, bleeding and often death. The asipu atributes the
illness to different gods/goddesses or spirits. In this case, it is attributed to
“Hand of Marduk”. This god is always associated with the heart and this vari-
ety is distinguished by the others by a heart pain (needling pain) and bleeding.

EXAMPLE 3. MALARIA - ALUGAL.GIR.RA

o ORIGINAL TEXT IN AKKADIAN: DIS U, UD. 'DU-s" IGI-si $¢ 15/150 GIN
GISBAL i-lam-[mi] 1G1-8i 3¢ 150/ZAG MUD DIRI-al KA-s5i BAD.BAD-
te EME-[31] t-na-sak “LUGAL.GIR.RA DIB-su (STT 89:103-105a, 109-112
Stol, Epilepsy 91-92)

o TRANSLATION: “If when it "comes’ over him, his left /right eye (makes bobbing
movements similar to what) a spindle (does) when it spins (and) his right/left
eye is full of blood, he continually opens his mouth (and) he bites |his] tongue,
{LUGAL.GIR.RA afflicts him.?0”

« COMMENTS: Malaria is an infectious disease caused by parasitic protozoans
to the Plasmodium type. It comes from a mosquito bite and it is probable
that malaria has existed in ancient Mesopotamia. Some texts told about an
infectious disease associated with water “He must not go into the lowlands by
the river or an infectious disease will infect him”?7 There are different types
of malaria: Plasmodium Vivax, P. Ovale and P. Malariae; but most of deaths
are caused by Plasmodium Falciparum. This one is the cerebral malaria that
involves encephalopathy and it could be the one of the example. Some of
the symptoms are headache, fever, shivering, joint pain, vomiting, hemolytic
anemia, jaundice, retinal damage and convulsions. The cerebral malaria in-
cludes among others horizontal and vertical nystagmus (jerking eye move-
ment). It seems that the ancient etiology name for this is ALUGAL.GIR.RA.
It refers to the patient which eyes are dropping, indicating the appearance
of neurological symptoms relating to the eyes. This divinity and his twins
ANMES.LAM.TA.E.A are associated to the god Nergal, the god of pestilence.

These examples show us how the common structure in a Akkadian medical diagnosis
is. In fact, we usually have the following form:

25See[39], p. 77,189-190, and [9)].

26The neurological signs could be produced by malaria, but the type of cerebral malaria Plas-
modium Falciparum. See [39], p. 37, n 3.47.

#"See [39], p. 36-37.
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1. Symptoms/signs. In the ancient texts, these two terms are not always differen-
tiated. In modern medicine, we differentiate between signs, that the doctor’s
findings are, and the symptoms, that are the patient’s complaints. The ancient
physicians are aware of this distinction and they know that sometimes they
do not coincide. They have even used sometimes different words?®. Neverthe-
less, the distinction is not always made. For the moment and in a fist step of
analyzing the inference I will consider them as the same part without making
the difference between them. A deeper study of the inference will be needed
to approach the nuances of this two terms.

2. Hypothesis/ailment. When we approach to the ancient etiology there is a
broad amount of various syndrome that comes from gods/goddesses, ghost,
demons/demonesses and demonic forces, courses and sorcery. We could say, as
it was mentioned before, that this is more a magical practice than a rational
one. But, in fact, it seems that this is a way to deal and organize a broad
category of disease as fevers, traumas, mental illness, circulatory problems,
viral infections, etc. As the Ancient Mesopotamian religion was polytheistic,
the ancient doctor has a wide and flexible system to organize the diseases.
Sometimes, syndromes which signs or symptoms did not coincide with the
gods/goddesses, ghost or demons/demonesses became and evolve into demonic
forces. Some of the syndromes are easier to relate with the nature of the
magical creature, but other times it escapes our understanding. What is sure
is that the asipu knew better his magical world than we do now. Sometimes
we can not explain them. I do not analyze this cultural world as magical or
rational, I focus on the inference so I will use this categorization as names of
the illness whether they were given a magical explanation or not. What is
more or less clear is that he had a practical or empirical approach more than a
theoretical one. First, he recognized the signs/symptoms and then he named
the ailment.

3. Prognosis. This is something that requires medical knowledge and intuition.
In Mesopotamia it has a significant impact on therapy?” because if the asipu
considers that it is hopeless, there was no treatment. Why would they perform
expensive sacrifices or magical rituals if the patient would die anyway? Only
a favorable prognosis yields a treatment.

4. Treatment. Mesopotamian medicine was really a practical approach. It is
based on practice and they do not construct untested theoretical principles.

Z8See [39], p. xix for more details.
298ee [39], p. 529 and ff.
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Instead, they systematically try and observe. They test different plants and
minerals and record the results®’. Usually the treatment is based on medicines
and surgery. Even if some rituals should be realized, they were a supplement.
Once the ailment was stablished and the prognosis favorable, they passed to the
treatment. I will not enter into detail of the therapies, just mention that they
used bandages and topical wound treatments and they administered medicines
by different ways such as inhalation, orally, rectally, etc.

These four parts of the medical diagnosis are not always present in the texts, but they
are quite common. They could be considered as the four basic parts in Akkadian
medical diagnosis. We also have therapeutic texts that record and specify in detail
the correct treatment for each malady.

4 Inference in Akkadian Medical Diagnosis

In this section, I will analyze the inference at stake in Akkadian medical diagnosis.
First, I will mention how it has been understood until now. Later, I will suggest
another approach to medical diagnosis in Mesopotamia from a philosophical point
of view, by relying on previous Assyriologists’ studies and various examples.

Usually the medical texts have a specific pattern, characteristic of scribal prac-
tice. Formally, they take the appearance of omen texts and they are organized in
collections3!.

“If a man is sick (and has the following symptoms)...”

“If a man suffers from (such and such) pain in his head (or other part of the
body)”

The established pattern of the omen in ancient Mesopotamia has the form of a
conditional structure. This is the basic formulation of all Babylonian omens “if so -
and -so happens, then so - and - so can result”, “if (or, “whenever”) x then y” 32.
They use a possible or probable conditional with a protasis or antecedent and an
apodosis or consequent. This omen structure offers a warning about the future, that
it is not yet realized. The possibility nuance constitutes the core of the structure.
Nevertheless, as it has already been emphasized??, the difference between the literary
omens and the medical omens is to be found in the status of the protasis/antecedent.

30Tt is true that we do not have modern tests, but the ancient doctor tries and observes in the
sense of experimental medicine: observation and experience, see [4], p. 42

31Gee for example [31], p. 289 and fF.

32See [36], p. 257-9.

33See [31], p. 294 and [13], p. 15.
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Even if both of them express a warning about the future, the medical one refers to
signs/symptoms from practice, an empirical fact.

This omen structure is explained by Geller in terms of “quasi-causality”. The
relation is of the type: “If omen A was associated with event B at some time in
the past, inference would suggest that the reoccurrence of A might lead to the
reoccurrence of B”34. He considers this relation in terms of deductive logic:

“Babylonian epistemology bases itself upon logical deduction in which general
patterns can be inferred from a myriad of details. A typical example of this kind
of deduction can be seen in the relationship between the protasis and apodosis
clauses of omens. (...) we must admit that this type of deductive logic in Babylonia
was not entirely without purpose, since establishing a relationship between data and
inferences is after all the beginning of methodical and scientific thinking.” (Geller[13],
p. 12-13.)

However, according to Geller such an explanation would rely on a fallacy:

“From a modern perspective, the entire logic is fallacious, and we would dismiss
the association of two seemingly unrelated events as the fallacy of “post hoc ergo
propter hoc”, namely the fallacy of assuming that where two events are in sequence
the second is caused by the first.” (Geller [13], p. 12.)

Geller is right in pointing out that this would constitute a fallacy. In addition,
from the viewpoint of modern deductive logic, we might add that the quoted exam-
ples rely on another fallacy, namely the fallacy of affirming the consequent. Indeed,
affirming the consequent consists in inferring A (illness) from if A (illness), then B
(symptoms) and B (symptoms). We could also better understand Ancient medical
diagnosis in terms of abduction. We formally represent the symptoms by B and the
illness by A. The inference would have the structure of an abduction explained as
before. Let us illustrate the point by the following examples:

EXAMPLE 4. HEPATITIS B - TUN.GIG (“SICK LIVER”)

+ ORIGINAL TEXT IN AKKADIAN: DIS NA [TUN] SA-3i DIB-s/u = 1] di-kis SA
GIG SA-s¢ KU-$¢ SA-$¢ ru-ug-$¢ SA. MES-§4 i-sa-bu-u” DU UZU.MES-
i tab-ku ni-kim-ti. SA-bi TUKU-§ na-as-pa-ak bir-ki u a-hi GIG NA BI
TUN.GIG ana TI-8i...(BAM 87:1-5)3°,

o TRANSLATION: “If a person’s "liver” afflicts "him" [...] he is sick with a needling
pain in the abdomen, his abdomen hurts him, his heart is distant from him,
his stomach churns, all of his flesh is tense, he has bloated stomach, (and) he
is sick with tenseness in the arms and legs, that person (has) TUN.GIG (“sick
liver”), to cure him...”

34See [13], p. 12.
35See [39], p. 212, example 10.20.
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In fact, the element A would be the TUN.GIG (“sick liver”), while the consequences
would be the signs/symptoms (B) that produce the illness. The “quasi-causality”
would be in this sense. But in a diagnosis we do not have the A element as starting
point, but the B. So, if we have the signs/symptoms (B), we have the element B and
what we hypothesize is the A. My point is that the inference at stake in the Akkadian
medical diagnosis is not a deductive inference, but an abductive inference, as it
happens in modern medical diagnosis. Abduction is a different kind of inference3®,
triggered by a surprising fact, and by which a hypotihesis is introduced. It is neither
induction, nor deduction. I will use the previous G-W model for abduction to explain

Akkadian medical diagnosis inference.

1. T'Q(«)

The starting point is a question for which if we have the answer, this answer
would be « . The question is the following: which illness? So our cognitive
target is to know the ailment to be able to treat the patient. In fact, we are
in front of an ignorance problem, we do not know the malady and we would
like to achieve the target to solve the ignorance problem. In this case, we talk
about signs/symptoms (a needling pain in the abdomen, his abdomen hurts
him, his heart is distant from him, his stomach churns, all of his flesh is tense,
he has bloated stomach, (and) he is sick with tenseness in the arms and legs).
That makes us think the patient is ill and need to be treated. This surprising
fact could be evidence (or pieces of evidence) that are not normal or out of
current healthy state3”.

2. ~(R(K,T)) [Fact]
We do not have a relation between our current knowledge (background knowl-
edge) and the target. We do not know which kind of illness has the patient,
we just have the signs/ symptoms.

3. ~ (R(Kx*,T)) [Fact]
We do not have an immediate successor in our base of knowledge that allows
us to know the answer. That is to say, we do not have a relation between
the successor of K and our target. There is nothing that we could add, as a
new information, that allows us to solve the problem. In this case, we could
discover the answer by some kind of test, but this would lead to subduance. In
ancient Mesopotamian medicine, the direct test are rare and there are usually

36Even if some authors consider that we are not in front of an inference at all, see [17, 35].

3"Here we could ask and we should study deeply what a healthy state is in ancient Mesopotamia.
One study about that could give us information about is [6], but I will not enter into details in this
paper.
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no such subduance. In the persisting state of ignorance, abduction runs in
view of the target.

4. H ¢ K [Fact]
So, what to do to solve the problem? The agent, in order to set a plausible
solution to the ignorance problem, makes a hypothesis (Hepatitis B - TUN.GIG
(“sick liver”)). The hypothesis is not part of the base of knowledge. The
ailment as hypothesis is not something that we had before in our base of
knowledge.

5. H ¢ Kx[Fact]
The hypothesis or ailment is not part of an immediate successor of our base
of knowledge either.

6. ~ R(H,T) [Fact]
And there is no relation between the hypothesis and the target.

7. ~R(K(H),T) [Fact]
There is neither a relation of both (hypothesis and target) combined with the
base of knowledge.

8. H~ R(K(H),T) [Fact]

The relation is only subjunctive. That is, if H was the case, it would provide
an answer to reach the target. The hypothesis relates subjunctively the target
in combination with our knowledge base. In fact, this might account for the
“quasi-causality ” referred to before. This subjunctive relation is expressed
in Akkadian language by a conditional one and in an omen structure. But
what does “subjunctive relation” exactly mean? This relates to the “hence”
in the scheme of Peirce and it is one of the biggest problem of abduction. This
relation means that H is not a true sentence, it is not a piece of knowledge
either, but if it were, it would be an acceptable solution to our problem. In
our case, we could hypotetize Hepatitis B, but it could be another malady
with similars symptoms/signs. We do not have the proper test to verify if it is
Hepatitis B or not. Notice that we do not have «, which would be the answer
to our problem, we just have the hypothesis.

9. H satisfies conditions S, ..., Sy, [Fact]
Nevertheless, our hypothesis is plausible. It should satisfy several conditions
to be plausible. In our case, Hepatitis B - TUN.GIG (“sick liver”) usually
produces this kind of symptoms/signs, it is possible that Hepatitis B existed
at that time, etc.

1714



ABDUCTION IN AKKADIAN MEDICAL DIAGNOSIS

10. Then, C(H) [Sub-conclusion, 1-7]

So, at the end, we decide to conjecture the Hepatitis B - TUN.GIG (“sick
liver”) as the malady that causes the signs/symptoms displayed by our patient.
Until here, abduction is only partial. At this point, the modern test could be
really useful, as in the step & (if we would have been an immediate successor of
our base of knowledge). A modern test for Hepatitis B could tell us if we are in
front of a Hepatitis B virus or not. So, here we would have three possibilities.
First, we test and we discover that we are really in a case of Hepatitis B.
This is a subduance. Second, we test and we discover that we are not. In
this case, we could continue with another hypothesis and maybe reach a full
abduction. Third, even if we do not test, we continue our reasoning and we
act in consequence.

11. Then, HY [Conclusion 1-8]

Here is the point in which we arrive to by a full abduction. Even if we do
not have knowledge, we continue with our hypothesis as it is, a hypothetical
statement. We consider it as a plausible explanation. Then, we activate the
hypothesis and we use it in a further reasoning. We act as if it were true. In
the Akkadian medical diagnosis, even if we do not have proof of the illness con-
jectured, we treat the patient as it would be the case. The following example
shows this hypothesis activation:

EXAMPLE 5- POTION FOR SETU - ENTERIC FEVER- BAM145 (=KAR 199)38
ORIGINAL TEXT IN AKKADIAN:
1./DIS NA U] D.DA TAB.'BA" - [(ma SIG SAG.DU-s1)]
2.[(GU)]B.MES IGLMES-$i NIGIN.MES-"du -5-/ma/
3.i-ta-na-as-ra-hu
4.SU-$4 ta-ni-hu TUKU. TUKU-s7
5.KUM la ha-ah-has <(TUKU.T[UKU])>
6.su-a-lam TUKU.TUKU-s7
7.8A-5i e-ta-na-ds-sd-ds
8.il-la-tu-sii DU'-ku
9.SA-$1 ig-da-na-ru-ur
10.re-du-ut ir-ri GIG u 4-Sar-df(a)]
11.e-le-nu UZU-$i SEDy
12./(5a)p-lJa-nu GIR.PAD.MES-$4 sar-ha
13./(ina sa’-la)]-li-§4 < (i-ni- "-i)> GLGID ha-3e-$i
14. [(it)]-"t0-nd*0 -is-kir

38See reference text and translation in [38], p. 423-424.
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15.[(1i)]-ga-na-ah*

16./(si-ri-ih-t)Ji KUM SA TUKU.MES
17./(NA BI UD.DA.TAB.BA ana TI-$i)]

18. /(UGA MUN/ ka-"ta’-[r]a

19. [Uk]am man-ti US|(E. L)JILLAN

20.U kdm-ka-du UNIM.NIM42U GESTIN.KA5. A
21.7 (variant:8) U.MES SES 1-ni§ GAZ SIM
22.ina KAS <<KAS>> NAG.MES

23.ina 1 ES.MES-su-ma TI

24-29 effaced colophon

o TRANSLATION: “(1-23) [If] "setu’ burns [a person] so that the air of his head
continually stands on end, his face seems continually to spin [and] he contin-
ually feels burning hot, his body is continually tired (and) <(he continually
has)> a lukewarm temperature, he continually has su/ alu-cough, his stomach
is continually upset, his saliva flows, his stomach turns over and over, he is sick
with “flowing” of the intestines and makes (one bowel movement) follow™ (an-
other), the flesh above is cold (but) his bones below (feel) burning hot, when
he tries to sleep, (his breath) turns back (and) his wind pipe continually closes
up, he coughs (variant: belches), (and) he continually has burning intestinal
fever, that person is burned by setu.

To cure him, you crush together (and) sift these seven (variant: eight) plants:
"kamunu’-cumin, katarru-fungus (variant: kamun Sadé-fungus), kamantu-
henna (?), lillanu (ripe grain), kamkadu, samanu (and) “fox grape”. You have
him repeatedly drink (it mixed) with beer. If you repeatedly rub him gently
(with it mixed) with oil, he should recover.”

Here, a clear example of the activation of the hypothesis is given. The hypothetical
ailment setu-fever is conjectured and we activate it in a further reasoning. We act in
consequence and treat the patient. In fact, as it was mentioned, once the hypothesis
is settle in ancient Mesopotamian medicine, there are different options. First, the
hopeless prognosis and the asipu decide not to treat the patient. Even this “not-
doing something” is the activation of the hypothesis in a further reasoning because
he is acting in consequence on the basis of a hypothesis. Second, the prognosis is
favorable and the asipu treats the patient. The treatment could be as the one shown
in the example 6, just with herbs, plants, minerals, etc. as a recipe or prescription
or with a supplemented ritual. Both cases show how the hypothesis is activated in
a further reasoning, in both cases an action is followed from a conjectural malady.
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5 Inference in modern and Akkadian medical diagnosis:
a compared approach

I have analyzed inferential aspects of modern medical diagnosis and Akkadian med-
ical diagnosis in terms of abduction. For the sake of precision, we should distinguish
between three kinds of diagnosis: modern medical diagnosis, general physician mod-
ern medical diagnosis, and Akkadian diagnosis. First, modern medical diagnosis
is committed with hypothesis testing, unlike general physician diagnosis. Actually,
medical diagnosis reasoning as abductive reasoning has been considered as inference
to the best explanation (or to the best diagnosis)[26]. This conception is focused not
just in the generation of hypothesis (abduction), but also on the evaluation of the
hypothesis. This reasoning to the best explanation also uses induction and deduc-
tion inferences, as Magnani pointed out®’. He considers medical reasoning may be
broken down into two different phases: the selection of the hypothesis (abduction)
and the evaluation of the hypothesis (corroborate or eliminate, deduction-induction
phase)??. In the context of the GW model, we may consider that this evaluation
stops the abductive process and leads to Woods’s subduence. Such a diagnosis con-
sists of a partial abduction. This partial abduction is just a different procedure.
On the contrary, the general physician medical diagnosis usually does not evaluate
hypothesis and they do not use to make tests. In fact, this is the reason why I have
used G-W model and not a model based on inference to the best explanation (IBE).
This kind of diagnosis is an inference that preserves ignorance. The conjecture is
activated without testing. That is, a full abduction in the context of the GW-model.
Another question is to establish if we are in front of a creative or selective abduction
(in Magnani words). It seems that general physician modern medical diagnosis relies
on a selective process. We select the illness between the known illnesses. Creative
hypothesis would occur when a new malady is discovered and a name is introduced
for it4l.

Going back to Akkadian medical diagnosis, I have compared it with modern
general physician medical diagnosis because they used to treat the patient without
test and the schema of reasoning seems to fit with an inference that preserves the
ignorance. In fact, they also activate the hypothesis without tests. The question now
will be, are we in front of a selective or a creative abduction? In most of the cases we

39There are two main epistemological meaning of the word abduction: 1.abduction that only
generate “plausible” hypothesis (selective or creative) and 2.abduction considered as the result as
inference to the best explanation, which also evaluates hypothesis.[26], p. 19.

498ee abduction/deduction-induction cycle in Magnani’s ST-MODEL for medical reasoning in
[26], Chapter 4; and [27], section 1.3.1. p. 9 and fI.

“1See also [27], p. 10.
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are facing a selective abduction. The asipu has his medical Handbook and he chooses
the malady which corresponds to the sign/symptoms. Nevertheless, is it always like
that? As in modern medical diagnosis there are cases of non-selective abduction.
Following Scurlock and Andersen??, the asipu sometimes uses a name that evolves
into a demon to name a malady for which they did not have a demon. That is to say,
even if they use the divine or magical category to explain the maladies, sometimes
it goes on the other way round. It is not always a selection between options, the
options sometimes are created.

To sum up, this means that we do not really have knowledge, at least in this kind
of diagnosis (I mean general diagnosis in modern medicine and Akkadian medical
diagnosis) but we overcome our ignorance and we reason from the best explanation.
Modern medical diagnosis is at some point different from modern general physician
and Akkadian diagnosis because it makes use of tests, weheras the latter do not.
Now, is there any difference between the general modern diagnosis and the Akkadian
one? Each one relies on ignorance-preserving abductive inference. But, is it enough
to claim they are the same type of abductions?

If we follows Schurz classification for abduction?® we could consider that both in-
ferences fit with an hypothetical (common) cause abduction. This kind of abduction
is the most fundamental kind of conceptually creative abduction**. This abductive
conjecture postulates a new unobservable entity together with new laws connecting
it with the observable properties (without lowering it by analogy). There are two
types of this kind: scientific common cause abduction (for Schurz’s is the causal
unification) and speculative (cause) abduction:

a) Speculative. It happens when the phenomenon is an effect of hypothetical and
unobservable cause. Schurz use the following example for a speculative abduction:

John got ill,

some power wanted that John get ill,

and whatever this power wants, happens.

The point of this abduction is that it does not have a predictive power (it is

“2See [39], p. 505.

43See [37]. Notice that Schurz classification is made for an abduction as inference to the best
explanation (IBE) and the G-W model is better understood as inference from the best explanation,
abduction is not intrinsically explanatory, but merely radically instrumental. Nevertheless, I will
use Schurz classification to try to understand the differences between these two medical diagnosis.
I use the evaluation criteria (IBE) as conditions to fullfill for the hypothesis to be (step 9 in G-W
model).

“Here we have the point that in medical diagnosis sometimes it is the first time to name an
illness and it is creative, but the most of times is selective as I have already explained. Even if
Schurz does not talk about the selective one, his classification could help us to analyze the different
kinds. See [37], p. 218 y ss. for details about hypothetical (common) cause abduction.
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post-hoc), and does not offer proper unification. There are a specific God for each
event 4°

b) Unification. It happens when the phenomenon are effects of that cause. Many
elementary phenomena are explained by a few basic principles and it leads to new
predictions. Their hypotheses are independently testable because they produce pre-
dictions.

If we use this classification, general physician modern medical diagnosis could be
part of a causal unification while Akkadian medical diagnosis could be a speculative
abduction. General physician medical diagnosis unifies different sign/symptoms as
coming from a common cause. It has a predictable character and it is testable (even
if we do not test, we can do it) as well as discovering new kinds of properties enlarge
our causal understanding. The fact to assign a god, or a “Hand of God” in Akkadian
medical diagnosis, could make us think that this diagnosis is a purely speculative
abduction. Nevertheless, some examples make us doubt about the purely specula-
tive character of the reasoning. The lack of the intrinsic virtue of unification is not
really clear, because the Akkadian doctor tries to unify different signs/symptoms
with one cause. This cause it is not always a god or demon, sometimes it is a part
of the body®. Besides, Akkadian medical diagnosis sometimes has a predictable
character as in the case of malaria “He must not go into the lowlands by the river or
an infectious disease will infect him*7”. The fact that discovering new kind of prop-
erties enlarges our causal understanding could be exemplified on the commentaries
to the Handbook. The asipu is constantly trying to enlarge this understanding.
Nevertheless, something that surely could differentiate them could be the possibility
of test. At the time of Akkadian medical diagnosis, there are not modern tests, but
the testability is also evaluated through their virtue of producing new predictions
and this is also possible in Akkadian medicine. My point is that, even if Akkadian
medical diagnosis seems to be a speculative and unscientific abduction, it might be
at least in a middle way to a scientific unification abduction.

Finally, is causal wunification the only scientific abduction? Following
Hoffmann [18], there are cases of speculative abduction in scientific reasoning as
the case of “Possible Production of Elements of the atomic number higher than 92”
by Ida Noddack?®. In fact, we do not really have a clear classification of abduction
because it depends on the criteria that we choose and more deeply to our under-

45Gee [37] for more details. He explain how the probability of the “scientific” hypothesis is much
higher than that of the “speculative” one.

16See my example of sick liver number 4 and [39]p. 504.

47See [39], p. 36-37.

“8See [18].
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standing of abduction®®. The point is that if, as Park[32] said, classifying abduction
is yet to get off the ground, how we could make a difference between modern gen-
eral physician diagnosis and Akkadian diagnosis just at the level of the inference? I
think this point needs a deeper study and for the moment the classification of the
diagnosis (modern general physician and akkadian) as different kind of abduction is
yet to get of the ground.

6 Conclusion

I have started this study about Ancient Mesopotamian Practice by tackling the wide
problems inherent to this kind of texts. Is it a science-rational thinking or a magical
practice? Without making any choice in this respect, I have focused on the inferen-
tial aspect of medical diagnosis. In fact, I just try to analize the reasoning at stake,
not the scientific or magical aspect. First, I treat modern medical diagnosis as an
inference closer to what we call abduction. Modern general physician medical diag-
nosis seems to better fit within an abductive reasoning than a deductive or inductive
one, even if they could also be used in the process. Then, I come back to Ancient
Mesopotamian medicine and I show several examples of Ancient medical diagnosis.
By taking into account the inference at stake in Akkadian medical diagnosis, we see
how the inference and the reasoning are not so different from the modern one. In
fact, it seems that ancient medical texts use the same kind of reasoning than the
modern ones. This reasoning is an ignorance preserving reasoning and it is different
from induction and deduction. In fact, we try to reach a cognitive target and we
reason from a lack of knowledge state that continues as such in the process. We are
not led to a new belief or knowledge, but we work with hypotheses that continue
being conjectural, even if we use them in a further reasoning. My first point is to
answer the assiriologists as Geller [13]that stated the ancient medical diagnosis is a
logical deduction. No, we are not in front of a logical deduction. The reasoning at
stake in medical diagnosis modern and ancient is an abductive reasoning. Here, we
could go back to my starting point and set the following questions. If we consider
that modern medical diagnosis is a rational thinking and that it is an abductive
reasoning, why would we consider that the Ancient medical diagnosis that uses the
same kind of inference is an irrational thinking? If we only check the inference at
stake, both rely on the same schema. So, here my second point, the ancient medi-
cal diagnosis is a rational thinking as it is the modern medical diagnosis. It is not
just if then rules and they do not use test. This is exactly what is expresed in
G-W model for abduction and this is why I use this model. Third, we consider that

“9See [32] for an analysis of the classification of abduction.

1720



ABDUCTION IN AKKADIAN MEDICAL DIAGNOSIS

modern medical diagnosis is an abduction as it is the ancient medical diagnosis. Nev-
ertheless, what is the different between them? Is it a different kind of abduction?
After analyzing the possible types of abduction I consider that maybe Akkadian
medical diagnosis will be in a middle way between unification causal hypothesis and
speculative abduction. I said maybe, because I consider that further analysis will
be needed. We can not establish a clear classification nowadays without doubt of
abduction, so to differenciate the two diagnosis as two different kinds of abduction
is not possible. Besides, further analysis would be needed to really clarify the role of
the different elements in an abductive schema in Ancient Mesopotamian diagnosis.
A deeper study of the linguistic forms and its role on the inference schema would
help us better understand the inference in Ancient Akkadian Practice. Of course,
abductive reasoning is problematic. For example, what is the criteria for a correct
abduction? Referring to medical practice, what makes a diagnosis a good diagnosis?
What is the role of the different elements inside the inference schema? Answering
these questions provides the basis for a deeper understanding of medical practice.
It could also shed light on the G-W model for abduction, in particular what they
call “full abduction”, by applying it to a concrete practical case.
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Abstract

We introduce Riesz space-valued states, called (R, 1g)-states, on a pseudo
MV-algebra, where R is a Riesz space with a fixed strong unit 1. Pseudo MV-
algebras are a non-commutative generalization of MV-algebras. Such a Riesz
space-valued state is a generalization of usual states on MV-algebras. Any
(R, 1g)-state is an additive mapping preserving a partial addition in pseudo
MV-algebras. We introduce (R, 1g)-state-morphisms and extremal (R, 1g)-
states, and we study relations between them. We study metrical completion
of unital /-groups with respect to an (R, 1g)-state. If the unital Riesz space
is Dedekind complete, we study when the space of (R, 1r)-states is a Choquet
simplex or even a Bauer simplex.

Keywords: MV-algebra, pseudo MV-algebra, state, state-morphism, unital
Riesz space, (R, 1R)-state, extremal (R, 1g)-state, (R, 1g)-state-morphism, R-Jor-
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1 Introduction

The notion of a state is a basic one in the theory of quantum structures, see e.g.
[10]. It is an analogue of a finitely additive probability measure. MV-algebras
as well as its non-commutative generalization, pseudo MV-algebras, introduced in
[16, 30], form an important subclass of quantum structures. Mundici defined a notion
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of a state on an MV-algebra in [27] as averaging the truth-value in Lukasiewicz
logic. States on MV-algebras are studied very intensively last 10-15 years when
many important results as an integral representation of states by regular o-additive
probability measures, [21, 29], or the MV-algebraic approach to de Finetti’s notion
of coherence have been established, see [23]. Some applications of states on MV-
algebras can be found in [31].

In the last period, the so-called Riesz MV-algebras have been studied in the
frames of MV-algebras, see [6]. A prototypical example of Riesz MV-algebras is an
interval in a unital Riesz space, when we use Mundici’s representation functor I,
see [26] or [5, Chap 2]. The converse is also true: For any Riesz MV-algebra M,
there is a unital Riesz space (R, 1g) such that M 2 T'(R,1g), [6, Thm 3]. Whereas
MV-algebras are algebraic semantic of the Lukasiewicz logic, [4], Riesz MV-algebras
are an extension of the Lukasiewicz logic: The propositional calculus that has Riesz
MV-algebras as models is a conservative extension of Yukasiewicz infinite-valued
propositional calculus, [6]. Moreover, these structures have also several applications,
among which we mention artificial neural networks, image compression, game theory,
etc., see [2, 22]. Fuzzy logics with noncommutative conjunctions inspired by pseudo
MV-algebras were studied in [19].

For more information about MV-algebras, see [5] and about states on MV-
algebras, see [28], and for the most fresh survey on states on MV-algebras, see
[14].

States on pseudo MV-algebras have been studied in [8]. For pseudo MV-algebras
there is a basic representation by unital /-groups not necessarily Abelian, [9], which
generalizes Mundici’s representation of MV-algebras, see [27]. A state on a pseudo
MV-algebra is defined as an additive functional with non-negative real values which
at the top element of the pseudo MV-algebra attains the value 1. Whereas every
MV-algebra (with 0 # 1) admits at least one state, this is not a case for pseudo MV-
algebras, because as it was shown in [8], there are stateless pseudo MV-algebras.
Moreover, a pseudo MV-algebra admits at least one state if and only if it has at
least one normal ideal that is also maximal. Therefore, all linearly ordered pseudo
MV-algebras, representable pseudo MV-algebras or normal valued ones have at least
one state.

Riesz space-valued states on MV-algebras have been firstly introduced in [3]
where they are called generalized states. Their main result on generalized states
concerns with a representation theorem for semisimple MV-algebra via Riesz space-
valued states for a Dedekind complete Riesz space. The standard states reflect only
an additive structure of numerical averaging the truth-value in f.ukasiewicz logic.
More information about the MV-algebra or a pseudo MV-algebra we obtain if its
structure allows also multiplication by reals which goes to Riesz MV-algebras and
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such events can be better describe numerically by states where multiplication by re-
als is involved and it goes to Riesz space-valued states. Riesz space-valued states are
a quite natural generalization of well-studied states on ¢-groups and MV-algebras
(see also [18, 27]). In this paper we provide a framework in which it is possible
to encode and decode more information than usual. We note that in mathemat-
ics we study also different generalizations of probability measures as signed mea-
sures, group-valued measures, operator-valued measures, vector-measures, hyper-
states [25], etc., and this contribution gives new information about Riesz space-
valued states in Lukasiewicz type logic.

A Riesz space-valued state is introduced in this paper as an (R, 1r)-state on a
pseudo MV-algebra M which is an additive mapping on M attaining values in the
interval [0, 1g] of the unital Riesz space (R, 1r), where R is a Riesz space and 1p is a
fixed strong unit of R, Section 3. The main aim of this study, in contrast to one in [3],
is a detailed study of the (R, 1r)-state space for a pseudo MV-algebra. This study
contains both situations, MV-algebras and non-commutative pseudo MV-algebras.
We show that there are many parallels with the standard state space of MV-algebras,
[27], as well as of pseudo MV-algebras, see [8].

We introduce also extremal (R, 1g)-states and (R, 1g)-state-morphisms as ho-
momorphisms of pseudo MV-algebras into the interval [0,1r]. We show relations
between them and we discuss when the latter two kinds of (R, 1g)-states coincide
and when not. Whereas according to [8], there is a one-to-one correspondence among
extremal states, state-morphisms and maximal ideals that are normal, respectively,
we show that for (R, 1g)-states this is not a case, in general. We will study cases
when (R, 1g) is an Archimedean unital Riesz space or even a Dedekind complete
unital Riesz space. In Section 4, we present metrical completion of a unital ¢-group
by an (R, 1g)-state. In Section 5, we introduce also R-measures and R-Jordan signed
measures and we study situations when the (R, 1g)-state space is a simplex, or a
Choquet simplex or even a Bauer simplex and when every (R, 1r)-state lies in the
weak closure of the convex hull of extremal (R, 1r)-states.

The paper is endowed with a couple of illustrating examples.

2 Pseudo MV-algebras and Riesz Spaces

In the present section we gather basic notions and results on pseudo MV-algebras
and Riesz spaces.

Pseudo MV-algebras as a non-commutative generalization of MV-algebras were
defined independently in [16] as pseudo MV-algebras and in [30] as generalized MV-
algebras.
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Definition 2.1. A pseudo MV-algebra is an algebra (M;®,” ,~,0,1) of type (2,1, 1,
0,0) such that the following axioms hold for all x,y,z € M with an additional binary
operation ® defined via

yor=(" oy )

Al zo(y®2)=(rDy)®2

(A1)

(A2) 260=0®z = a;

(A3) zpl=1@z=1;

(Ad) 1~ =0; 1~ = 0;

(AB) (z~ @y )~ = (@~ @y~)";

(A6) 20 (2~ 0y =y (Y~ 0r)=20(y" ©y) =y0O (v~ dx);
(A7) 20 (@ ©y)=(zdy~) Oy;

(A8) (z7)~ = .

We shall assume that 0 # 1. If we define x < y iff 27 @y = 1, then < is a
partial order such that M is a distributive lattice with x Vy = = @ (2~ ® y) and
rAy=z0(x~ ®y). We recall that a pseudo MV-algebra is an MV-algebra iff & is
a commutative binary operation. As usually, we assume that ® has higher binding
priority than A and &, and & is higher than V.

A non-void subset I of M is an ideal of M if (i) a < b € I implies a € I, and (ii)
if a,b € I, then a®b € I. The sets M and {0} are ideals of M. An ideal I # M
of M is maximal if it is not a proper subset of any proper ideal of M. An ideal I of
M is normalif a® I :={a®b:bel} ={cHa:cel}=1®aforany a e M. For
basic properties of pseudo MV-algebras see [16].

Pseudo MV-algebras are intimately connected with ¢-groups. We remind that a
po-group is a group (G;+, —,0) written additively endowed with a partial order <
such that, for g,h € G with g < h we have a+ g+ b < a+ h+ b for all a,b € G.
If the partial order < is a lattice order, G is said to be an ¢-group. The positive
cone of a po-group G is the set GT = {g € G: 0 < g}. A po-group G satisfies
interpolation if, for x1,xa,y1,y2 € G with x1,x2 < y1, Yo, there is an element z € G
such that z1, 22 < z < y1,y2. An element u > 0 is a strong unit of G if, given g € G,
there is an integer n > 1 such that ¢ < nu. A couple (G, u), where G is an {-group
and u is a fixed strong unit of G, is said to be a unital ¢-group. An f-group G is
(i) Archimedean if, for a,b € G, na < b for each integer n > 1 implies a < 0, (ii)
Dedekind o-complete if any sequence {g,} of elements of G that is bounded from
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above by an element gp € G has supremum \/,, g, € G, and (iii) Dedekind complete if
any family {g; : t € T'} of elements of G which is bounded from above by an element
go € G has supremum \/;c7 g: € G. An l-ideal of an ¢-group G is any {-subgroup P
of G such that a € P and |a| < |b| yield a € P. Here |g| = g™ + ¢, gt =g V0 and
g~ = —(g N 0) for each g € G. For non-explained notions about /-groups, please,
consult e.g. [15, 17].

A prototypical example of pseudo MV-algebras is from ¢-groups: If u is a strong
unit of a (not necessarily Abelian) ¢-group G,

(G, u) :=[0,u]
and

Ty = (2 +y)Au,

T i=u—x,

8
I

—r + u,

rOy:=(r—u+y) Vo0,

then I'(G,u) = ([0,u];®,”,~,0,u) is a pseudo MV-algebra [16]. Conversely, for
every pseudo MV-algebra M, there is a unique unital ¢-group (G,u) (up to iso-
morphism of unital ¢-groups) such that M = T'(G,u), and there is a categorical
equivalence between the category of pseudo MV-algebras and the category of unital
l-groups as it follows from the basic representation theorem [9] given by the functor
(G,u) = I'(G,u).

We define a partial operation, 4+, on M in such a way: z + y is defined in M iff
x ®y = 0, and in such a case, we set v +y := x @ y. Using the representation of
pseudo M'V-algebras by unital /-groups, we see that the partial operation + coincides
with the group addition restricted to M. The operation + is associative. We note,
that if x < y for x,y € M, then there are two unique elements z1,25 € M such
that 21 +* = y = © 4+ 22. We denote them by 21 = y — x and 29 = —z + y, and
using the group representation, — coincides with the group subtraction. Since +
is associative, we say that a finite system (a;)]; of M is summable if there is an
element a = a; + - -+ a, € M; a is said to be the sum of (a;)!; and the sequence
(a;), is said to be summable.

For the partial addition + on any pseudo MV-algebra the following form of
the Riesz Decomposition property, called the strong Riesz Decomposition Property,
RDPs for short, holds: If for any ai,as,b1,bs € M such that a; + as = by + bo
there are four elements c11, ¢12, €21, €22 € M such that a1 = c11 + ¢12, a2 = c21 + ¢o9,
b1 = c114c21, by = c19+co0 and c1aAco; = 0. It is derived from such a decomposition
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holding in f-groups, see [15, Thm V.1] and [11, 12]. Equivalently, if a,...,an
and by,...,b, are elements of a pseudo MV-algebra M such that ay + -+ am =
bi + -+ + by, there is a system {c;;: 1 < i < m,1 < j < n} of elements of M
satisfying

a; =ci1+ -+ Cin, bj=cij+ -+ Cmj (2.1)

forall1<i<m,1<j<mn,and
(Cit1j+ -+ emi) Alcijr+-+em) =0, i<m,j<n (2.2)
For any z € M and any integer n > 0, we define

L =12""N =", n>1,
00z=0,(n+1)Oz=nNoz)0x, n>1,
0x =0,(n+ 1)z =nx+x,n>1, if nx + z exists in M.

A real vector space R with a fixed partial order < is a Riesz space if
(i) R with respect to < is an ¢-group;
(ii) f € R* implies af € R for every real number a > 0.

A Riesz space R is Archimedean if it is Archimedean as an ¢-group, analogously
R is Dedekind o-complete or Dedekind complete if so is R as an £-group. We note
that if R is Dedekind complete, then it is Dedekind o-complete, and if R is Dedekind
o-complete then it is Archimedean, see [24, Thm 25.1]. A Riesz ideal of R is any
l-ideal of R. We note that any Riesz ideal of R is a Riesz subspace of R.

A wunital Riesz space is a couple (R, 1r) where R is a Riesz space and 1 is a fixed
strong unit of R (i.e. 1 is a strong unit of the /-group R). Important examples of
unital Archimedean Riesz spaces are spaces of real-valued functions on a topological
space: Let T' # () be a compact Hausdorff topological space. We denote by C(T)
and Cy(T') the system of all continuous real-valued functions of 7" and the system
of all bounded real-valued functions on 7', respectively. Then C(7") and Cy(T") are
Archimedean Riesz spaces with respect to the partial order of functions f < g iff
f(t) < g(t) for each t € T. The function 17 defined by 17(¢) = 1 for each t € T
is a strong unit for both C(T') and C,(T). Both spaces are closed under usual
product of two functions, and if we endow both spaces with the sup norms, C(7")
and Cy(T) are Banach algebras. The space C(T') has an important property: If
T’ is another non-void compact Hausdorff space, then there is an isomorphism of
Riesz spaces between (C(T'), 17) and (C(T"), 17+) preserving product of functions iff
T and T" are homeomorphic, see [7, Thm IV.6.26]. In addition, let 77 = M(C(T))
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denote the space of maximal ideals of C(T'). Under the hull-kernel topology, 7" is
homeomorphic to T and C(T') and C(T") are isomorphic Riesz spaces and isometric
Banach spaces, see [24, Ex 45.7].

In the last period, there has appeared a class of important MV-algebras, Riesz
MV-algebras, which are connected with Riesz spaces, for more details, see [6]. We
note that if (R,1g) is a unital Riesz space, then the MV-algebra I'(R,1g) is a
characteristic example of a Riesz MV-algebra.

For Archimedean unital Riesz spaces there is a representation theorem by Yosida,
see [32] or [24, Thm 45.3]:

Theorem 2.2. [Yosida Theorem|] Let (R, 1r) be an Archimedean unital Riesz space.
Then there is a compact Hausdorff topological space T such that R can be embedded
as a Riesz subspace into C(T), the Riesz space of continuous real-valued functions
on T, such that 1r maps to the constant function 1p, where 1p(t) =1, t € T. In
addition, T can be chosen such that the image of the embedding of R into C(T) is
uniformly dense in C(T), i.e. the uniform closure of the image of R is C(T).

We remind that there are nice topological characterizations, Nakano’s theorems,
when the Riesz space C(T) (T # () compact and Hausdorff) is Dedekind o-complete
and Dedekind complete, respectively: (1) C(T') is Dedekind o-complete iff T" is a
basically disconnected space, that is, the closure of every open F, subset of T is
open, see e.g. [18, Cor 9.3], [24, Thm 43.9]. (2) C(T) is Dedekind complete iff T" is
extremally disconnected, that is, the closure of every open set of T is open, see [24,
Thm 43.11]. We note that the same characterizations hold also for the Riesz space
Cy(T') of bounded real-valued functions on 7'.

General Dedekind o-complete unital Riesz spaces are characterized as follows,
see [24, Thm 45.4):

Theorem 2.3. If (R, 1r) is a Dedekind o-complete Riesz space, then it is isomorphic
to some (C(T),17), where T # 0 is a compact basically disconnected Hausdor(f
topological space.

In addition, if (R, 1g) is even Dedekind complete, then T is extremally discon-
nected. In both cases, the space T can be chosen as the set of maximal ideals of R
topologized by the hull-kernel topology.

More about Riesz spaces can be found in [24] and some information about rep-
resentations of Archimedean Riesz spaces by systems of functions attaining also
infinite values are in the survey [13].
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3 (R,1p)-states on Pseudo MV-algebras

In the present section, we define states on pseudo MV-algebras and then we define
(R, 1R)-states as additively defined mappings on a pseudo MV-algebra M which
preserve the partial addition + on M and have values in the interval [0, 15| of a
unital Riesz space (R,1r) mapping the top element 1 € M onto the strong unit
1g € R. We introduce also extremal (R, 1g)-states, (R, 1g)-state-morphisms, and
we show relationships between them.

States, analogues of finitely additive measures, on pseudo MV-algebras were
introduced in [8] as follows: Let M be a pseudo MV-algebra. A state on M is any
real-valued mapping s : M — [0,1] such that (i) s(1) = 1, and (ii) s(z +y) =
s(z) + s(y) whenever x +y is defined in M. According to [8, Prop 4.1], if s is a state
on M, then (i) s(0) =0, (ii) s(a) < s(b) if a < b, (iii) s(x7) =1—s(z) = s(z™), (iv)
$(27) = 8(2) = 5(2%), (v) 5(@ V) +5(zAY) = 5(2) +5(y) = s(zBy) +s(zOy), (vi
s(x@y) = s(y®x). A state s is extremal if from s = As; + (1 — \)sq for states s1, so
on M and A € (0,1) we have have s; = so. Let S(M) and Sy(M) denote the set of
all states and extremal states, respectively, on M. It can happen that S(M) = (), see
[8, Cor 7.4], however, if M is an MV-algebra, M has at least one state, [18, Cor 4.4].
We note that a pseudo MV-algebra possesses at least one state iff M has at least
one maximal ideal that is also normal, see [8]. We say that a net {s,}, of states on
M converges weakly to a states s if s(z) = limg so(z) for each x € M. Then S(M)
and Sy(M) are either simultaneously the empty sets or non-void compact Hausdorff
topological spaces, and due to the Krein—-Mil’'man Theorem, every state s on M is
a weak limit of a net of convex combinations of extremal states.

Now we extend the notion of a state to a Riesz space-valued mapping.

Definition 3.1. Let 1i be a strong unit of a Riesz space R. An (R, 1g)-state on a
pseudo MV-algebra M is any mapping s : M — [0,1g] such that (i) s(1) = 1 and
(ii) s(z+y) = s(x) + s(y) whenever x +y is defined in M.

An (R, 1R)-state-morphism on a pseudo MV-algebra M is any homomorphism of
pseudo MV-algebras s : M — I'(R, 1r). We denote by R the group of real numbers.
It is evident that any (R, 1)-state is a state on M. An (R, 1)-state-morphism on M
is said to be a state-morphism. It is clear that any (R, 1r)-state-morphism is in fact
an (R, 1g)-state on M. The converse is not true, in general.

We can define also an (R, 1r)-state on every unital ¢-group (G, u) as follows: It
is a mapping s : G — R such that (i) s(g) > 0if g > 0, (ii) s(g + h) = s(g) + s(h)
for all g,h € G, and (iii) s(u) = 1g. The restriction of any (R, 1r)-state on (G, u)
onto the pseudo MV-algebra I'(G,u) gives an (R, 1g)-state on I'(G,u), and using
the categorical equivalence between pseudo MV-algebras and unital ¢-groups, see [9,
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Thm 6.4], every (R, 1r)-state on I'(G,u) can be extended to a unique (R, 1r)-state
n (G, u).
It is worthy of recalling that if s is an (R, 1r)-state on I'(S, 1g), where (5, 1g) is
a unital Riesz space, then s(tx) = ts(x) for each = € T'(S,1g) and any real number
€ [0,1]. Indeed, since s(z) = s(niz) = ns(iz), ie. s(tz) = Ls(z). Then for
each integer m = 0,1,...,n, we have s(2z) = s(miz) = ms(iz) = Zs(z). The
statement is trivially satisfied if ¢ = 0, 1. Thuslet ¢ € (0,1). There are two sequences
of rational numbers {p,} and {g,} from the interval (0, 1) such that {s,} ¢ and
{gn} ¢ t which implies p,s(x) = s(ppz) < s(txr) < s(gx) = gns(x), so that
s(tx) = ts(x).
In addition, if s is an (R, 1g)-state on a unital Riesz space (5, 1g), we can show
that s(ta) = ts(a) for each a € S and t € R.

Proposition 3.2. Let s be an (R, 1g)-state on a pseudo MV-algebra M. Then
(i) s(0) =0.
(ii) If x <y, then s(z) < s(y), and
s(y©a7) = s(y) —s(x) = s(z™ Oy).
s(x7) =1—s(x) = s(z").
a=) = s(x) = s(27).

(
(
s(zVy)+ sz Ay) = s(z) + s(y).
(
(

»

) =
s(
s(x®y) + s(z @ y) = s(x) + s(y).
s(x@y) Ds(zrOy) = s(x) D s(y).
The kernel of s, Ker(s) := {x € M: s(x) = 0}, is a normal ideal of M.

[x] = [y] if and only if s(x) = s(z Ny) = s(y), where where [x] and [y] are the
cosets in M /Ker(s) determined by x,y € M.

(x) There is a unique (R, 1g)-state § on M /Ker(s) such that 5([x]) = s(x) for each
[x] € M/Ker(s).

(xi) 3([z]) = 0 if and only if [x] = [0].

(xii) s(z @ y) = s(y ® x) whenever R is an Archimedean Riesz space. In addition,
M /Ker(s) is an Archimedean MYV-algebra.
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Proof. Assume M = I'(G,u) for a unital ¢-group (G, u). Properties (i)—(iv) follow
directly from definition of pseudo MV-algebras and (R, 1g)-states.

(v) It follows from equalities (zVy) Oy~ = (xVy)—y =z —(xA\y) =z (xAy)~
which hold in the ¢-group G and the pseudo MV-algebra M.

(vi) It follows from the identity z = (z @& y) ©y~ + (y ® x), see [16, Prop 1.25]
and (ii).

(vii) It follows from (vi) and from the identity ™ @® r1 = (r1 + r2) A 1g for
r1,T9 € [0, 1R]-

(viii) If s(z),s(y) = 0, then by (vi), we have s(x & y) = 0. By (ii) we conclude
Ker(s) is an ideal of M. To show that Ker(s) is normal, let a € M and x € Ker(s).
Then s(a®z) = s(a) = s(z®a) and adz = (adbz)®a™ Ba so that, s((adz)®a™) = 0.
In a similar way, we prove that t®a = a® (¢~ © (z@a)) and a™~ © (z@a)) € Ker(s).

(ix) It is evident.

(x) Let [z] < [y]~. We define 29 = x Ay~. Then zp <y~ and [zg] =[x Ay ], so
that

3([r ®yl) = 8([xo + y]) = s(xo +y) = s(x0) + s(y)
=3 ]

([zo]) + 3([y]) = 3([=]) + 3([y])

which proves that § is an (R, 1gr)-state on M /Ker(s). By (ix), [z] = [y] implies
s(x) = 5(y).

(xi) It follows from (ix).

(xii) Due to (xi), §([z]) = 0 iff [z] = [0]. We claim that M /Ker(s) is an
Archimedean pseudo MV-algebra. Indeed, let n[z] be defined in M /Ker(s) for
any integer n > 1. Then 3(n[z]) = ns§([z]) = ns(x) < 1 for any n. Therefore,
5([x]) = s(x) = 0. The Archimedeanicity of M /Ker(s) entails the commutativity
of M/Ker(s), see [8, Thm 4.2]. Therefore, s(z @ y) = 5([r D y]) = §([z] @ [y]) =
5[y @ [2]) = (ly ) = s(y & ). 0

From (xii) of the latter proposition we conclude that if we apply an (R, 1r)-state s
to information contained in the pseudo MV-algebra M, then the non-commutativity
of M is “killed" by the (R, 1g)-state s whenever R is Archimedean. That is, non-
commuting pairs of elements of M cannot be distinguished by any (R, 1r)-state if
R is Archimedean. We do not know whether this is true for each unital Riesz space
(Rv 13)'

Example 3.3. Let G be the group of all matrices of the form

(¢
(1)
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where & and o are real numbers such that € > 0; the group-operation is the usual
multiplication of matrices. If we denote A = (&, ), then A1 = (1/¢,—a/€), (1,0)
is the neutral element, and G* := {(&, ) : where (i) € > 1, or (ii) £ = 1 and a > 0}.
Then G with the positive cone GT is a linearly ordered (-group with a strong unit
U =(2,0). If we define M =T'(G,U), M is a non-commutative pseudo MV-algebra.
Given a unital Riesz space (R,1R), let

s((§,a)) =loga(§)1r, (& ) € M.

Then s is an (R, 1R)-state, and if R is Archimedean, due to Proposition 3.6 below,
it is a unique (R, 1r)-state on M.

In the same way as for states, we can define extremal (R,1p)-states. Let
S(M,R,1r), SM(M,R,1R), and Sy(M,R,1r) denote the set of (R,1p)-states,
(R, 1g)-state-morphisms and extremal (R, 1pg)-states, respectively, on M. Analo-
gously, we can define extremal (R, 1g)-states on unital /-groups. In addition, using
the categorical equivalence [9, Thm 6.4], if M = I'(G,u), then an (R, 1r)-state s
on M is extremal if and only if the unique extension of s to an (R, 1gr)-state on
(G,u) is extremal and vice-versa, that is, an (R, 1g)-state on (G,u) is extremal iff
its restriction to I'(G, u) is extremal.

Lemma 3.4. An (R,1Rr)-state s on M is extremal if and only if 5 is extremal on
M /Ker(s).

Proof. (1) Let s be extremal and let § = Amj + (1 — A)mg, where my, mg are (R, 1g)-
states on M/Ker(s) and A € (0,1). Then s;(z) := m;([z]), v € M, i = 1,2, is an
(R,1R)-state on M, and s = As; + (1 — \)sg so that s; = s and m; = my proving
5 is extremal.

Conversely, let § be extremal and let s = As;j+(1—\)sz for (R, 1r)-states s1, s2 on
M and A € (0,1). Then Ker(s) = Ker(s1)NKer(s2). We assert that m;([z]) := s;(x),
[z] € M/Ker(s), is an (R, 1g)-state on M /Ker(s) for i = 1,2. Indeed, first we show
that m; is correctly defined. Thus let [z] = [y]. By (ix) of Proposition 3.2, we
have s(z) = s(x Ay) = s(y) so that s(r ® y~) = 0 = s(y ® ) which yields
sile@y™)=0=s;(y©x") and s;(x) = si(z Ay) = s;(y) for i = 1,2. So that, we
have m;([z]) = mi([y]). Therefore, m; is an (R, 1g)-state. Then § = Amj+(1—X)mq
implying m; = mo and s; = sa. ]

We note that it can happen that on M there is no (R, 1r)-state even for (R, 1) =

(R, 1) as it was already mentioned. In the following proposition, we show that if M
is an MV-algebra, then S(M, R, 1g) is non-void.
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Proposition 3.5. Every MV-algebra has at least one (R, 1g)-state for every unital
Riesz space (R, 1R).

Proof. Due to [18, Cor 4.4], any MV-algebra M has at least one state; denote it by
sp. Then the mapping s : M — [0, 1g] defined by s(z) := so(z)lr, © € M, is an
(R, 1R)-state on M. O

The following result was established in [8] for states on MV-algebras. In the
following proposition, we extend it for (R, 1g)-states.

Proposition 3.6. Let (R, 1r) be a unital Riesz space. The following statements are
equivalent:

(i

) The pseudo MV-algebra M possesses at least one (R, 1g)-state.
(ii) M has has at least one maximal ideal that is normal.
(iii) M has at least one state.
(1

) Every linearly ordered pseudo MV-algebra possesses at least one (R, 1g)-state.
The same is true if M is representable, i.e. it is representable as a subdirect product
of linearly ordered pseudo MV-algebras.
(2) If M is a linearly ordered pseudo MV-algebra and (R, 1g) is an Archimedean
unital Riesz space, then M possesses only a unique (R, 1g)-state.

Proof. By [8, Prop 4.3], (ii) and (iii) are equivalent.

(i) = (ii). Let s be an (R, 1g)-state on M. Since I'(R, 1g) is an MV-algebra, it
has at least one state, say sp. Then the mapping sg o s is a state on M, which by
[8, Prop 4.3] means that M has at least one maximal ideal that is normal.

(ii) = (i). Let I be a maximal ideal of M that is normal. By [8, Cor 3.5], M /I
is an MV-algebra. Due to Proposition 3.5, M /I possesses at least one (R, 1r)-state,
say so. Then the mapping s(z) := so(x/I), x € M, is an (R, 1r)-state on M.

(1) Now suppose that M is linearly ordered. By [8, Prop 5.4], M possesses a
unique maximal ideal and this ideal is normal. Applying just proved equivalences,
M possesses an (R, 1g)-state.

If M is representable, then it can be embedded into a direct product [[, Myer
of linearly ordered pseudo MV-algebras {M;: t € T}, i.e. there is an embedding
of pseudo MV-algebras h : M — [[, M; such that m; o h : M — M, is a surjective
homomorphism, where m; : [[;,c7 My — M; is the t-th projection for each t € T'.
Every M, possesses an (R, 1r)-state s, so that s, om0 h is an (R, 1r)-state on M.

(2) Let M be linearly ordered and (R, 1r) be an Archimedean unital Riesz space.
By the Yosida Representation Theorem, Theorem 2.2, there is a compact Hausdorff
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topological space such that R can be embedded into the Riesz space C(T') of con-
tinuous real-valued functions on T as its Riesz subspace. Given t € T, define a
mapping s; : ['(C(T'),17) — [0, 1] defined by s:(f) = f(¢t), f € ['(C(T),1r); it is
a state on I'(C(T),17). Due to (1) of the present proof, M admits at least one
(R, 1R)-state. Let s1,s2 be (R, 1g)-states on M. Then s; o s; is a state on M for
i = 1,2 and each t € T. According to [8, Thm 5.5], M admits only one state.
Therefore, s; 0 51 = s; 059 for each t € T, i.e. 51 = 9. ]

For additional relationships between (R, 1g)-state-morphisms and their kernels
as maximal ideals, see Propositions 3.21-3.22 below.

We note that in (2) of the latter proposition, if (R, 1) is not Archimedean, then
it can happen that M has uncountably many (R, 1g)-states and each of these states
is an (R, 1g)-state-morphism, see Example 3.9 below.

Proposition 3.7. (1) An (R, 1g)-state s on a pseudo MV-algebra M is an (R, 1R)-
state-morphism if and only if

s(x Ny) =s(z)As(y), z,ye M. (3.1)

(2) An (R, 1R)-state s on M is an (R, 1g)-state-morphism if and only if the (R, 1g)-
state 5 on M /Ker(s) induced by s is an (R, 1g)-state-morphism on M /Ker(s).

Proof. (1) Assume that s is an (R, 1r)-state-morphism. Then s(zAy) = s(z® (z~ @
y)) = s(x) O (s(x7) & s(y)) = s(x) A s(y).-

Conversely, let (3.1) hold. Then 2@y =2+ (2~ © (z®y)) = z+ (2™ Ay), so that
$(2@y) = s(2)+5(@Ay) = (&) +(1n—5(2))As(y) = (5(2) +5()A LR = s()s(y)
proving s is an (R, 1g)-state-morphism.

(2) Using Proposition 3.2, we have s(x Ay) = §([x Ay]) = §([z] A [y]). Applying
(1), we have the assertion in question. O

By [8, Prop 4.3], a state s on a pseudo MV-algebra M is a state-morphism iff
Ker(s) is maximal. In what follows, we exhibit this criterion for the case of (R, 1r)-
state-morphisms. We note that an element r € R is strictly positive if r > 0 and

r # 0.

Proposition 3.8. (1) Let s be an (R, 1g)-state on M. If Ker(s) is a mazimal ideal
of M, then s is an (R, 1R)-state-morphism.

(2) In addition, let (R,1gr) be a unital Riesz space such that every element of
RT\{0} is a strong unit. If s is an (R, 1g)-state-morphism, then Ker(s) is a mazimal
ideal.
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Proof. (1) Assume Ker(s) is a maximal ideal of M. By [Gelo, (i) Prop 1.25], x ®
y" ANy©z~ =0forall z,y € M, that is [z] © [y]” A [y] © [x]” = [0] and due to [8,
Cor 3.5], M/Ker(s) is an Archimedean linearly ordered MV-algebra which entails
either s(x ®y~) =0 or s(y ©x~) = 0. In the first case we have 0 = s(x © y~) =
s(x®(zAy)”) = s(z) —s(zAy). Similarly, 0 = s(y ©x ™) entails s(y) —s(zAy) =0,
ie., s(z Ay)=min{s(z),s(y)} = s(z) A s(y), which by Proposition 3.7 means that
s is an (R, 1g)-state-morphism.

(2) Let (R,1r) be a Riesz space such that every strictly positive element of R
is a strong unit, then R is Archimedean. Let s be an (R, 1g)-state-morphism on M
and let x € M be an element such that s(x) # 0.

Denote by Ker(s), the ideal of M generated by Ker(s) and z. By [16, Lem 3.4],
Ker(s), ={y € M : y <nOzdh for some n > 1 and some h € Ker(s)}. Let z be an
arbitrary element of M. Since s(z) is a strong unit of R, there exists an integer n > 1
such that s(z) < ns(x), so that s(z) < n ® s(x). Then s((n ® )~ ® z) = 0. Since
2=MEOX)Az®(NOT)A2)~"0z=(nOz)A 26 (NEOx)” 0z <nOrd(nOx)~ Oz,
it proves that z € Ker(s),, consequently, M = Ker(s), which shows that Ker(s) is
a maximal ideal of M. d

We notify that (2) of the preceding proposition follows directly from Theorem
3.13. We have left here the proof of (2) only to present different used methods.

We note that if s is an (R, 1g)-state-morphism and (R, 1) is not Archimedean,
then Ker(s) is not necessarily maximal as the following example shows. In addition,
it can happen that every (R, 1g)-state is an (R, 1g)-state-morphism but not every
(R, 1R)-state-morphism is extremal.

Example 3.9. Let M = F(Z?Z, (1,0)), where Z is the group of integers, R =
RXR be the lexicographic product of the real line R with itself, and choose 1gr =
(1,0). Then R is a linearly ordered Riesz space that is not Archimedean, and every
element of the form (0,z), where x > 0, is strictly positive but no strong unit for
R. The mapping s : M — [0,1g] defined by s(a,b) = (a,b) for (a,b) € M is an
(R, 1Rr)-state-morphism and Ker(s) = {(0,0)} is an ideal that is not a mazimal ideal
of M because it is properly contained in the mazimal ideal I = {(0,n): n > 0} which
1 a unique maximal ideal of M.

In addition, M has uncountably many (R, 1g)-states, any (R, 1g)-state on M
is an (R, 1R)-state-morphism, and there is a unique (R, 1g)-state having maximal
kernel and it is a unique extremal (R, 1R)-state M.

Prooi> Let s be any (R, 1g)-state on M. Then s(0,1) = (a,b) for a unique (a,b) €
'R X R, (1,0)), where a > 0. Since s(0,n) = (na,nb) < (1,0), n > 0, we have
a = 0 and b > 0. Therefore, s(1,—n) = (1, —nb). We denote this (R, 1r)-state
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by sp. Hence, there is a one-to-one correspondence between (R, 1g)-states on M
and the positive real axis [0,00) given by b+ sp, b € [0,00). Then every (R, 1pr)-
state sp is an (R, 1g)-state-morphism, Ker(sy) = {(0,0)} for b > 0 which is an
ideal of M but not maximal, and only sy is an extremal (R, 1g)-state on M and
Ker(sg) = {(0,n): n > 0} is a maximal ideal. O

We note that in Example 3.18 and Proposition 3.19 we will show also cases of
(R, 1R)-state-morphisms for an Archimedean Riesz space (R, 1r) whose kernel is not
maximal.

We remind the following result from [8, Lem 4.4] which follows e.g. from [5, Prop
7.2.5].

Lemma 3.10. (i) Let G1 and Ga be two subgroups of (R;+) each containing a
common non-zero element gog. If there is an injective group-homomorphism ¢ of
G1 into Gy preserving the order such that ¢(go) = go, then G1 C Gy and ¢ is the
identity on G1. If, in addition, ¢ is surjective, then G1 = Gs.

(ii) Let My and My be two MV-subalgebras of the standard MV-algebra [0,1]. If
there is an MV-isomorphism ¥ from M; onto Ms, then M1 = Ms, and v is the
identity.

Theorem 3.11. Let (R,1g) be an Archimedean unital Riesz space. Let s1,s2 be
two (R, 1R)-state-morphisms on a pseudo MV-algebra M such that their kernels are
mazimal ideals of M and Ker(s1) = Ker(s2). Then s; = sa.

Proof. Since R is an Archimedean Riesz space with a strong unit 1r, due to the
Yosida Representation Theorem, Theorem 2.2, there is a compact Hausdorff topo-
logical space T' # () and an injective homomorphism of Riesz spaces ¢ : R — C(T)
with ¢(1g) = 17, where (C(T),1r) is the unital Riesz space of continuous real-
valued functions on 7. Then M; := s;(M) are MV-subalgebras of the MV-algebra
['(R,1R) for i = 1,2. Define a mapping s : ¢(M;) — [0,1] for each t € T by
si(p(si(x))) = (¢(s:(x)))(t) for each t € T. Then the mapping & := sl o p o s; is a
state-morphism on M, and by [8, Prop 4.3], each Ker(§}) is a maximal ideal of M.
Since Ker(s;) = (e Ker(5}) and Ker(s;) C Ker(8}) are also maximal ideals of M,
we conclude that Ker(8}) = Ker(s1) = Ker(sg) = Ker(§?) for each ¢ € T which by
8, Prop 4.5] means that s} = s? for each t € T. Then ¢(s1(z))(t) = ¢(s2(x))(t),
teT,ie. s = so. O

We note that if (R, 1g) is not Archimedean, then Theorem 3.11 is not necessarily
valid, see Example 3.9.
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Proposition 3.12. Let I be a mazrimal and normal ideal of a pseudo MV-algebra
M and let (R,1R) be a unital Riesz space. Then there is an (R, 1g)-state-morphism
s such that Ker(s) = I. If, in addition, R is Archimedean, there is a unique (R, 1R)-
state-morphism s such that Ker(s) = 1.

Proof. Since M/I is by [8, Prop 3.4] an Archimedean linearly ordered MV-algebra,
it is isomorphic by Lemma 3.10 to a unique MV-subalgebra of I'(R, 1); identify it
with its image in R. Define a mapping s : M — R as follows: s(z) = z/I1g, x € M.
Then s is an (R, 1r)-state-morphism on M such that Ker(s) = I.

Let, in addition, R be an Archimedean Riesz space. By Theorem 3.11, if s’ is
another (R, 1g)-state-morphism on M with Ker(s') = I, then s = §'. O

The following result deals with a one-to-one correspondence between (R, 1g)-
states and states on pseudo MV-algebras for a special kind of Archimedean unital
Riesz spaces.

Theorem 3.13. Let M be a pseudo MV-algebra and let (R,1R) be a unital Riesz
space such that every strictly positive element of R is a strong unit for R. Given a
state m on M, the mapping

s(z) :=m(x)lgr, x€ M,

is an (R, 1R)-state on M.
Conversely, if s is an (R, 1g)-state on a pseudo MV-algebra M, there is a unique
state mg on M such
s(z) :=mg(x)lg, x€ M.

The mapping s — ms is a bijective affine mapping from S(M) onto S(M, R, 1R).
In addition, the following statements are equivalent:

(i) s is an extremal (R, 1R)-state on M.

)
(ii) s is an (R, 1R)-state-morphism on M.
(iii) s(x ANy) =s(z) As(y), z,y e M.

)

(iv) s is an (R, 1g)-state-morphism on M if an only if ms is a state-morphism on

M.

Proof. First, we characterize Riesz spaces from the assumptions of the theorem:
Since every strictly positive element of R is a strong unit, by [18, Lem 14.1], R is a
simple ¢-group, i.e., the only (-ideals of R are {0} and R. Therefore, the ideal {0} is
a unique maximal ideal of I'(R, 1r), so that by Proposition 3.8(1) and Proposition
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3.12, there is a unique state p on I'(R,1g), it is a state-morphism as well as an
extremal state, so that, Ker(u) = {0} and u(a) = p(b) for a,b € T'(R,1g) if and
only if a = b.

Now, let m be a state on M. Then the mapping s(x) := m(x)lgr, x € M, is
trivially an (R, 1r)-state on M. This is true for each unital Riesz space.

Conversely, let s be an arbitrary (R, 1g)-state on M. By the Yosida Theorem
2.2, there is a compact Hausdorff topological space T # () such that the unital Riesz
space (R,1g) can be injectively embedded into the unital Riesz space (C(T), 1r)
of continuous functions on T as its Riesz subspace. If ¢ is this embedding, then
(¢(R),1R) is a unital Riesz space whose every strictly positive element is a strong
unit for ¢(R).

For any ¢t € T, let us define s; : I'(¢(R),17) — [0,1] by s:(f) :== f(t), f €
['(¢(R),17). Then each s; is a state-morphism on I'(¢(R), 17). Define a mapping
§t: M — [0,1] as § = sy o ¢ o s. Since every strictly positive element of ¢(R) is
a strong unit for it, by the above first note from the beginning of our proof, we
conclude that s; = sp for all t,¢' € T. Hence, §; = §. Thus we denote by § = &,
for an arbitrary to € T. Consequently, §(x) is a constant function on T for each
x € M, and the range of § is a linearly ordered set, therefore, the range of s(M) is
a linearly ordered set in R.

If we define ms(z) := s, (p(s(x))), x € M, then my is a state on M. Conse-
quently, s(z) := mg(z)lg, x € M.

Now it is clear that the mapping ® : S(M, R, 1r) — S(M) defined by ®(s) := mg,
s € S(M,R,1R), is a bijective affine mapping.

Due to this bijective affine mapping ®, we see that in view of [8, Prop 4.7],
statements (i)—(iv) are mutually equivalent. O

We note that the results of the precedent theorem are not surprising because if
(R, 1R) is a unital Riesz space, whose every strictly positive element is a strong unit
for R, then (R,1g) = (R,1). Indeed, since every ¢-ideal of R is also a Riesz ideal of
R and vice versa (this is true for each Riesz space), then {0} is a unique proper Riesz
ideal of R, see [18, Lem 14.1], therefore, it is maximal, and since R is Archimedean,
by the proof of the Yosida Representation Theorem, see [24, Chap 45], T is in fact
the set of maximal Riesz ideals of (R,1g) which is topologized by the hull-kernel
topology and in our case, T is a singleton. Consequently, (R,1r) = (R,1), and we
can apply [8, Prop 4.7].

In the next proposition we show that if every strictly positive element of a unital
(-group (G, u) is a strong unit for G and (R, 1g) is Archimedean, then M = T'(G, u)
possesses a unique (R, 1r)-state.
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Proposition 3.14. Let M =T'(G,u) and every non-zero element of M be a strong
unit for G. Then every (R, 1g)-state s on M is an (R, 1g)-state-morphism for every
unital Riesz space (R,1R), Ker(s) is a mazimal ideal of M, M is an MV-algebra,
and S(M, R,1R) # 0. If, in addition, (R,1R) is an Archimedean unital Riesz space,
then |S(M, R,1g)| = 1.

Proof. The hypotheses imply that M is Archimedean, and by [9, Thm 4.2], M is
an MV-algebra. Whence, every strictly positive element of G is a strong unit of
G, where (G, u) is a unital ¢-group such that M = I'(G,u). Therefore, (G, u) is an
Abelian unital ¢-group. By [18, Lem 14.1], G is a simple ¢-group, so that G has a
unique proper f-ideal, namely the zero ¢-ideal. Then {0} is a unique maximal ¢-ideal
of M. Hence, by Proposition 3.5, M possesses an (R, 1r)-state for every unital Riesz
space (R, 1R).

Let s be an (R, 1r)-state on M. Since Ker(s) # M, Ker(s) = {0}, and hence
Ker(s) is a maximal ideal of M. By Proposition 3.8(1), s is an (R, 1g)-state-
morphism on M.

Now let (R, 1r) be an Archimedean unital Riesz space. Let s; and s2 be (R, 1g)-
states on M. Then s := 1/2s1 + 1/2s9 is also an (R, 1g)-state on M and in view
of the first part of the present proof, s, s1, sy are (R, 1g)-state-morphisms such that
Ker(s) = Ker(s1) = Ker(sz) = {0} are maximal ideals of M, which by Theorem 3.11
yields s; = s = s9. In particular, the unique (R, 1g)-state on M is extremal. O

Proposition 3.15. Let T' be a non-void set and R = Cy(T') be the Riesz space of
bounded real-valued functions on T, and let 17 be the constant function 1p(t) = 1,
t€T. Then 1 = 17 is a strong unit for R. Let s be an (R, 1g)-state on a pseudo
MV-algebra M. The following statements are equivalent:

(i) s is an extremal (R, 1g)-state on M.
(ii) s is an (R, 1R)-state-morphism on M.
(iii) s(x Ay) =s(z) As(y), z,y e M.

In addition,
So(M,R, 1) = SM(M, R, 1R). (3.2)

Proof. (i) = (ii). Let s be an extremal (R, 1g)-state on M. If we define an MV-
algebra I'(R, 1r), then every mapping s; : I'(R, 1g) — [0, 1] defined by s:(f) = f(¢),
f €T(R,1R), is a state-morphism on I'(R, 1z). We assert that s; o s is an extremal
state on M for each t € T. Indeed, let m}, m} be states on M and X € (0, 1) such that
sp0s = dmt + (1 —X)mb. Define a function m; : M — [0, 1g] such that (m;(z))(t) =
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mt(z) for t € T where z € M and i = 1,2. Then my(z), ma(x) € Cy(T) for each
x € M, so that myi, mg are (R, 1g)-states on M such that s = Am; + (1 — X\)ma.
Since s is extremal, s = s; = so which gives sy 0 s = mﬁ = mb, for each t € T, and
s; o s is an extremal state on M.

By [8, Prop 4.7], s; o s is a state-morphism on M, therefore, si(s(z A y)) =
min{s;(s(z)), s¢(s(y))}, that is s(x Ay) = s(x) A s(y) for all x,y € M and s is an
(R, 1R)-state morphism, see Proposition 3.7.

(ii) = (i). Let s be an (R, 1g)-state-morphism on M and let sy, sy be (R, 1R)-
states on M such that s = As; + (1 — A)sa for some A € (0,1). Let s; be a state-
morphism from the foregoing implication for every ¢t € T. Then s; 0 s = As; 0 81 +
(1 — X)s; o s9. Applying [8, Prop 4.7], we have s; o s is an extremal state because
s¢ 0 s is a state-morphism on M. Therefore, s; 058 = s 081 = s; 089 foreach t € T
which in other words means that s = s; = s, that is, s is an extremal (R, 1g)-state
on M.

The equivalence of (ii) and (iii) was established in Proposition 3.7. Equation
(3.2) follows from the equivalence of (i) and (ii). O

Corollary 3.16. Let (R,1g) = (R™,1gn), n > 1, where 1g = (1,...,1), and let
s be an (R, 1R)-state on a pseudo MV-algebra M. The following statements are
equivalent:

(i) s is an extremal (R, 1R)-state on M.
(ii) s is an (R, 1R)-state-morphism on M.
(iii) s(x ANy) =s(z) ANs(y), z,y e M.

Moreover, (3.2) holds.

Proof. 1t follows from Proposition 3.15 because (R™, 1gn) = (Cy(T), 17), where |T'| =
n. t

The latter result extends a characterization of state-morphisms and extremal
states from [8, Prop 4.7], because if T is a singleton, then (C(T'), 17) corresponds in
fact to (R, 1).

Theorem 3.17. Let (R,1r) be an Archimedean unital Riesz space, M a pseudo
MV-algebra, and s, s1, s2 be (R, 1R)-states on M.
(1) If s is an (R, 1Rr)-state-morphism on M, then s is an extremal (R, 1r)-state.
(2) If s is an (R, 1R)-state such that Ker(s) is a maximal ideal, then s is an
(R, 1Rr)-state-morphism and an extremal (R, 1g)-state on M as well.
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(3) Let s1,s2 be (R, 1R)-states on M such that Ker(s1) = Ker(s2) and Ker(sy) is
a maximal ideal. Then s1 and sz are (R, 1R)-state-morphisms and extremal (R, 1R)-
states such that s1 = s9.

(4) Let s be an (R, 1R)-state on M such that My = M /Ker(s) is linearly ordered.
Then s is an (R, 1g)-state-morphism and an extremal (R, 1g)-state, and Ker(s) is
a mazimal ideal of M.

Proof. (1) Due to the Yosida Representation Theorem 2.2, there is a compact Haus-
dorff topological space T' # () such that (R,1g) can be embedded into (C(T), 1)
as its Riesz subspace; let ¢ be the embedding. For each t € T, the function
st : D(C(T),17) — [0,1] defined by s:(f) := f(t), f € C(T), is a state-morphism on
I'(C(T),17) for each t € T'. Then the mapping m; := s;0¢os is a state-morphism on
M, so that by [8, Prop 4.7], m; is an extremal state on M. Let s = As; + (1 — A)sq,
where s1, s2 are (R, 1g)-states on M and A € (0,1). Then

my=s10005=Xs; 0081+ (1—X)o s,

which implies m; = s;opos; = s o¢osg for each t € T'. Hence, ¢(s(x)) = ¢(s1(x)) =
¢(s2(x)) for every x € M, that is s(x) = si(x) = sa(x), and finally s = 51 = s9.

(2) Let s be an (R, 1r)-state on M such that Ker(s) is a maximal ideal. By
Proposition 3.8, s is an (R, 1g)-state-morphism which by the first part of the present
proof entails s is extremal.

(3) Let s1,s2 be (R, 1r)-states on M such that Ker(s;) = Ker(s2) and Ker(s;)
is a maximal ideal. By (2), s; and sy are extremal, and by Proposition 3.8, s; and
s are also (R, 1g)-state-morphisms on M, so that Theorem 3.11 implies s; = so.

(4) Assume M is linearly ordered. By Proposition 3.2(xii), M, is an MV-
subalgebra of the standard MV-algebra I'(R,1) of the real line R. Then, for the
(R, 1Rr)-state § on M /Ker(s) = M induced by s, we have Ker(5) = {0} is a maxi-
mal ideal of M, and Ker(s) is a maximal ideal of M. Hence, there is a subgroup Ry
of R such that 1 € Ry and My = I'(Rg, 1). Then there is a unique state-morphism
(= extremal state in this case) m on M. The mapping so(z) := m(z)1r for each
x € M is an (R, 1g)-state-morphism on M. Since Ry is a simple ¢-group, apply-
ing Proposition 3.14, we have s = sp and s is an (R, 1g)-state-morphism and an
extremal (R, 1g)-state on M, as well. O

By [8, Prop 4.3], a state s on a pseudo MV-algebra is a state-morphism iff Ker(s)
is a maximal ideal. In the following example and proposition we show that it can
happen that an (R, 1g)-state-morphism s, consequently an extremal (R, 1p)-state,
has the kernel Ker(s) that is not maximal even for an Archimedean Riesz space
(R,1Rr). We note that in Example 3.9 we had an analogous counterexample for a
non-Archimedean Riesz space.
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Example 3.18. There are a pseudo MV-algebra M, an Archimedean unital Riesz
space (R,1R), and an (R, 1g)-state-morphism s on M, consequently an extremal
(R, 1Rr)-state, such that Ker(s) is not maximal.

Proof. Let (R,1r) = (R",1gn), M =T'(R",1gn) and s : M — [0, 1gn] be such that
s(x) =z, x € M. Then s is an (R, 1g)-state-morphism, and by Theorem 3.17(1) it
is an extremal (R, 1p)-state. Because Ker(s) = {0}, then Ker(s) is a maximal ideal
of M iff n = 1. O

According to [16], we say that an element e of a pseudo MV-algebra M is Boolean
if e Ae” =0, equivalently, e A e~ = 0, equivalently e @ e = e. Let B(M) be the set
of Boolean elements, then B(M) is a Boolean algebra that is an MV-algebra and
subalgebra of M, and e~ = e™; we put ¢/ = e~. If s is an (R, 1g)-state-morphism
and e is a Boolean element of M, then s(e) is a Boolean element of the MV-algebra
I'(R,1r). We recall that for a sequence (a;)}_; of Boolean elements of M we have
that it is summable iff a; Aa; = 0 for ¢ # j; in such a case, a1 +---+a, = a1V---Vay.
If we say that for an ordered finite system (a1, ..., a,) of Boolean elements of M we
assume that a; + - -+ + a,, = 1, it can happen that some of a; are zeros.

We exhibit the latter example in more details. We note that the MV-algebra
['(R™, 1gn) has each ideal I of M of the form I = I; x --- x I,,, where I; € {{0}, R}
for each i = 1,...,n. In particular, all maximal ideals are of the form I; x --- x I,
where exactly one I; = {0} and I; = R for j # i.

Proposition 3.19. Let M =T'(R",1gn), (R,15) = (R™, 1gn), and let B(M) be the
set of Boolean elements of M.

(1) Let (ay,...,an) be an n-tuple of summable elements of B(M) such Y i~y a; =
1. Then the mapping

s(z) =xa1 + - + xpayn, == (r1,...,T,) € M, (3.3)

is both an (R™, 1gn)-state-morphism and an extremal (R™, 1gn)-state on M as well.
Conversely, each (R™, 1gn)-state-morphism on M can be obtained in this way.

(2) If o is an arbitrary permutation of the set {1,...,n}, then sy(z1,...,x,) =
(To(1)s 1 Tom))s T = (T1,...,2n) € M, is an (R, 1R)-state-morphism such that
Ker(sy) = {0}. If so(x) =z, x € M, sq is an (R, 1g)-state-morphism on M corre-
sponding to the identical permutation. Conversely, every (R™, 1gn)-state-morphism
s on M such that Ker(s) = {0} can be obtained in this way.

In addition,

S(M,R,1g) = So(M, R, 1g) = {so} = SM(M,R, 1R).
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(3) For eachi=1,...,n, let m; be the i-th projection from M onto [0,1]. Then
each s;, where s;(x) = mj(x)1gn, x € M, is an (R", 1gn)-state-morphism such that
Ker(s;) is a mazimal ideal of M, and conversely, every (R™, 1gn)-state-morphism
on M whose kernel is a maximal ideal of M is of this form.

(4)

|So(M,R", 1gn)| = n" = |[SM(M,R", 1gn)|

and
S(R™, 1gn) = Conv(Ss(R", 1gn)) = Conv(SM(R"™, 1gn)),

where Conv denotes the convex hull.

Proof. Since the Archimedean unital Riesz space (R™, 1gn) satisfies the conditions
of Corollary 3.16, we have that Sp(M,R"™, 1gn) = SM(M,R", 1gn). For each i =
1,...,n, let e; be the vector of M whose all coordinates are zeros, only at the i-th
place there is 1. The elements e, ...,e, are unique atoms of the Boolean algebra
B(M) and e; + --- 4+ e, = 1. The set of Boolean elements of M has 2" elements,
and each Boolean element of M is a vector e € M whose coordinates are only 0 and
1. Let so(x) =z, x € M. If n =1, then Sy(M,R,1r) = {so}.

(1) Let (a1, ..., an) be a summable sequence of Boolean elements of M such that
ay + -+ ap, = 1. We define a mapping s by (3.3). Then it is clear that s is an
(R™, 1gn )-state on M. To show that s is also an (R™, 1gn )-state-morphism, we verify
the criterion (iii) of Corollary 3.16. Let z = (z1,...,2,) € M and y = (y1,...,Yyn) €
M. Then z Ay = (x1 Ay1,...,Tn AYpn). Therefore,

s(x)As(y) = (xra1+ -+ zpan) A (Y101 + -+ + Ynan)

(
(x1a1 V-V zpan) A (y1a1 V-V ypan)
(xl A yl)al + -+ ($n A yn)an

= s(zAy),

when we have used the fact that in ¢-groups if, for a,b € G*, a Ab = 0, then
a+b=aVb. Consequently, s is an (R", 1gn)-state-morphism on M.

Conversely, let n > 2 and let s be an (R", 1gn )-state-morphism on M. We define
f? = s(e;). For i =1, we have s(1,0,...,0) = s(n/n,0,...,0) = ns(1/n,0,...,0)
so that fi/n = s(1/n,0,...,0). Now let 0 < m < n. Then s(m/n,0,...,0) =
ms(1/n,0,...,0) = 2 ff. Now let ¢t be a real number from (0,1). Passing to
two monotone sequences of rational numbers {p,} 7 t and {g,} \, t, we ob-
tain p,s(1,0,...,0) < s(¢,0,...,0) < ¢,s(1,0,...,0), so that s(¢,0,...,0) = tf}.
The same is true for each i, i.e. s(0,...,¢,...,0) = tf’. Hence, for each z =
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(x1,...,2n) € M, we have
s(x) = Z zi fi. (3.4)
i=1

From (3.4) we see that if we put a; = f? for each i = 1,...,n, then we obtain
formula (3.3).

(2) Assume Ker(s) = {0}. Then each f7 # 0 and all f?’s are mutually different.
Since 1gn = f{ +--- + f, we assert that each f7 € {e;,...,e,}. Indeed, if some f?
has two coordinates equal 1, then one of f7 for j = 1 has to be zero. Therefore, for
each f7, there is a unique e;, such that f; = e;;. This defines a permutation o such
that s = s,. Conversely, each s, is an (R", 1gn)-state-morphism, consequently an
extremal (R", 1gn)-state whose kernel is {0}.

(3) Now we exhibit (R™, 1gn)-state-morphisms s whose kernel is a maximal ideal
of M. It is easy to verify that every si,...,s, defined in the proposition is an
(R™, 1gn)-state-morphism on M whose kernel is a maximal ideal. Conversely, let s
be an (R™, 1gn)-state-morphism on M such that Ker(s) is a maximal ideal. From
(3.3) we conclude, that there is a unique ¢ = 1,...,n such that ¢; = 1 and a; = 0
for each j # ¢ which entails the result.

(4) Let 7: {1,...,n} = {1,...,n},ie. 7€ {1,...,n}t1"} Then the mapping
s7+ M — [0, 1gn] defined by s;(z1,...,20) = (Tr(1), -+, Tr(n)), T = (T1,...,75) €
M, is an (R™, 1gn)-state-morphism on M. Since every a; for i = 1,...,n is a finite
sum of Boolean elements of e1, . .., e,, using (3.3), we see that every (R", 1gn)-state-
morphism on M is of this form.

Finally, we say that a net {sq }o of (R™, 1gn)-states on M converges weakly to an
(R™, 1gn)-state s, and we write {sq}o — s, if, for each i = 1,..., n, lim, 7;(sq(z)) =
mi(s(x)) for each x € M. Since m; 0 s is in fact a state on M, it is easy to see that we
have the weak convergence of states on M which gives a compact Hausdorff topology
on the state space of M. Whence if, for a net {s, }o of (R”, 1gn)-states, we have that
there is, for each i = 1,...,n, lim, m;(sq(x)) = si(x), v € M, then every s; is a state
on M, so that s(z) := (s1(x),...,sx(x)), z € M, is an (R", 1gn)-state such that
{sa}a 2 5. Consequently, the space S (M,R", 1gn) is a non-void convex compact
Hausdorff space, so that by the Krein-Mil’'man theorem, [18, Thm 5.17], we see that
every (R", 1gn)-state lies in the weak closure of the convex hull of Sp(M,R", 1gn) =
SM(M,R™ 1gn). Since the space SM(M,R" 1gn) has exactly n™ elements, let
SM(M,R", 1gn) = {s1,...,Sun}, so that every element s of Conv(SM(M,R"™, 1gn))
is of the form s = Ays1 4 -+ Apnspn, where each A; € [0,1] and Aj +-- -+ Apn = 1.
Hence, there is a net {A{'s; + -+ + A }o from the convex hull which converges
weakly to the (R™, 1gn )-state s. In addition, for each i = 1,...,n", there is a subnet
{A?15 of the net {\?}, such that limg A;”? = \;. Whence A\; + -+ + A\yn = 1 and
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s = A181 + -+ + Apn Apn which finishes the proof. L]

A more general type of the weak convergence of (R, 1r)-states for a Dedekind
o-complete Riesz space will be studied in Proposition 5.3 below.

The latter proposition can be extended for (R™, 1gm )-state-morphisms on the
MV-algebra M, = I'(R", 1gn) for all integers m,n > 1.

Proposition 3.20. Let n,m > 1 be integers and let (a1,...,a,) be a summable
sequence of Boolean elements from M, = I'(R™, 1gm). Then the mapping s(x) :=
xr1a1 + -+ Tpan, © = (1,...,2,) € My, is an (R™, 1gm)-state-morphism on M,
and conversely, each (R™, 1gm)-state-morphism on M,, can be described in this way.

Equivalently, let T be any mapping from {1,...,m} into {1,...,n}. The mapping
S7(T1, ., T0) = (Tr1ys - Tr(m))s T = (T1,- .., %) € My, is an (R™, 1gm)-state-
morphism on M, and conversely, each (R™, 1gm)-state-morphism on M, can be
described in this way.

In particular, |SM (M, R™, 1gm)| = n™ = |Sg(M,,,R™, 1gm)|.

An (R™, 1gm)-state-morphism s on M, has maximal kernel if and only if there
isi=1,...,n such that s(x) = mj(z)lgm, x € My, where m; : R" — R is the i-th
projection.

Proof. The proof follows methods of the proof of Proposition 3.19. O

Now we present a criterion for (R, 1r) when the kernel of every (R, 1r)-state-
morphism on an arbitrary pseudo MV-algebra is a maximal ideal.

Proposition 3.21. Let (R,1r) be a unital Riesz space. Then every (R, 1g)-state-
morphism on an arbitrary pseudo MV-algebra has the kernel a mazimal ideal if and
only if (R,1R) is isomorphic to (R, 1).

Proof. Let (R,1g) = (R,1) and let M be an arbitrary pseudo MV-algebra. Let s be
an (R, 1g)-state-morphism on M. According to [8, Prop 4.3], Ker(s) is a maximal
ideal of M.

Conversely, let M be an arbitrary pseudo MV-algebra with an (R, 1g)-state-
morphism s such that Ker(s) is a maximal ideal of M. Take the special MV-algebra
M =T(R,1R) and let s(x) = x, z € M. Then clearly s is an (R, 1r)-state-morphism
with Ker(s) = {0}, and by the assumption, Ker(s) = {0} is a maximal ideal of M.
Therefore, M has only the zero ideal and M. Due to the categorical equivalence of
Abelian unital ¢-groups and MV-algebras, the Riesz space (R, 1r) has only two ¢-
ideals, {0} and R which by [18, Lem 14.1] yields that every strictly positive element
of R is a strong unit of R. As it was shown just after Theorem 3.13, this means that
(R,1g) = (R, 1).
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The same result we obtain if take into account that the ¢-ideal {0} of R is a
maximal ¢-ideal of R generated by Ker(s). Therefore, R = R/{0} and the quotient
unital Riesz space (R/{0},1r/{0}) can be identify with a unital subgroup (Ro, 1) of
(R,1). Since a = al € Ry for each real number «, we conclude Ry = R. O

Now we present another criterion of maximality of Ker(s) for an (R, 1r)-state-
morphism s when (R, 1r) is an Archimedean unital Riesz space.

Proposition 3.22. Let T be a non-void compact Hausdorff space and M be a pseudo
MV-algebra. Then the kernel of a (C(T), 17)-state-morphism s on M is a mazimal
ideal if and only if there is a state-morphism sy on M such that s(z) = so(x)lp,
zeM.

The same statement holds for a (Cy(T), 17)-state-morphism on M.

Proof. Let s be a (C(T),17)-state-morphism on M, and for each t € T, let s; :
M — [0,1] be a mapping given by s;(z) := s(x)(t), x € M. Then each s; is a
state-morphism on M, and Ker(s) = (,cp Ker(s¢). Hence, if Ker(s) is maximal,
then from Ker(s) C Ker(s;) we conclude Ker(s) = Ker(s;) because every Ker(s;) is
a maximal ideal of M, see [8, Prop 4.3], so that s; = sy for all ¢,¢' € T which gives
the desired result.

The converse statement is evident. O

Using [18, Lem 8.10], it is possible to show that if s is an extremal state on an
MV-algebra M, then for each Boolean element e € B(M), we have s(e) € {0,1}.
Using the Proposition 3.19, we can show that this is not true for each extremal
(R, 1Rr)-state.

Example 3.23. There are an MV-algebra M, an Archimedean unital Riesz space
(R,1R), an (R, 1R)-state-morphism, i.e. an extremal (R, 1r)-state-morphism s and
a Boolean element e € B(M) such that s(e) ¢ {0,1g}.

Proof. Take a particular case of Proposition 3.19, namely (R, 1) = (R3, 1ps), M =
[(R3,1gs) and let s be an (R3, 1ps)-state-morphism given by (3.3), where a; =
(1,0,0), a2 = (0,1,0), e3 = (0,0,1). If we take the Boolean element e = (1,0,0),
then s(e) = a1 ¢ {0, (1,1,1)}. O

4 Metrical Completion of Unital /-groups with Respect
(R, 1gr)-States

In this section, we show that if (R, 1g) is a unital Archimedean or even a Dedekind
complete Riesz space and s is an (R, 1g)-state on a unital ¢-group (G, u), then G
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can be metrically completed with respect to a norm induced by s. If R is Dedekind
complete, in particular, if (R,1g) = (R", 1gn), where 1gn = (1,...,1), then the
metrical completion of G gives a Dedekind complete ¢-group.

Let T be a compact Hausdorff topological space. We endow C(T') with the
uniform topology generated by the norm || - ||, i.e. || f|l7 = sup{|f(¢)|: t € T}.

Let (R,1g) be an Archimedean unital Riesz space. By the Yosida Representa-
tion Theorem, Theorem 2.2, there is a compact Hausdorff topological space 1" such
that (R,1gr) can be embedded into (C(T),17) as its Riesz subspace. If ¢ is this
embedding, then the image ¢(R) is uniformly dense in C(T"). More precisely, let
T be the set of maximal ideals of (R,1g). If we define the hull-kernel topology
on T, T becomes a non-void compact Hausdorff topological space. If I is a maxi-
mal ideal of (R, 1r), then the quotient R/I can be identify with a unital subgroup
(Ro, 1) of (R, 1) (in fact, Ry = R). Moreover, given = € R, the mapping z : T — R
given by Z(I) := x/I, I € T, is a continuous function on 7', and the mapping
¢ : R — C(T) defined by ¢(x) = z, x € R, is by [24, Thm 45.3] an isomorphic
embedding of the unital Archimedean space (R, 1r) into (C(T), 17) such that ¢(R)
is uniformly dense in C(7"). We call this embedding the canonical embedding, the
triple (C(T'), 17, ¢) is said to be the canonical representation of (R, 1g), and we shall
write (R,1gr) ~ (C(T), 17, ¢). We note that according to [24, Thm 45.4] if, in addi-
tion, (R, 1g) is Dedekind o-complete, then ¢(R) = C(T'), and ¢ is an isomorphism
of Riesz spaces.

Thus, let (R, 1r) be an Archimedean unital Riesz space with the canonical rep-
resentation (C(T),17,¢). Let s be an (R, 1g)-state on a pseudo MV-algebra M.
Assume M = T'(G,u) for a unital ¢-group (G,u). Due to the categorical equiva-
lence, s can be extended to a unique (R, 1r)-state on (G, u); we denote it by §. Due
to (ix) and (xii) of Proposition 3.2, we have that M, := M /Ker(s) is an Archimidean
MV-algebra, and M = I'(Gs,u/ls), where G = G/Is and I is an ¢-ideal of G gen-
erated by Ker(s). Then the (R, 1g)-state § on My can be uniquely extended to a
unique (R, 1g)-state 5 on (Gy,u/Is). In addition, I, = {z € G: §(|z|) = 0}, where
lz| =2T +27, 2" =2 Vv0and 2= = —(z A0). In general, if s is an (R, 1z)-state on
a unital ¢-group (G, u), then the kernel of s is the set Ker(s) = {x € G: s(|x|) = 0}.

We define a pseudo norm |- |; on M as follows

|z]s := [[¢(s(x))ll7 := sup{|o(s(x))(®)|: t € T}, €M,

This pseudo norm can be extended to a pseudo norm |- |s on G as follows

2l = (@)l = sup{6(G(@)@)]: t T}, w €.

The simple properties of | - |5 are as follows: For z,y, € G, we have
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(1 ‘ |8 < ‘$|s + |y|s

)
(i) [¢(3(x))(t) — o(8(w)()| <[z —yls, t € T.
(i) [nzls < [n[-|z]s, n € Z.
)
)

(IV ‘ - 33|s = ‘$|87 |0|s =0.

(v

If y € Gt and —y <z <y, then |z|s < |y|s.

Since our aim is to study extremal (R, 1g)-states on M and in view of Lemma
3.4, an (R, 1g)-state s on M is extremal iff so is § on M, := M /Ker(s), without loss
of generality we will assume that M is an Archimedean MV-algebra, (G,u) is an
Archimedean (Abelian) unital /-group, and s(zx) = 0 for x € M iff z = 0 because
5([x]) = 0 iff [z] = 0. Then |- |s is a norm on M and (G,u), respectively, and
ds(z,y) := |xr — y|s defines a metric called the s-metric.

Because of triangle inequality (i), addition and subtraction in G are uniformly
continuous with respect to ds. Hence, the dg-completion G of G is a topological
Abelian group, and the natural mapping ¢ : G — G is a continuous group homo-
morphism. We define a relation < on G so that for any =,y € G, we put x < y iff
y — z lies in the closure of ¥(G™). We note Ker(¢)) = {z € G : |z|s = 0}. In the fol-
lowing statement we show, in particular, that this relation is a translation-invariant
partial order on G, that is, given z,y,2 € G, x < y implies  + 2z < y + z. In what
follows, we are inspired by ideas and proofs from [18, Chap 12, Thm 12.2] where
this question was studied for (R, 1)-states.

Proposition 4.1. Let (R,1g) be an Archimedean unital Riesz space with (R,1g) ~
(C(T),17,¢). Let (G,u) be an Archimedean unital ¢-group, and s an (R, 1g)-state

n (G,u) such that if s(z) = 0 for some x > 0, then x = 0. Let G be the ds-
completion of G, ¢ : G — G be the natural embedding, and let d, denote the induced
metric on G. Then

(i) G is a directed po-group with positive cone equal to the closure of (G™).

(i) There is a unique continuous mapping s : G — C(T) such that ¢ os =50,
and § is a positive homomorphism of po-groups.

(iti) ds(g,0) = [[5(g)llz for each g € G, and dy(g,0) = |gls = [[6(s(g))llr for each
g €.

Proof. (i) Let C be the closure of ¥(G™') in G. Since ¥(0) = 0, we have 0 € C.
As 9(G™T) is closed under addition, the continuity of addition in G entails that G is
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closed under addition, so that C' is a cone. Now let x, —x € C. Take two sequences
{z,} and {y, } in G such that ¢(z,) — z and ¥(y,) — —z. Then ¥ (z,, +y,) — 0.
Since

ds(Y(n + Yn), 0) = ds(Tn + Yn, 0) = [0 + Yuls = [[9(s(zn + yn))ll7 — 0

for all n, consequently, the sum ¢(s(xy,))+@(s(yn)) of positive real-valued continuous
functions on T converges uniformly on 7' to the zero function Oy on 7. Then
Or < é(s(xn)) < d(s(xn + ypn)) for all n. Whence, ¢(s(xy,)) = Op, and therefore,
x = 0. Thus C is a strict cone, and G becomes a po-group with positive cone C.

Now we show that G is directed. Let z € G, and let us choose a sequence
{zn} in G such that |z 41 — zp|s < 1/2" for all n. Then zp41 — x, = an — by,
where a, = (Tp11 — 2,) VO € GT and b, = —((zpe1 — x,) A0) € GT. Then
|Zpt1 — Tnls = |an + bnls < 1/2™.

Since a, < an + by, we have |ay|s < |an + bpls < 1/2" for all n. Therefore,
the partial sums of the series ), a, form a Cauchy sequence with respect to ds.
Consequently, the series Y, 1(a,) converges to an element a € G. As the partial
sums of this series all lie in (GT), then a € G". In the same way, the series
> ¥(by) converges to an element b € G". We have

k k

a—b= hllcnnglw(an - bn) = h}cnnz::lw(mn—kl - Jjn)
= lim(y(zp41) = P(1)) = 2 — (@)

Since #1 = ¢ — d for ¢,d € G, we have z = (a + 9(c)) — (b + ¥(d)) with a + ¥(c)
and b+ (d) € G which established @ is directed.

(ii) Let g € G. Choose two sequences { f,,} and {h,} in G such that ds(f,,g) — 0
and ds(hy, g) — 0. Then ¢(s(f,)) = f € C(T) and ¢(s(hy,)) = h € C(T). We assert
that f = h. Indeed

1f = hlle = lf = é(s(fa))llr + [0(s(fn)) = d(s(hn))s + [|¢(s(hn)) = Rz
= ”f - ¢(S(fn))||T + ’fn - hn|s + H@Z)(S(hn)) - hHT — 0,

which yields f = h. Therefore, we can define unambiguously 5 : G — C(T) as
follows: 3(g) = lim,, ¢(s(gn)), g € G, for any sequence {g,} of elements of G such
that ds(gn,g) — 0. Then evidently 5(g) > O if g € G", and S(g+h)=3(g) +5(h)
for all f,g € G as well as ¢ o s = 50 1). In addition, ds(g,0) = ||5(9)||7, g € G.

If ds(g,gn) — 0 for ¢ € G and for a sequence {g,} of elements of G, then
I5(9) — 3(Gn)llT = ds(g,9n) — 0, so that 3 is continuous on G. If s : G — C(T)

1752



RIESZ SPACE-VALUED STATES

is a continuous positive homomorphism of po-groups such that ¢ o s = s’ 0 ¢, then
s(g) and §'(g) coincide for each g € G, so that ' = 3.
(iii) It follows from the end of the proof of (ii). O

Remark 4.2. The po-group G from the latter proposition is said to be the metrical
completion of G with respect to an (R, 1g)-state s. Nevertheless that it was supposed
that G is an Archimedean f-group and s has the property s(z) = 0 for x € G+
implies = 0, passing to the (R, 1r)-state 5 on G, the metrical completion of Gy
from Proposition 4.1 with respect to the (R, 1g)-state 5 is also in fact a metrical
completion of G with respect to the (R,1g)-state s. In other words, G can be
homomorphically embedded into an Abelian metrically complete po-group G.

Proposition 4.3. Let the conditions of Proposition 4.1 hold. If {zs}a and {ya}a
be nets in G such that T, — x and yo — y. If o < yo for each a, then x < y.

Proof. The differences y, — = form a net in G which converges to y — x. As G' s
closed in GG, we have that y — z lies in G’Jr, and consequently, x < y. O

In what follows, we show that the metrical completion G of G enjoys also some
lattice completeness properties. In order to do that, we have to strengthen conditions
posed to the Riesz space (R, 1g) assuming R is Dedekind complete. Then due to
Theorem 2.3, we have the canonical representation (R,1g) ~ (C(T),1r,¢) and
(R,1R) = (C(T), 1), where T # () is a compact Hausdorff extremally disconnected
topological space. Such a situation is e.g. when (R,1r) = (R",1gn), n > 1, then
(R,1g) = (C(T),T), where |T'| = n and every singleton of T is clopen.

Proposition 4.4. Let (R,1r) be a Dedekind complete unital Riesz space with the
canonical representation (R,1r) ~ (C(T), 17, @), where T # 0 is a Hausdorff com-
pact extremally disconnect topological space. Let (G,u) be an Archimedean unital
L-group and let s be an (R, 1R)-state on (G,u) such that if s(x) =0 for x >0, then
x = 0. Let G be the ds-completion of G, ¥ : G — G be the natural mapping, and
let ds denote the induced metric on G. Let {xo: o € A} be a net of elements of G
which is bounded above and x, < xg whenever o < 3, o, € A. Then there is an
element x* € G such that xo — =* and z* is the supremum of {xo : @ € A} in G.

Proof. Since C(T) is Dedekind complete, there is a continuous function f € C(7T)
such that f =V, 35(zq). Then f(t) = sup, S(xq)(t) = lim, S(xy)(t) for each ¢ € T
Applying the Dini Theorem, see e.g. [20, p. 239], for the net {S(z,): @ € A}
of continuous functions on 7', the net converges uniformly to f. Consequently,
{xo: a € A} is a Cauchy net in G, so that it converges to some z* € G.
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For any x, the subnet {z3: xg > z,} also converges to =*, whence by Proposi-
tion 4.3, z* > z,. Now, let 2 € G be any upper bound for {z,: o € A}. Applying
again Proposition 4.3, we conclude z* < z, which proves that * is the supremum
in question. O

Proposition 4.5. Let the conditions of Proposition 4.4 hold. Then G has interpo-
lation.

Proof. We show that G has interpolation, that is, if 21, o < y1, 92 for x1, 22,91, y2 €
G, there is a z € G such that z1,z9 < z < y1,y2. To prove this we follow ideas of
the proof of [18, Thm 12.7].

There are four sequences of elements of G, {xin }n, {Yin}n for i = 1,2, such that
ds(Y(@in), wi) < 1/2"7° and  ds(P(yjn), y;) < 1/2"F°

for all ¢,7 = 1,2 and all n. For all ¢, n, we have

|Tint1 — Tinls = ds(V(@in11), V(@in)) < ds(W(Tint1), i) + ds(@i, Y (2in))
< 1/2M6 4 1/2n 5 < 1 /20,

Similarly, [yjnt+1 — Yjnls < 1/2"T%. We shall construct Cauchy sequences {b,} and
{zn} of elements in G such that b, — 0 and z;, < z, < y;n + by, for all ¢, j,n. The
limit {1(2,)} provides an element in G to interpolate between z1, z2 and y1, yo.

We first construct elements ay, ag, . .. in G such that |a,|s < 1/2"%2 for all n and
also

Tin — an < Ting1 < Tin +an  and  Yjn — an < Yjnt1 < Yjn + an

for all , j,n.
For each i,n, we have ds(¢(z;n+1), ¥ (Tin)) < 1/27F4, so that

Lin+1 — Tin = Pin — Gin
for pin, ¢in, € G satisfying |pin + qinls < 1/ 2n+4 Similarly, each
Yjnt+1 = Yin = Tjn = Sjn
for some 7, 8j, € GT satisfying |7, + sjnls < 1/27F4 Set
Gn = Pin + Qin + P2n + @2n + T1n + S1n + T2n + S2n

for all n. Then |a,|s < 4/2""* = 1/2"+2. Moreover,
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Tin — An < Tin — Qin = Tint1 — Pin < Tintl
< Tin+1 + Qin = Tin + Din < Zip + an,
Yin — n < Yjn — Sjn = Yjn+l — Tjn < Yjnt+l
< Yjn+1l T Sjin = Yjn + Tin < Yjn + Gn
for all 7,4, n

Next, we construct elements by, by, ... in G such that |b,|s < 1/2""! for all n,
while also x;, < yjn + by, for all 4, j,n

: : . . =t
Fix n for a while. Since each y; — x; lies in G, we have

ds(Y(tij), y; — m;) < 12"+

for some t;; € G*. Then

|tij - (yjn — Zin)|s = ds (d’(tw) @Z’(yjn) — (Tin))

< ds(Y(tig), yj — i) + ds Yy, ¥ (Yjn)) + ds (Y (in), 24)
1/2n+4 1/2n+5 + 1/2n+5 1/2n+3

and consequently,
tij = Yjn + Tin = Uij — Vij
for some u;;,v;; € G satisfying |u;; + vij|s < 1/27F3. Set
bn := u11 + u12 + uo1 + ugz,
then |by|s < 3 |uij + vijls < 4/2773 = 1/2"+1. Moreover,
Tin < Tin + tij = Yjn + Uij — Vij < Yjn + Uij < Yjn + bn

for all 4, 5.
Finally, we construct elements z1, zo, ... in G such that

Tin < Zn < Yij + b

for all 4, j,n, while also |zp41 — 2p|s < 1/2™.
As x;1 < yj1 + by for all 4,7, interpolation in G immediately provides us an
element z;. Now suppose that z1,..., 2z, have been constructed, for some n. Then

LTin+1 < Yjn+l T bn—i—lv Tin+1 < Zip +an < zp + ap,

Zp — by —ap < Yjn — Qn < Yint+1 < Yjn+1 + bn+1
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for all ¢, j. Hence, there exists z,+1 € G such that

Lin+1 <zZpy1 < Yin+1 + bn-‘,—l
T2 n+1 <zpy1 < Yon+1 + bn-‘,—l

Zn — by —an <zpp1 < zp +ap.

Since —(an +bp) < zpt+1 — 2n < an < ap + by, we conclude from property (v) of |- |s
that

|Znt1 — Znls < |an + bpls = |an|s + |bnls < 1/27F2 4 1/27H < 1727

which completes the induction.
The sequence {z,} is a Cauchy sequence in G, and hence, there is z € G such
that 1 (z,) — 2. In view of

33(¢(bn)a0) = |bn|s < 1/2n+1
for all n, we also have ¥ (by,) — 0. Since

V(Tin) < P(zn) < @Z)(yjn) + 1(bn)

for all 4,7,n, we have finally z; < z < y; for all 4,5 which proves that G has
interpolation. ]

Theorem 4.6. Let the conditions of Proposition 4.4 hold. Then G is a Dedekind
complete £-group.

Proof. Let x,y € G. Let A be the set of lower bounds for {z,y}. Then A is a
non-empty set. In view of Proposition 4.5, G has interpolation, so that A is an
upwards directed set, and therefore, if A is indexed by itself, A satisfies condition of
Proposition 4.4, so that A has supremum a in G, and clearly, a = = A y. Similarly,
(—z) A (—y) exists in G, and —((—x) A (—y)) = x V y exists in G proving G is an
¢-group. Applying Proposition 4.4, we see G is a Dedekind complete ¢-group. O

As an important corollary of the latter theorem we have that if (R,1gr) =
(R™, 1gn), n > 1, then the metrical completion G of G with respect to any (R, 1g)-
state is a Dedekind complete ¢-group which generalizes [18, Thm 12.7]:

Corollary 4.7. Let s be any (R", 1gn)-state on a unital {-group (G,u), n > 1.
There is a metrical completion G of G with respect to s such that G is a Dedekind
complete £-group.
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Proof. By Remark 4.2, the metrical completion G of G with respect to 3 is in fact a
metrical completion of G with respect to s. The desired result follows from Theorem
4.6. O

Theorem 4.8. Let the conditions of Proposition 4.4 hold with an (R, 1g)-state s on
(G,u) and let (R,1g) = (C(T),17), where T # 0 is a Hausdorff compact extremally
disconnected topological space. If Gg is an (-subgroup of G generated by 1(u), then
the restriction 39 of s onto Gq is an (R, 1g)-state on the unital Dedekind complete
l-group (Go,v(u)), where 3 is a continuous mapping defined in Proposition 4.1(ii).
In addition, Sy is an extremal (R, 1R)-state on (Go, v (u)) if and only if so is s on

(G,u).

Proof. Let s be an (R, 1g)-state on (G,u) and let Gy be the f-subgroup of G gen-
erated by ¥ (u). Due to Theorem 4.6, (Go,v(u)) is an Abelian Dedekind com-
plete unital ¢-group. By Proposition 4.1(ii), there is a unique continuous mapping
5:G — (R,1g) = (C(T),17) such that ¢ o s =501 (the mapping ¢ : R — C(T) is
the identity). Consequently, Sp is an (R, 1r)-state on (Go, ¥ (u)).

Assume that s is an extremal (R, 1g)-state and let 5o = Amj + (1 — X\)mg, where
my,my are (R, 1g)-states on (Go, ¢ (u)) and A € (0,1). The mappings s;(x) :=
mi(Y(x)), © € G, are (R, 1r)-states on (G, u) for each i = 1,2, and s(z) = Asi(z) +
(1 — N)sa(z), © € G. The extremality of s entails s(z) = s1(z) = sa(z) for each
z € GG. We have to show that 55 = m; = ms.

Since 30(g), m1(g), ma(g) are in fact continuous functions on 7', then they are
positive functions for each g € é{;, and hence, 59(g)/A > mi(g) and So(g)/(1 —
A) > ma(g) for each g € @g. For any g € G, there is a sequence {z,} in G*
such that (zn) < $(zns1) < g and P(zs) — g. Then [ma(g) — ma($(zn))r <
II5(9) — s(¢(zn))|l7/X — 0 and whence, mi(g) = lim, m1 (¢ (xy)) = lim, si(x,) =
lim,, s(x,) = 3(g). In a similar way we have mso(g) = lim, so(x,) = lim, s(z,) =
5(g). Then mq(g) = ma(g) = 3(g) = So(g) for each g € Gy which shows that 3y is
an extremal (R, 1g)-state on (Gg, ¥ (u)).

Conversely, let 59 be an extremal (R, 1r)-state on (Go, ¥ (u)) and let s = As; +
(1—X)s2, where s1, 2 are (R, 1g)-states on (G, u) and A € (0,1). We define mappings
m; : Go — R for i = 1,2 as follows. First, we put m;(¢)(x)) = si(z) for x €
Gt and i = 1,2. Then each m; is a well-defined mapping on ¥ (G)*. Now let
g € G§. There is a sequence {z,} in GT with ¥(z,) < ¥(zn41) < g such that
g = limy, ¢ (x,). Since for continuous functions we have 0 < ¥ (x,,) — ¥ (xy,) for
cach m > n, then |51 ($(zm)) — 51(6(@n)) 7 < [F0(6(@m)) — So(@(za))ll/A — 0
and [[52(@(2m)) — 52l < [50(b(@m) — So(b(@a))llr/(1 — ) — 0 when
m,n — oo. Then {s;(¢(xz,))} is a Cauchy sequence in C(T') = R, and there is
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fi € C(T)7 such that s;(¢(z,)) = f; for i = 1,2. If {y,} in GT is another sequence
in G§ such that ¥ (yn) < ¥(ynt1) < g and g = lim,, ¥ (y,), then lim, s;((¢(2,))) =
fi = limy, 5;(1(yn)), and therefore, the extension of m; to G¢ is defined by m;(g) :=
lim,, m;(¢(xy,)) whenever {z,} is a sequence in G* with ¥ (x,,) < ¥ (z,+1) < g such
that g = lim,, ¢)(z,,). Finally, m; can be extended to the whole Gy, so that every m;
is an (R, 1R)-state on (G, u), and 59 = Amy + (1 — A\)ma. This yields 590 = m1 = mao
and consequently, s = s; = sy proving s is an extremal (R, 1g)-state on (G,u). O

5 Lattice Properties of R-measures and Simplices

In this section we extend the notion of an (R, 1pr)-state to R-measures and R-
Jordan signed measures on a pseudo MV-algebra. If R is a Dedekind complete
Riesz space, we show that the space of R-Jordan signed measures can be converted
into a Dedekind complete Riesz space. This allows us to show when the space of
(R, 1R)-states on a pseudo MV-algebra is a Choquet simplex or even a Bauer sim-
plex. In addition, we show when every state is a weak limit of a net of convex
combinations of (R, 1g)-state-morphisms.

Thus let M be a pseudo MV-algebra and R be a Riesz space. A mapping
m : M — R is said to be an R-signed measure if m(x +y) = m(z) + m(y) whenever
x + y is defined in M. An R-signed state is (i) an R-measure if m(z) > 0 for each
x € M, (ii) an R-Jordan signed measure if m is a difference of two R-measures. It
is clear that (i) every (R, 1g)-state is an R-measure, (ii) m(0) = 0 for each R-signed
measure m, (iii) if z < y, then m(x) < m(y) whenever x < y for each R-measure m.
We denote by JSM (M, R) and M (M, R) the set of R-Jordan signed measures and
R-measures, respectively, on M. Then JSM (M, R) is a real vector space and if for
two R-Jordan signed measures m; and mo we put m; <+ ms, then JSM (M) is an
Abelian po-group with respect to the partial order <* with positive cone M (M, R).
Using ideas from [18, p. 38—41], we show that JSM(M, R) is a Dedekind complete
Riesz space whenever R is a Dedekind complete Riesz space. We note that in [18] this
was established for Abelian interpolation po-groups G whereas we have functions on
M with the partial operation + that is not assumed to be commutative a priori.

In this section, let R be a Dedekind complete Riesz space and M be a pseudo
MV-algebra.

A mapping d : M — R is said to be subadditive provided d(0) = 0 and d(z+y) <
d(x) + d(y) whenever z +y € M.

Proposition 5.1. Let M be a pseudo MV-algebra, R a Dedekind complete Riesz
space, and let d : M — R be a subadditive mapping. For all x € M, assume that the
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D(z) :={d(z1)+ - -+dzn):x =21+ -+, x1,...,20n € M, n>1} (5.1)
is bounded above in R. Then there is an R-signed measure m : M — R such that

m(x) =\ D(x) for all x € M.

Proof. The map m(x) :=\/ D(x) is a well-defined mapping for all z € M. It is clear
that m(0) = 0 and now we show that m is additive on M.
Let x +y € M be given. For all decompositions

r=x14 - 4x,and y =y + - + yi

with all z;,y; € M, we have z +y =21 +--- + 2, +y1 + - - + yi, which yields
> d(wi) + D d(y;) < m(x +y).
i J

Therefore, s +t < m(x + y) for all s,¢ € D(x). Since R is a Dedekind complete
Abelian ¢-group, \/ is distributive with respect to +, see [18, Prop 1.4]. Whence

m@)+my) = (V/D@)+my) =\ (s+m())

seD(z)
= \/ (s+(\/D(y))) \/ \/ (s+1t)
ueD(x) seD(z) yeD(y
< m(z+y).

Conversely, let © +y = 21 + --+ 4+ 2z, be a decomposition of x + y where each
zi € M. Then the strong Riesz decomposition Property RDPy with (2.1)—(2.2)
implies that there are elements x1,..., s, y1,...,Yn € M such that xt = z1+- - -4z,
y=y1+---+ynand z; = x; +y; for ¢ = 1,...,n. This yields

Zdzz <Z (:) + d(s)) (del> <Zdyz> () +m(y),

and therefore, m(z + y) < m(x) + m(y) and finally, m(z + y) = m(z) + m(y) for
all x,y € M such that x + y is defined in M, so that m is an R-signed measure on
M. O

Theorem 5.2. Let M be a pseudo MV-algebra and R be a Dedekind complete Riesz
space. For the set J(M,R) of R-Jordan signed measures on M we have:
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(a) J(M,R) is a Dedekind complete (-group with respect to the partial order <T.

(b) If {mi}icr is a non-empty set of J (M, R) that is bounded above, and if d(x) =
V,; mi(x) for all x € M, then

(\/ml> (x):v{d(xl)+---+d(xn):$:x1+"'+$n7 T1,..., T, € M}

forallz e M.

(c) If {m;}icr is a non-empty set of J (M, R) that is bounded below, and if e(x) =
N; mi(x) for all x € M, then

(/\mz> (x):/\{e(xl)+---+e(:1:n):x:acl—i-'--—i-xn, Ti,...,Tn € M}

for allx € M.

(d) The set J(M,R) is a Dedekind complete Riesz space.

Proof. Let mg € J(M, R) be an upper bound for {m;};c;. For any = € M, we have
m;(xz) < mo(x), so that the mapping d(x) =\, m;(z) defined on M is a subadditive
mapping on the pseudo MV-algebra M. For any x € M and any decomposition
r=2x1+- -+ x, with all x; € M, we conclude d(z1) + -+ d(z,) < m(xy) +-- -+
m(zy) < mo(x). Hence, mo(x) is an upper bound for D(z) defined by (5.1).

By Proposition 5.1, we conclude that there is an R-signed measure m : M — R
such that m(z) = V D(x). For every x € M and every m; we have m;(z) <
d(x) < m(z), which gives m; <t m. The mappings m — m; are positive R-measures
belonging to J(M, R), so that m —m; =: f; € M(M, R), and m = m; + fi —m; ,
where mj,mi_ € M(M,R) and m; = mz+ — m; . Consequently, m € J(M,R). If
h € J(M,R) is an R-Jordan signed measure such that m; <t h for any i € I, then
d(xz) < h(x) for any x € M. As in the preceding paragraph, we can show that h(x)
is also an upper bound for D(z), whence m(z) < h(x) for any x € M, which gives
m <* h. In other words, we have proved that m is the supremum of {m;};cs, and
its form is given by (b).

Now if we apply the order anti-automorphism z +— —z holding in the Riesz
space R, we see that if the set {m;};c; in J(M, R) is bounded below, then it has an
infimum given by (c).

It is clear that J (M, R) is directed. Combining (b) and (c), we see that J (M, R)
is a Dedekind complete ¢-group.
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(d) If m is an R-Jordan signed measure on M and o € R, then clearly am €
J (M, R) and if, in addition o > 0, then am an R-measure whenever m is an R-
measure. Consequently, J (M, R) is a Dedekind complete Riesz space. O

Now let, for an Archimedean unital Riesz space (R, 1gr), (C(T),1r,¢) be its
canonical representation, i.e. (R,1g) ~ (C(T),1r,$). We say that a net of (R, 1r)-
states {sq}a on a pseudo MV-algebra M converges weakly to an (R, 1g)-state s on
M, and we write {sq}a — 8, if ||¢ 0 sa(z) — ¢ 0 s(x)||7 — 0 for each 2 € M. We
note that the weak convergence introduced in the proof of (4) of Proposition 3.19 is
a special case of the present definition.

If (R,1g) = (R, 1), then (R, 1g)-states are usual states on pseudo MV-algebras,
therefore, the weak convergence of (R, 1g)-states coincides with the weak conver-
gence of states introduced in the beginning of Section 3.

First, we show that if, for a net of (R, 1g)-states on M, we have {sq}a — 5
and {sq}a — s, then s = &'. Indeed, if s’ is another (R, 1g)-state on M such
that ||¢ o sq(z) — ¢ o §'(z)||r — 0 for each x € M, then |¢p(s(x) — §'(z))|lr <
[6(s(z) — sa(@))lIT + l¢(sa(z) — s'(z))[lr — 0 so that ¢(s(z)) = ¢(s'(z)) which
proves s(z) = s'(z) for each € M and finally, we have s = s’

We note that the weak convergence of (R, 1g)-states on M can be defined also
in another but equivalent form: Let (R, 1g) be an Archimedean unital Riesz space.
For any r € R, we set

I7]l15 == inf{fa € RT: [r| < alg}.

Then ||-||1, is a norm on R. In particular, for each f € C(T'), we have || f||7 = || f]l1,-
In addition, if (R,1g) ~ (C(T),1r,¢), then ||z|1, = |¢(z)||r for each x € R.
Therefore, a net {sy}q of (R, 1gr)-states converges weakly to an (R, 1g)-state s iff
limg [|$q(x) — s(z)|l1, = 0 for each z € M.

Proposition 5.3. Let M be a pseudo MV-algebra and (R,1r) be a Dedekind o-
complete unital Riesz space. Then the space S(M, R,1R) is either empty or a non-
empty convex compact set under the weak convergence.

Proof. By Proposition 3.6, M has at least one state iff M possesses at least one
normal ideal that is also maximal. In particular, if M is an MV-algebra, with 0 # 1,
M admits at least one state.

Thus, let M have at least one (R, 1p)-state. Clearly, S(M, R,1r) is a convex
set. Since R is Dedekind o-complete, according to [24, Thm 45.4], see also Theorem
2.3, (R, 1R) has the canonical representation (C(T), 17, ¢), and ¢ is bijective, where
T is the set of maximal ideals of (R, 1r) with the hull-kernel topology.
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Let D := {f € O(T): ||fllr < 1}. If s is an (R, 1g)-state, then ¢ o s € DM.
Since D is compact in the norm-topology || - ||z, D™ is due to Tychonoff’s theorem
a compact Hausdorff topological space in the product topology of D™. The set
H(S(M,R,1g)) := {pos:s € S(M,R,1g)} is a subset of the cube DM. Let
us assume that {s,}q is a net of (R, 1g)-states on M such that there exists the
limit p(x) = limg ¢ 0 sq(x) € D C C(T) for each € M. Then p : x — pu(x),
r € M, is a (O(T),17)-state on M. Put s(x) := ¢ *(u(z)) for each z € M.
Then s : © + s(x), * € M, is an (R, 1p)-state on M such that {s,}o — s, which
says that ¢(S(M, R,1g)) is a closed subset of D™. Since D is compact in the
norm-topology || - ||, and ¢(S(M, R, 1R)) is a closed subset of DM, ¢(S(M, R, 1r))
is compact. Consequently, S(M, R,1g) is a compact set in the weak topology of
(R, 1R)-states. O

Corollary 5.4. Under the conditions of Proposition 5.3 every (R, 1g)-state on M
lies in the closure of the convex hull of extremal (R,1g)-states on M, where the
closure is given in the weak topology of (R, 1g)-states, i.e.

S(M, R, 13) = (COHV(S@(M, R, IR)))_.

Proof. Tt is a direct application of the Krein-Mil’'man Theorem, Theorem [18, Thm
5.17], and Proposition 5.3. O

Proposition 5.5. Let M be a pseudo MV-algebra and (R, 1r) be a unital Riesz space
isomorphic to the unital Riesz space (Cy(T'), 17) of bounded real-valued functions on
T, where T # ) is a basically disconnected compact Hausdorff topological space. Then
the set of extremal (R, 1g)-states on M is closed in the weak topology of (R,1R)-
states.

Proof. According to Proposition 3.15, every extremal (R,1g)-state on M is an
(R, 1R)-state-morphism on M and vice-versa. Since T is basically disconnected, by
Nakano’s theorem (Cy(T'), 17) is a Dedekind o-complete Riesz space, consequently,
so is (R,1Rr). By Proposition 5.3, we can introduce the weak topology of (R, 1r)-
states on M which gives a compact space S(M, R, 1r). Applying the criterion (iii) of
Proposition 3.15, we see that the space SM(M, R, 1r) of (R, 1r)-state-morphisms
is closed and compact. Due to (3.2), we have Sg(M, R,1r) = SM(M, R, 1R) is also
compact. O

Corollary 5.6. Under the conditions of Proposition 5.5 every (R, 1g)-state on M
lies in the closure of the convex hull of (R, 1R)-state-morphisms on M, where the
closure is given in the weak topology of (R, 1r)-states, i.e.

S(M,R,1g) = (Conv(SM(M,R,1R)))".
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Proof. Due to (3.2), we have Sp(M,R,1r) = SM(M, R,1r). Applying Corollary
5.4, we have the result. O

Now we present some results when the space of (R, 1r)-states on a pseudo MV-
algebra is a Choquet simplex or even a Bauer simplex. Therefore, we introduce some
notions about simplices. For more info about them see the books [1, 18].

We recall that a convex cone in a real linear space V is any subset C' of V' such
that (i) 0 € C, (ii) if 21,22 € C, then 111 + agzs € C for any ag,ay € RT. A strict
cone is any convex cone C such that C N —C = {0}, where —C = {—z: z € C}.
A base for a convex cone C' is any convex subset K of C' such that every non-zero
element y € C' may be uniquely expressed in the form y = ax for some o € RT and
some z € K.

Any strict cone C' of V' defines a partial order < on V via z <¢ y if and only
if y—a e C. Itis clear that C = {zx € V : 0 <¢ z}. A lattice cone is any strict
convex cone C in V such that C' is a lattice with respect to <¢.

A simplex in a linear space V is any convex subset K of V' that is affinely
isomorphic to a base for a lattice cone in some real linear space. A simplex K in
a locally convex Hausdorff space is said to be (i) Choquet if K is compact, and (ii)
Bauer if K and Ky are compact, where Ky is the set of extreme points of K.

Theorem 5.7. Let M be a pseudo MV-algebra and (R,1g) be a Dedekind complete
unital Riesz space. Then the set of (R,1g)-states on M is either empty set or a
non-void Choquet simplez.

Proof. By Proposition 3.6, M has at least one (R, 1g) state iff M has at least one
normal ideal that is also normal. Thus assume that M admits at least one (R, 1g)-
state. According to Theorem 5.2, the space J (M, R) of R-Jordan signed measures
on M is a Dedekind complete Riesz space. Since the positive cone of J (M, R) is
the set M(M, R) of R-measures on M that is also a strict lattice cone of J (M, R),
it is clear that the set S(M, R, 1r) of (R, 1g)-states is a base for J (M, R). Whence,
S(M, R, 1R) is a simplex. Now applying Proposition 5.3, we see that S(M, R, 1R) is
compact in the weak topology of (R, 1g)-states, which gives the result. O

~Y

Something more we can say when (R,1gr) = (Cy(T),1r) for some extremally
disconnected space T

Theorem 5.8. Let M be a pseudo MV-algebra and (R,1r) = (Cy(T'), 11) for some
extremally disconnected space T # (). Then S(M, R, 1R) is either the empty set or
a non-void a Bauer simplex.
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Proof. Assume that M possesses at least one (R, 1r)-state. Due to the Nakano
theorem, (Cy(T"), 17) is a unital Dedekind complete Riesz space, consequently, so is
(R,1R). Applying Theorem 5.7, we have S(M, R, 1r) is compact and by Proposition
5.5, the space of extremal states is compact in the weak topology of (R, 1r)-states,
so that S(M, R, 1r) is a Bauer simplex. O

6 Conclusion

In the paper, we have introduced (R, 1r)-states on pseudo MV-algebras, where R is
a Riesz space with a fixed strong unit 1, as additive functionals on the pseudo MV-
algebra M with values in the interval [0, 1] preserving partial addition 4+ and map-
ping the top element of M onto 1i. (R, 1g)-states generalize usual states because
every (R,1)-state is a state and vice versa. Besides we have introduced (R, 1g)-
state-morphisms and extremal (R, 1gr)-states. If (R, 1g) is an Archimedean unital
Riesz space, every (R, 1p)-state-morphism is an extremal (R,1p)-state, Theorem
3.17. We note that there are (R, 1r)-state-morphisms whose kernel is not maximal
ideal, Proposition 3.19, whereas, if an (R, 1g)-state has a maximal ideal, it is an
(R, 1R)-state-morphism, Proposition 3.8. Metrical completion of a unital ¢-group
with respect to an (R, 1g)-state, when (R, 1r) is a Dedekind complete unital Riesz
space, gives a Dedekind complete ¢-group, Theorem 4.6. Theorem 5.2 shows that the
space of R-Jordan signed measures, when R is a Dedekind complete Riesz space,
can be converted into a Dedekind complete Riesz space. This allows us to show
when the space of (R, 1r)-states is a compact set, Proposition 5.3, and when every
(R, 1R)-state is in the weak closure of the convex hull of extremal (R,1g)-states,
Corollary 5.6. We have showed that the space of (R, 1g)-states, when (R,1g) is
Dedekind complete, is a Choquet simplex, Theorem 5.7, and we established when it
is even a Bauer simplex, Theorem 5.8.

From our study we see that there are many parallels among the (R, 1r)-state
spaces of MV-algebras and pseudo MV-algebras, respectively, if we use e.g. Archi-
medean (R, 1g)-states. It would be desirable to extend our results also for non-
Archimedean spaces, or even to have “states' that distinguish non-commutative
pairs of a pseudo MV-algebra.
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Abstract

Noncommutative lattices are present in the everyday tasks of computer sci-
entists whenever they make use of common operations such as update and
override. In this paper we shall focus on the algebraic properties of the update
operation, in their natural context of skew lattices.

1 Introduction

Given nonempty sets A, B and partial functions f,g from A to B there are a few
natural ways how to combine them. These include the following binary operations:

Restriction: fAg= g\dom(f)mdom(g),
Override: V9= 1Y 3laom(g)\dom(s)> (1)
Update: flgl = g|dom(f)md0m(g) U f|dom(f)\d0m(9)'

Algebras of partial functions with operations restriction, override and update appear
in theoretical computer science and they were first studied in [1]. In [5], a connection
of such operations to skew lattices was established. The purpose of the present paper
is to better understand the role of the update operation in skew lattices.

*Supported by the Slovenian Research Agency (research core funding No. P1-0222). This
work is based upon work from COST Action MP1405 QSPACE, supported by COST (European
Cooperation in Science and Technology).

Vol. 5 No. 8 2018
Journal of Applied Logics — IfCoLog Journal of Logics and their Applications



CVETKO-VAH AND PiTA COSTA

A skew lattice is a set S equipped with a pair of idempotent and associative
binary operations A and V that satisfy the following absorption laws:

zAN(xVy)=z=zV(zAy) and (xAy)Vy=y=(xVy) Ay.
Given a skew lattice S we define the natural partial order on S by:
r<yif e Ay=xz=y Az, orequivalently, zVy=y=yVx.

The following is an easy observation.
Lemma 1.1. Let S be a skew lattice and x,y € S. Then: yAz Ay <y <yVaxVy.

The natural preorder < is defined on S by:

zRyiff t Ay Ax =z, or equivalently, yVa Vy =y.
Green’s equivalence relation D is defined on a skew lattice S by:
2Dy iff r <y and y < z.

Leech’s First Decomposition Theorem [8] yields that D is a congruence, S/D is
the maximal lattice image of S and each congruence class is a rectangular algebra
characterized by t Ay Az=x Az and zVy =y Ax. Note that, given any z,y in a
skew lattice S, x < y implies x < y. Moreover:

r=<yin S iff D, <D, in S/D.

When studying the properties of skew lattices we often limit our attention to
right-handed skew lattices that are characterized by the identity s Ay Az =y Az
(or, dually, x Vy Vx = x Vy). Left-handed skew lattices are characterized by the
identity xt AyAz = x Ay (or, dually, xtVyVz = yVa). Our limitation to right-handed
skew lattices is justified by Leech’s Second Decomposition Theorem [8] yielding that
any skew lattice S factors as a fiber product (pull-back) of a left-handed skew lattice
(called the left factor of S) by a right-handed skew lattice (called the right factor of
S) over their common maximal lattice image.

A skew lattice is called strongly distributive if and only if it satisfies the identities:

zAyVz)=(xAy)V(rAz), (xVy)ANz=(xANz)V(yAz).
By a result of [2] a skew lattice is strongly distributive if and only if it is jointly:

Symmetric: zANy=yAzifaVy=yVuz.
Normal: TANYANzANx=xN2Z2ANYyANx.
Quasi distributive:  S/D is distributive.
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We say that elements x and y in a skew lattice S meet [join] commute if x Ny =
yANz[zVy=yVaz] IfSissymmetric, then z,y € S meet commute if and only if
they join commute, in which case we simply say that they commute.

By a result of [9], given comparable D-classes B < A in a normal skew lattice S,
and a € A there exists a unique b € B such that b < a.

Leech [9] proved that any right-handed strongly distributive skew lattice embeds
into an algebra of partial functions P(A, B), for some nonempty sets A and B, with
the skew lattice operations A, V defined as in (1) above.

2 Update in strongly distributive skew lattices

Let S be a right-handed strongly distributive skew lattice. We define the update
operation on S by:

zlyl = (z Ay) V.

Lemma 2.1. Let S be a skew lattice, x,y € S and M the meet of D-classes D,
and Dy in S/D. Then there exists at most one m € M satisfying both m < x and
m < y. Such m exists if and only if x and y meet commute, in which case m = x Ay.
Dually, there exists at most one j in J = Dy V D, such that both x < j and y < j.
Such j exists if and only if x and y join commute, in which case j = x V y.

Proof. Assume that there exists m € M = D, with the property m < z and
m < y. Then mDzx Ay and thus c Ay =x Ay Am Az Ay. However, the latter
simplifies to m becasue m < z,y, which yields z A y = m. Likewise, y A z = m.
Hence x and y meet commute and m is their meet. The uniqueness of m follows.
The other part of the lemma follows by dual argumentation. O

Theorem 2.2. Let S be a right-handed, strongly distributive skew lattice and x,y €
S. Then:

(i) xDxly],

(i) x Ny <zly] <yVu,

(iti) zlyl Ny =y Nz[y] =z Ny,
(iv) zly]Vy=yValyl =yVa

Moreover, x[y] is the unique element in D, that is below y V x with respect to the
natural partial order.
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Proof. (i) We obtain =z V z[y] Vo = zV (zx Ay) Vo Va = z by absorption and
idempotency. Similarly, z[y]VzVz[y] = (zAy)VaVaV(zAy)Ve = (zAy)Ve = x[y].
These prove z D x[y].

(ii) We obtain (z Ay)Vzy] = (x Ay) V(e Ay) Ve = (zAy) Ve = z[y| and
z[y|V(xAy) = (xAy) VeV (z Ay) which by absorption simplifies to (zAy)Vz = x[y].
On the other hand, z[y] A (y Vz) = ((x Ay) Vz) A (y V x) expands using strong
distributivity to (z Ay) V(z Ay Az)V (z Ay) Vx which using right-handedness and
idempotency simplifies to (z Ay) Vx = x[y]. Likewise, (yVa)Az[y] = (yVz)A((z A
yyVz)=(yANxAy)V(yAz)V(xAy)V e which using right-handedness simplifies
to (z ANy) Ve =uzx[y].

(iii) and (iv): Since S is right-handed, it follows that y Ax Ay = z Ay and
yVaVy=yVaz By (i) x Ay <z[y] <yVz. On the other hand, by Lemma 1.1
also x Ay <y <y Vax. The assertions now follow by Lemma 2.1.

The final assertion follows because being strongly distributive, S is a normal
skew lattice, and thus given comparable D-classes D, < D, there exists a unique
element in D, which is below y V 2 w.r.t. the natural partial order. By (ii), this
element is z[y]. O

The situation of Theorem 2.2 can be visualized by the following diagram, where
the down-edges correspond to the natural partial order, and the horizontal edges
represent the D-relation:

rVy——yVex

/><\

x — x[y] ylx] — v

N

YyNx TAY

Figure 1: The update operation in a right-handed strongly distributive skew lattice.

Before defining the update operation on a more general class of skew lattices, we
observe the following.

Corollary 2.3. Let S be a right-handed, strongly distributive skew lattice and x,y €
S. Then zly] =z A (y V x).

Proof. Obviously, z A (y V ) Dx. By Theorem 2.2, in order to prove the assertion
of the lemma it suffices to show that x A (y V) < y V 2. The idempotency yields
zA(yVz)A(yVz) =xzA(yVz). On the other hand, (yVz)AzA(yVz) =zA(yVe)
by right-handedness. Thus z A (y V x) <y V z follows. O
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3 The update operation in strongly symmetric skew lat-
tices

Recall that a skew lattice is called strongly symmetric if it satisfies the following pair
of identities:

(xAy)Vz=xA(yV ), (xVy)ANz=xV(yAx).

Strongly symmetric skew lattices were first introduced by Spinks in [12] where
they were called “quasi-absorptive". All strongly symmetric skew lattices are sym-
metric by a result of [12].

Proposition 3.1. Strongly distributive skew lattices are always strongly symmetric.

Proof. If S is a right-handed, strongly distributive skew lattice, then it satisfies the
identity (z Ay) Vo =z A (y V z) by Corollary 2.3. We claim that S also satisfies
(xVy)Axz = xV(yAz). Indeed, right-handedness implies: (zVy)Ax =zA(zVy)Az
which simplifies to « by absorption. Similarly, zV (yAz) = 2V (yAzx)Vze =
x. It follows that all right-handed, strongly distributive skew lattices are strongly
symmetric.

A dual argument shows that all left-handed, strongly distributive skew lattices
are also strongly symmetric. By a result of [3] a skew lattice satisfies any identity or
equational implication that is satisfied by both its left factor (which is a left-handed
skew lattice) and its right factor (which is a right-handed skew lattice). It follows
that all strongly distributive skew lattices are strongly symmetric. O

By a result of [4], a skew lattice is strongly symmetric if and only if it satisfies
the identity:

(yAhNxAy)VaeV(yAhzAy)=(yVaVy AxA(yVaeVy). (2)

Given a strongly symmetric skew lattice S and z,y € S we define the update
operation on S by:
zlyl=(yAzAy)VaV(yrzAy).

Note that the definition of the update simplifies to z[y] = (x Ay) V x in the case
that .S is right-handed.

Proposition 3.2. Let S be a strongly symmetric skew lattice and x,y € S. Then:
(i) xDxlyl,

(i) y Nz ANy <zlyl <yVaeVy.
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Moreover, if S is strongly distributive, then x[y|] is the unique element in Dy that is
below y V x V y with respect to the natural partial order.

Proof. (i) We obtain xVz[y]Ve =z V(yAzAy)VeV (y Az Ay) Ve which simplifies
to x because y Ax Ay < x. Similarly, z[y| Ve Vzlyl = (yAzAy)VaV (yAxAy)V
zVyAhzAy)VazV(yAzAy)=yAxzAy)VaV(yAzAy)=x[y]. These prove
x D zlyl.

(ii)) We obtain: (y Az Ay)Valyl= YAz Ay)V(yAzAy)VaV(yAxzAy) =
(yAxAy)VaV(yAzAy) = z[y], and likewise, z[y] V (y Az Ay) = z[y]. Using (2),
we obtain z[y]| V(y Ve Vy) = ((yVaVy) Az A(yVazVy))V(yVaeVy) =yVaVy,
and likewise, (y VzVy)Vzlyl=yVazVy.

The final assertion follows because a strongly distributive skew lattice .S is nor-
mal, and thus given comparable D-classes D, < D,y there exists a unique element
in D, which is below y V2 V y w.r.t. the natural partial order. By (ii), this element
is z[y]. O

rVyVe—-—yVrerVy

/><\

x — x[y] ylx] — v

N

TANYNT —yANT Ny

Figure 2: The update operation in strongly symmetric skew lattices.

We would like to have a better description of which element in the D-class
D, equals z[y]. Unlike the situation for strongly distributive skew lattices, given
comparable D-classes A > B in a strongly symmetric skew lattice and a € A there
can be several elements b € B satisfying b < a. In order to understand the situation,
we need to introduce the following concepts.

Let A > B be comparable D-classes in a skew lattice S. Given b € B, the subset
ANONA={aNbAd |a,d € A} of B is said to be a coset of A in B. Similarly,
a coset of B in A is any subset BV aV B ={bVaVV|bl € B} of A, for a fixed
a € A.

Theorem 3.3 (Leech, [10]). Let S be a skew lattice with comparable D-classes
A > B. Then, B is partitioned by the cosets of A in B, and A is partitioned by the
cosets of A in B. Moreover, given a coset A; of B in A and a coset B; of A in B
there exists a bijection A; — B; sending an element a to a unique element b € B;
with the property b < a.
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Theorem 3.4. Let S be a strongly symmetric skew lattice and x,y € S. Denote
A=D,, B=Dy, M =AANB and J = AV B. Then:

(i) x[y] lies in the intersection of the cosets MV x NV M and J Ax A J,

(ii) x[y] is the single element in (M NV xV M)N(JAxAJ) that lies between y Nz Ay
and y VvV x V y with respect to the natural partial order,

(iii) x[y] commutes with y,
(i) zlyl Vy=yVaVy,
(v) 2yl Ny =y Az Ay

Proof. (i) Note that yAzAy € M. Thus z[y] = (yAxAy)VaV(yAxAy) € MVxV M.
By (2) we obtain z[y] = (y VaVy) Az A(yVzVy). AsyVzVyisan element of
J, it follows that z[y] € J Az A J.

(ii) By Proposition 3.2: y Az Ay < z[y] < yVaxVy. The uniqueness part follows
by Theorem 3.3.

(iii), (iv) and (v): By Lemma 1: y Az Ay <y <y Va Vy. On the other hand,
by (ii): y Az Ay < z[y] <yVazVy. The assertions follow by Lemma 2.1.

O

4 Lower and upper update operations

There is no unique way to define the update operation on a more general class of
skew lattices than the strongly symmetric ones. However, we can define the lower
and upper update for an arbitrary skew lattice.

The lower update: x|yl =y Az Ay)VaV(yAzAy)
The upper update: z[y] =(yVaVy) AzA(yVzVy).

The following is a direct corollary of the definitions of lower and upper update,
and (2).

Proposition 4.1. A skew lattice S is strongly symmetric if and only if x|y| = z[y]
forall xz,y € S.

Lemma 4.2. Let S be a skew lattice, and x,y € S. The following statements hold:
(i) if x [y thenz|y| =yAxzAy==zy| andy|lz] =z VyVe=ylz]|,

(i) if v <y then z|y| = x = z[y]| and y|z] =y = y[z],
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(iii) if t Dy then z[y] =y = z|y] and y[x| =z = y|z].

Proof. (i) By the definition: z|y| = (yAzxzAy)VazV(yAzAy). If x <y, then
y Az AyDx and thus x|y| simplifies to y Az Ay. Moreover, yVx Vy =y, and thus
zly] = (yVzVy) Az A(yVazVy) also simplifies to y Az Ay. The other part follows
by a dual argument.

(ii) Let x < y. Then y A z A y simplifies to z, and = V y V x simplifies to y. The
assertion follows by (i).

(iii) Let x Dy. Then y Az Ay simplifies to y, and zVyV z simplifies to z. Again,
the assertion follows by (i). O

Theorem 4.3. Let S be a skew lattice, and x,y € S. Denote A = Dy, B = Dy,
M=AANB and J=AV B. Then:

(i) z|y] is the unique element of the coset M N xV M s.t. yANx ANy < z|y],
(ii) x[y]| is the unique element of the coset J Ax ANJ s.t. z[y] <yVzVy,
(i) x|y Ny =y Az Ny =yAzly],

(i) [yl Vy=yVaVy=yVazlyl.

Proof. (i) The element y Az Ay lies in M. Hence z|y| = (yAxAy)VaV(yAxAy)
is an element of the coset M V a vV M. Obviously, y Az Ay < z|y|. It follows from
Theorem 3.3 that x|y | is the unique element of M VzV M satisfying yAz Ay < z|y].
(iii) By Lemma 1.1: y Az Ay <wy. By (i): y Az Ay < z|y|. The assertion then
follows by Lemma 2.1.
(ii) and (iv) follow by dual argumentation. O

Note that if S is symmetric, then also z|y| <yVazVyand yAxz Ay < z[y], by
[6, Lemma 15].

rVyVae —yVaeVy rVyVe —yVrVy
/ AN S >N
r — x|y ylz] -y z —x[y] ylz]l —y
>/ AN /
TAYNT —YyYNT Ay TAYNT —YyNT Ay

Figure 3: The lower and upper update operations in skew lattices.

Corollary 4.4. Let S be a skew latice, and x,y € S. Then x|y|z|| =z = z[y[z]].
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Proof. By Theorem 4.3, z|y|z]] is the unique element in the coset M V z VvV M that
lies above x Ay Az (since x AyAx < y|x], also by Theorem 4.3). Thus z|y|z]| = .
Dually, we prove that = = z[y[z]]. O

We conclude with an example that was studied in [4]. It gives a skew lattice of
minimal cardinality s. t. it is symmetric, but not strongly symmetric. The skew
lattice of Example 4.5 was found by Mace4 (see McCune [11]).

Example 4.5. Let S be given by the following pair of Cayley tables:

Alo 1 2 8 4 5 6 7 8 9 V|o 12 8 4 56 7 8 9
010 2 2 0 4 5 9 4 8 9 0|0 3 0 3 0 0 &8 3 0 0
14 1 2 7 4 21 7 4 2 1|6 116 1 6 6 1 6 6
24 2 2 4 4 2 2 4 4 2 2|51 2 6 2 5 6 1 9 9
slo 1t 2 3 4 5 6 7 8 9 3|3 3 8 8 3 3 8 8 3 3
Jl4 2 2 4 4 2 2 4 4 2 4lo 7 4 3 4 0 3 7 8 8
510 2 2 8 4 5 5 4 8 9 5|5 6 5 6 5 5 6 6 5 5
610 1 2 3 4 5 6 7 8 9 6|6 6 6 6 6 6 6 6 6 6
7N 102 7 4 2 1 7 4 2 7|8 7 7T 8 7T 3 3 7 3 3
slo 2 2 8 4 5 5 4 8 9 8|8 3 8 3 8 8 8 3 8 8
9lo 2 2 0 4 5 9 4 8 9 99 6 9 6 9 9 6 6 9 9

We can visualize S by the following diagram.

6—3

NQOS
J—_

We obtain: 1[0] = (0ALA0)V1V(0ALAO) =4V1V4 =7 and 1[0] = (OV1VO0)A
1A(0VIV0) = 3A1A3 = 7. However, 0]1] = (IAOA1)VOV(1IAOAL) = 2V0V2 = 5,
but 0[1] = (1VOVI)AOA(1VOV1)=6A0A6=09.

/A
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In the aforementioned paper I presented several minor mistakes, which I would
like to correct. The following paragraphs correspond to the final, corrected form. I
am very grateful to the editorial board for this possibility.

On page 91:

In this very (original) sense, and more recently, Soare (2012, p. 3279) claims that
“[t]he term recursion refers to a function defined by induction [not to be confused
with ‘inductive definition’” — SM]. We first define f(0) and then define f(x + 1) in
terms of previously defined functions using as inputs [i.e. as arguments — SM] x and
f(x)” (original italics).

On page 93:

Godel (Ibid., p. 72) adds: “Turing’s work gives an analysis of the concept of “me-
chanical procedure” (alias “algorithm” or “computation procedure” or “finite combi-
natorial procedure”). This concept is shown to be equivalent with that of a “Turing
machine” ”.

On page 94:
x+0=x;x+)y =(x+y).

On page 99:

According to Kenny (1984), we should distinguish between possessors, capacities
and vehicles. Thus a person (i.e. the possessor) has the capacity to compute a
function (for instance addition), and the vehicle of such capacity is (probably) the
brain.
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On page 99:
Chomsky makes such a metaphysical claim, given that Merge is thought to be the
operation of such mental vehicle (i.e. the computational or mechanical procedure).

On page 99, footnote #20:

This ‘Wittgensteinian flavor’ refers to that the conceptual or grammatical investiga-
tions Wittgenstein carries out will not provide any insight about the nature of the
human constitution or the nature of the world; rather, about the grammar of our
descriptions.

On page 101:

Thus, in computing, say, ‘2+2’, the process invokes a previously computed value for
a smaller argument x < 2, that is, ‘(2 + 1) + 1’, until the process reaches the base
case (2+0)+ 1)+ 1"

On page 101, footnote {21:
We can define addition by iteration as follows: u + 0 = u; u + x = S*u; where S*u
denotes the x successive applications of S (the successor function) to u.

On page 106:

Thus a recursive process, i.e. the process that invokes a previously computed value
for a smaller argument (see table 3), is conceptually distinct from the process Mar-
tins is arguing for, i.e. the process which is based on the application of recursive
embedding rules a given number of iterations; in other words, a process which
consists of the embedding of constituents within constituents of the same kind.
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