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Abstract 

An approach to support query verification by translating SQL 

queries into easy-to-read pseudonatural language expressions is 

proposed. The method discussed here converts various types of 

SQL queries, including simple and composite nested ones. Since 

it employs no complex natural language processing technique, it 

is feasible even on small computers. 

1 Introduction 

Recent advances in computers and databases have enabled com- 

puter novices to use commercially-supplied relational database 

systems on their own computers. Relational databases are no 

longer special tools for expert users only. 

One of the criteria by which the novice users may choose a 

database system is the effort required each time they retrieve 

information from the database. To get necessary information, 

one must specify to the system exactly what is needed. For this 

purpose, formal query languages have been used most. Such an 

artificial language is easy to understand for the system, but not 

necessarily for novice users. 

QBE[13] is a formal query language for relational databases 

which is believed to be easy to learn. In an experiment[ll], how- 

ever, 27% of the QBE queries written by the subjects were se- 

mantically incorrect but syntactically correct. As long as a formal 

query language is used, the system has no way of knowing that a 

syntactically correct query is different from the user’s intention. 

To offer novice users an alternative to formal query languages, 

many attempts are being made to develop natural language inter- 

faces which accept queries written in everyday language. Natural 

language interfaces, however, also have their problems. First of 

all, natural language processing is not an easy task. Our ev- 

eryday language has too many rules and exceptions compared 

with formal languages. If we are to develop an interface which 

can accept every naturally-expressed input, and can respond in 
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a natural way, we would have to equip the system with a huge 

store of human knowledge. 

A more modest approach is to implement a system which can 

accept only a reasonable variety of queries at the cost of reject- 

ing other queries which are considered ra.re. It would need only 

a limited amount of lexical, syntactic, situational or application- 

specific information. Unfortunately, users must learn the lan- 

guage of the interface, and must know which sentences are allowed 

and which are not. Such an interface could hardly be considered 

to be truly natural[4]. 

We can adopt another approach to cope with the problems of 

formal query languages. If users can verify the semantics of their 

queries, those possibly-incorrect queries will not be executed, and 

thus users will not misunderstand the information returned by 

the system. Natural language can be used for a feedback to 

the users[6, 7, 3, 9, lo]. They can check the output given by 

the system easily, and can execute the query only after they are 

sure that it fits their intention. This seems to be a reasonable 

compromise given the current technology. 

The REMIT system[9] translates relational algebra queries into 

natural language. It uses a semantic network for representing ap- 

plication specific information. This network representation, how- 

ever, may not be convenient in cases where the database structure 

is likely to change, since a small change in the network may cause 

a rippling effect throughout the network. This system also uses 

complex natural language processing techniques. 

The ELFS system[lO] has an preprocessor which transforms 

SQL[2] queries into an SQL-like intermediate language. Then, 

its translator generates a na.tural langua.ge text describing the 

meaning of the query. This translator employs simple binary 

relationships to store application-specific information. Binary 

relationships, however, are not powerful enough for handling n- 

ary ones in a natural way. 

A third approach [7] employs hypergraphs and natural lan- 

guage fragments for representing application specific information. 

This hypergraph scheme can express n-ary relationships easily. 

For each element in those hypergraphs, a natural language frag- 

ment is assigned. Since these units are localized within each 

relation which is a unit in a whole database, this significantly 

reduces the effort required to customize the system for particu- 

lar applications. The method first translates a given relational 

algebra query into a query hypergraph. This hypergraph is then 

116 



used to determine a “skeleton” of the output sentence. Prepared 

natural language fragments are assembled into a pseudonatural 

language expression by simple string manipulations. The output 

is a natural-language-like expression describing the meaning of 

the result to be retrieved by the query. 

In this paper, we extends this third approach to handle more 

complex queries written in SQL. An interesting, but also trouble- 

some, feature of SQL is its nesting facility. In a complex query in- 

volving set comparisons or aggregations, a unit construct of SQL 

is embedded into another. Unfortunately, such queries are diffi- 

cult to understand. This paper discusses a translation method 

for such nested SQL queries, which will be incorporated into a 

prototype system of an example-based natural-language-assisted 

interface[6] now under development[3]. 

2 Basic Concepts 

2.1 Relational Databases and SPJ Queries 

A relation which can be visualized as a flat table. The name of 

a column of such a table is an attribute and is used to identify a 

certain column in the table. Each row of the table corresponds 

to an element of the relation, called a tuple. The set of attributes 

of a relation R is called the relation schema, denoted R. Values 

in a tuple t for an attribute set X is denoted t[X]. As long as 

there is no ambiguity, we use a concatenation of attribute names 

to refer to a set of attributes (such as AB for { A, B }). 

A projection of a relation R onto an attribute set X, denoted 

ax(R), is defined as follows: 

xx(R)d~f{T[x] 1 TER}, (1) 

where X c R. 

Let 0 be a scalar comparison operator, and c be a constant. 

A &selection of a relation R with the condition ABC, denoted 

u&R), is defined as follows: 

~asc(R)~~~(rl(r[Al~c)~(r~R)), (2) 

where A E R. The scalar comparison between A and c is called 

a selection condition. A selection condition can be a conjunction 

of similar scalar comparisons. 

The B-join of two relations R and S with a condition ABB, 

denoted R WB S, is defined as follows: 

RA~~S~f{tI(tt(R~S))A(t[Al~t[Bl)}, (3) 

where A E R, B E S,, and “@J” denotes Cartesian product. The 

scalar comparison between A and B is called a join condition. A 

join condition can be a conjunction of similar scalar comparisons. 

A and B are called join attributes. 

An SPJ query on a given database is a sequence of a finite 

number of selection, projection, and join operations. Any given 

SPJ query Qsp~ can be transformed into the following style: 

QSPJ = w(~cs(ucJ& @ Rz ~3’ . . @ Rn))), (4) 

where CS is the conjunction of all the selection conditions, CJ 

is the conjunction of all the join conditions, and P is the output 

attributes of the query QsP J. 

2.2 Hypergraphs 

A hypergraph[l] is a pair (AJ, E) where N is a finite set of nodes, 

and E is a set of hyperedges which are arbitrary nonempty subsets 

of N. The union of all the hyperedges is equal to N. 

A path from node z to y is a sequence of L(> 1) hyperedges 

El,... , Ek such that: (a) z E El; (b) y E Ek; (c) Ei n Ei+l # 0 

for 1 5 i 5 Ic. 

The above sequence El,. . . Ek may be called an edge path from 

El to Ek. Two nodes are connected if there is a path from one 

to the other. Two hyperedges are connected if there is an edge 

path from one to the other. 

A Berge cycle in hypergraph H(N,E) is a sequence 

(~~,x~,SZ,XZ,..~,S~,X,,S~+~) which 
conditions: 

(a) m 2 2; 

tb) ~1, 22, . . . , x, are distinct nodes; 

satisfies the following 

Cc) Si,-.-rSm are distinct hyperedges, and Sr = S,+r ; 

(d) xi E Si and xi E Si+r for 1 5 i 5 m. 

A hypergraph is Berge-cyclicif it has a Berge cycle. Otherwise, 

it is Berge-acyclic. 

(a) (b) 

(cl 

Figure 1: Examples of Hypergraphs 

Figure l(a) and (b) show examples of Berge-cyclic hypergraphs. 

Examples of Berge-cycles are indicated by dotted lines. A Berge- 

acyclic hypergraph is shown in Figure l(c). 

2.3 Query Language SQL 

For the rest of this paper, we concentrate on a typical SQL121 

query construct, called a query block. A query block is as follows. 
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SELECT << output-specification >> 

FROM << relations >> 

WHERE << condition > 

The WHERE clause is optional, while the SELECT and FROM 

clauses are mandatory. We assume that the WHERE clause may 

contain a conjunction of: (a) a conjunction of selection and join 

conditions (predicates) corresponding to those which appeared in 

Formula (4); or (b) a logical formula’ of nested predicates (to be 

summarized later). 

Intuitively, the above construct is interpreted as: 

Calculate the Cartesian product of the relations specified 

in the FROM clause, then get only the tuples which sat- 

isfy the condition in the WHERE clause. Finaliy, print 

the values, following the output specification in the SE- 

LECT clause. 

Note that without aggregation in the output specification, a sin- 

gle query block can express an SPJ query. 

SQL allows a query block to be nested in a predicate of the 

WHERE clause for another query block. The inner block may 

contain yet another query block, and so on. In such cases, join 

predicates may involve attributes of relations in the FROM clause 

of the outer block or a higher block2. A reference by such a join 

predicate is called an interblock reference. 

The single-level nested predicates considered in this paper are 

classified into the following six categories3 according to the link- 

age expressed by the predicates. 

(a) Category-S (Scalar comparison): 

This form of nesting has an effect similar to that of a join 

operation, but is allowed only when the inner block returns 

only one value: 

<< attribute >> 0 (<query-block >) (5) 

(b) Category-Q (Quantified scalar comparison): 

This form is allowed when the inner block returns a relation 

with only one attribute: 

<attribute>> 8 {ALL 1 ANY 1 SOME} (<<query-block>>). 

(‘5) 

(c) Category-A (Attribute-aggregation comparison): 

This is similar to a selection condition, except that the con- 

stant is replaced by an aggregated value returned by the inner 

query block: 

< attribute > ti (< aggregation-query-block B), (7) 

‘We assume that this formula has already been transformed so that nega- 

tions appear only at the literal level, that is, at the individual predicates. 

‘We assume that a join predicate can involve at most one ‘external” 

attribute. 

3Though Kim gave a different classification of nested predicates (in an old 
syntax of SQL)[B], that work was done from a viewpoint of query optimiza- 
tion, and would not suffice for our purpose. 

where <aggregation-query-block>> is as follows. 

SELECT { { MAX 1 MIN ( COUNT 1 SUM 1 AVG } 

( <<attribute ) ( 

COUNT( * ) } 

FROM <<relation@ 

WHERE <conditions3> 

(d) Category-C (Constant-aggregation comparison): 

The general form of a Category-C nested predicate is: 

<constant> B (<<aggregation-query-block>). (8) 

This compares the constant with the aggregated value re- 

turned by the inner block. If there is no interblock reference 

to the outer block or a higher block, the value of this predi- 
cate has nothing to do with the result of the query, and the 

predicate is meaningless. 

(e) Category-M (Set membership checking): This checks 

whether a certain value of a tuple is contained in the set 

returned by the inner block. The inner block must return a 

relation with only one attribute. A general formulation is: 

<attribute>> {IN ) NOT IN} (<<query-block>>). (9) 

(f) Category-E (Existential checking): A Category-E 

nested predicate checks whether or not the set returned by 

the inner block is empty. If the predicate has no interblock 

reference to another block above it, it is meaningless for the 

same reason as for Category-C. A general form is: 

{EXISTS I NOT EXISTS} (<query-block>>). (10) 

To clarify the semantics of nestings, we decompose each cate- 

gory into several types. 

The first subcategorization is according to interblock refer- 

ences. If the inner block refers to its parent block, we distinguish 

that nesting type from the one without such a reference by un- 

derlining the category name. For example, a Category-S nesting 

with a one-level interblock reference is Type-S. 

The other subcategorization is by negations allowed in 

Category-M and Category-E. A negative nesting in those cat- 

egories is denoted with a superscript “-“, such as Type-M- or 

Type-E-. 

A nesting graph for an SQL query is a directed graph (N,E) 

such that: 

(a) Each block in the query is expressed as a node. 

(b) If a block involves only one inner block, the nodes for the 

two blocks are connected by an edge labeled with the nest- 

ing type. For a logical formula of nested predicates, a con- 

junction of terms is expressed as a tree which has an “AND” 

node for its root and subtrees for the terms. Similarly, a dis- 

junction is a tree whose root is an “OR” node. The logical 

formula thus comprises a tree structure. 
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(c) An interblock reference is expressed as an edge between the 

node for the block containing the join predicate and the node 

for the block referred to, labeled J (which stands for “Join”). 

(d) Each edge has the direction from the lower level to the higher 

level. 

\ 

iELECT S# 
:ROM SUPPLY A 
NH 

( 

- 

l2 
RE NOT EXISTS 

SELECT * 2 

FROM PARTS X 
WHERE COLOR = ‘Red’ 

AND NOT EXISTS 

(a) 

(b) 

1 
- 

i 

Figure 2: An Example of a Nested SQL Query and Its Nesting 
Graph 

Example 1 : The nested SQL query in Figure 2(a) has the nest- 

ing graph shown in Figure 2(b). The boxes in Figure 2(a) indicate 

boundaries of query blocks. 

3 Pseudonatural Language and SPJ 

Q ueries 

This section summarizes an approach[7] to convert a class of basic 

relational queries, SPJ queries, into pseudonatural language. 

Our text generation strategy is based on a combination of sev- 

eral simple string manipulations, such as insertion of phrases and 

modifiers. Natural language fragments must be prepared when 

the system is customized for a new application. The basic strat- 

egy is summarized as follows: 

(a) Determine the attributes which are relevant to a given query; 

(b) Assemble prepared natural fragments to form a natural- 

language-like sentence. 

The first subsection discusses the natural language expressions 

to be used in pseudonatural language text generation. Then, 

we consider how to generate a pseudonatural language sentence 

describing a given SPJ query in the next subsection. 

We assume that a given SPJ query has already been trans- 

formed into the form of Formula (4). This causes no loss of 

generality4. Let S be the set of selection attributes which appear 

in the selection condition Cs of Formula (4), and let .7 be the set 

of join attributes in CJ. 

3.1 Objects and Their Natural Language Expres- 
sions 

To obtain suitable semantic units for string manipulation, we 

decompose a relation schema into several attribute sets. We call 

such an attribute set an object. An object is characterized by a 

simple natural language sentence in which each attribute in the 

object appears as a noun phrase. The sentence must not contain 

a noun phrase which refers to any attribute not of the object5. 

For each object, we construct natural language fragments to 

be used as building blocks for text generation. These expressions 

are classified into two categories: 

Canonical Sentences: Sentences which explicitly contain at- 

tribute names, and express the relationships among them; 

Canonical Subclauses: Subclauses (relative clauses or prepo- 

sitional phrases) which can be placed after noun phrases con- 

taining attribute names. 

A canonical sentence express the relationship between the at- 

tributes in an object. However, combined descriptions may be 

necessary to express the meaning of SPJ queries, since they are 

likely to involve several relations and therefore several objects. 

The easiest way to construct such a combined sentence is to em- 

bed a prepared subclause for one object into a prepared sentence 

for another. 

To simplify the transformation process, we introduce some 

modest restrictions on these natural language fragments. First, 

for al1 sentences associated with the objects of a given relation, 

we insist on a common subject. This avoids repeated appear- 

ances of the same attribute in the case where several objects of 

one relation are involved in the query. Second, those attribute 

names must appear explicitly in the sentences and clauses. 

These natural language fragments are concerned only with the 

attributes of one object. This considerably decreases the cus- 

tomization work compared to the case where we have no localized 

units. 

Example 2 : Suppose that we have the following database 

schema: 

‘Note that this query transformation is just for pseudonatural language 
translation. 

51f a natural sentence describing an attribute set requires such an “exter- 

ml” attribute noun, the set should include that missing attribute to form an 
object. 
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SUPPLIER( S#, SNAME, ADDRESS); 

PART(P#, PNAME, COLOR); 

SUPPLY(S#, P#, QTY). 

For relation SUPPLIER, we can now make the following sen- 

tences which have a noun phrase associated with S# as the com- 

mon subject: 

supplier with supplier-code { S#} 

: is called {SNAMa ; 

: is located at (ADDRESS) ; 

This gives us two objects {S#, SNAME} and {S#, ADDRESS}. 

The subclauses to be prepared are: 

supplier called { SNAME} 

: which has supplier-code {S#} ; 

supplier located at {ADDRESS) 

: which has supplier-code {S#} ; 

Note that the subclauses for S# can easily be made from the 

sentences above by inserting a relative noun. 

3.2 Translating SPJ Queries into Pseudonatural 
Language Expressions 

The natural language fragments discussed in the previous sub- 

section are localized within a relation. We now need procedures 

to assemble those fragments to describe an SPJ query involving 

more than one relation. 

Outline of the Translation Algorithm for SPJ Queries 

(Algorithm 1) 

Input: Attribute sets S, P, J; 

Conditions Cs, CJ; 

Objects of the database and their canonical expressions. 

Output: A natural language expression describing the query. 

Method: 

(4 

(b) 

(cl 

Hypergraph Construction: Find an object set of mini- 

mum size which covers S u P U J. Let the object set be 0. 

If the hypergraph for 0 is Berge-cyclic, decompose it into a 

set of Berge-acyclic hypergraphs. In this case, the next three 

steps must be repeated for each Berge-acyclic hypergraph. 

Base Sentence Selection: Of the objects found in the 

previous step, choose one having the greatest number of at- 

tributes to be the generator of the base sentence. Let the 

object be B. 

Sentence Skeleton Construction: Find an object in 

0 - {B} whose hyperedge is connected to that of B, em- 

bed the subclause for the object into the sentence for B. If 

the object is associated with B by a B-join (other than ‘=‘), 

insert a phrase corresponding to the scalar comparison (such 

as “more than”, etc.). Repeat this until all the subclauses of 

objects in 0 - {B} are embedded in the sentence. 

(d) Sentence Modification: Insert a modifier phrase for each 

selection condition (such as “more than c”, etc.). 

(e) Formatting: Emphasize output attributes and format the 

sentence(s). 

In step (a), the algorithm decomposes a Berge-cyclic hypergraph 

into a set of Berge-acyclic ones. In general, the relationships 

expressed in a sentence cannot be cyclic. Suppose that the hy- 

pergraph has a Berge cycle as in Figure l(b). In such a case, 

the sentence would be lengthy, and the hea.d noun of the subject 

would appear at both the head and the tail of the sequence of 

words. The decomposition instead makes two or more shorter 

sentences having no repetition of the subject. 

Step (b) chooses the “largest” object as the generator of the 

sentence and thus avoids to use it as a subclause. This is because 

such a “large” object is likely to have a long natural language 

string describing it and a shorter subclause is preferable to a 

longer one. 

SNAME . 

n 

sb 
P# 

Figure 3: The Hypergraph of Query Q1 

Example 3 : Suppose that we have the following query Q,: 

91 = “{ SNAME, P#,QTY }(aQTY>loo(aS~~~~~~~~~ 

(SUPPLTER @ SUPPLY))) 

The relevant attributes are: 

S u P u J = { SNAME, P#, QTY,S#}. 

The covering object set 0 is: 

0 = { { SNAME, S# 1, { s#, P#, QTY 11 

(11) 

(12) 

(13) 

Q1 has the hypergraph shown in Figure 3. The base sentence 

chosen by the algorithm is: 

supplier with supplier-code {S#} supplies parts with 

part-code {P#} in quantity { QTY). 

The sentence skeleton is obtained by inserting the subclause for 

the object {S#, SNAME}: 

supplier with supplier-code {S#} (who is called 

[SNAME]) supplies parts with part-code (P#) in quan- 

tity { QTfi. 
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Finally, Qr is translated into the following pseudonatural lan- 

guage sentence: 

List [SNAME], [P#], [QTY] such that: 

supplier with supplier-code {S#} (who is called 

[SNAME]) supplies parts with part-code [P#] in quan- 

tity [QTY] (more than 100). 

4 Nested SQL Queries and Their Pseudo- 
natural Language Expressions 

This section discusses our translation method for SQL queries 

containing such nested predicates. In the first subsection, the 

algorithm of Section 3 is slightly modified to cope with single 

nested predicates in Categories-S and -A. The second subsec- 

tion analyzes other single nested predicates to be expressed us- 

ing quantified expressions in natural language, and presents an 

approach to incorporate such quantified expressions into pseudo- 

natural language. The last subsection introduces heuristics to 

translate SQL queries containing composite nested predicates, 

using the above results. 

4.1 Single Nested Predicates in Categories-S and 
-A 

As summarized in Section 2, single nested predicates in 

Categories-S and -A have semantics similar to SPJ queries. 

(a) Modifications to Algorithm 1 for Category-S 

Nestings 

Two-block queries in Category-S are special cases of SPJ queries. 

They can be translated into pseudonatural language by Algo- 

rithm 1, after obtaining a hypergraph for each query block and 

join the two hypergraphs. In practice, a warning concerning the 

restraint on the result of the inner block should be issued to the 

user. 

(b) Modifications to Algorithm 1 for Category-A 

Nestings 

A query with a single nested predicate in Category-A has two 

query blocks whose hypergraphs cannot be joined directly. The 

inner block, however, returns an aggregated value which is 

to be compared with an attribute in the outer block. Since 

this is similar to a selection operation, we first translate the 

outer block by Algorithm 1. At this point, selection constants 

should be replaced by a noun phrase such as “the maximum of 

<noun-for-aggregated-attribute>> for.” The aggregate nouns, 

such as minimum, average etc., must be built into the system. 

The inner block should be a sequence of noun phrases for the 

attributes determining the set of values on the aggregated at- 

tribute. 

(c) Modifications to Algorithm 1 for Nested Predicates 

in Category-C except COUNT Function 

If aggregate nouns are supported by the system, the algorithm 

can be applied also to all types of Category-C nestings ex- 

cept those using the COUNT function (Category-C nesting using 

COUNT is discussed in the next subsection). We simply trans- 

late the outer block, and add additional descriptions of the com- 

parison between the constant and the aggregated value. The 

aggregated value can be paraphrased in the same way as with 

Category-A. 

Type 

S,S 

C(al1 but COUNT) 

c(all but COUNT) 

Table 1 

Parapharasing Strategy 

Use the same algorithm as SPJ 
queries. Add the warning about 
the number of the tuples returned 
the inner block. 

- 

Describe the nested predicate in a 
separate text. 

Use the same algorithm as SPJ 
queries, except that an aggrega- 
tion noun should be used instead of 
a selection constant. 

-I 

Simple Nesting Types and Their Translation Strategy 

Table 1 gives a summary of the handling of the above nesting 

types. 

SELECT S# 
FROM SUPPLY 
WHERE P# = ‘001’ 

AND QTY>( 

Figure 4: An Example of a Type-A Nested Query 

Example 4 : For the Type-A nested query shown in Figure 4, 

the modified version of Algorithm 1 gives the following pseudo- 

natural language expression: 

List [S#] such that: 

supplier with supplier-code [S#] supplies parts with part- 

code ‘001’ in quantity QTY (greater than the average of 

quantities for parts with part-code ‘001’). 

4.2 Single Nested Predicates and Natural Quanti- 
fiers 

Single-level nested predicates which handle a value with respect 

to a set or which check the size of a set are useful for expressing 

such requests as: “Who supplies at least one type of red parts?” 

or “List the parts supplied by no suppliers in London.” 

Unfortunately, quantified expressions in natural language have 

ambiguities in quantifier scope. Suppose that we have the follow- 
ing sentence: 

Every supplier supplies a red part. 
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It may mean that every supplier has its own red part to sup- 

ply. It is, however, logically possible that there exists a red part 

supplied by all suppliers without exception. We have to cope 

with the problem of such quantifier scopings, since any ambi- 

guity in pseudonatural language translation may be hazardous 

rather than helpful for naive users. 

The cause of such an ambiguity is that there is no clear dis- 

tinction between the prerequisite of the domain of the quantified 

variable and the restriction to be satisfied on the domain. One 

solution, suggested in [12], is as follows: 

Type Natural Quantifier 

Q, B W-1 “all” 

(ANY, SOME) “at least 

one” 

Quantified Noun 

The attribute returned 
by the inner block 

C - 

;COU NT) 

For <naturaLquantifZer3> <variab@ which satisfy 

< domain-specification >> , 

<< restriction-on-the-domain >>. (14) 

The first interpretation of the previous example should be: 

c (=) 
(>) 
(2) 
(<I 
(5) 
(‘) 

“exactly tn>” 

“less than <n>” 

“at most <n>” 

nmore than <n>” 

“more than <n>” 

mnore or less than <n >’ 

For COUNT(*), 
The inter block 
reference attribute; 

For 
COUNT(Gattribule%>)), 

dattribute9; 

M,M “at least one” The attribute returned 
by the inner block 

For every supplier, a red part is supplied by the supplier. M-,&c “no” The attribute returned 
by the inner block 

The other interpretation is: 
I 

E, E- 1 - 

For a red part, the part is supplied by every supplier. “at least one” The inter block 
reference attribute 

We can adopt this format for our pseudonatural language text 

generation by preparing some more natural language fragments 

for plural forms of noun phrases. The general format of a quan- 

tified pseudonatural language expression is: 

The inter block 
reference attribute 

Table 2: Nesting Types Associated to Natural Quantifiers 

For <<quantifie@>, <<quantified-nou@> <subclause-for- 

domain-specification >, 

<restriction-on-the-domain >. (15) 

The previous algorithm should be slightly modified so that it can 

choose the head noun of the quantified attribute instead of the 

base sentence. The other phases of the algorithm (except the 

formatting phase) can then be used for generating the domain 

specification in Template (15). The restriction can be generated 

easily. 

(b) Modifications to Algorithm 1 for Category-E 

Nestings 

Type-E and Type-E- nestings can be translated into quanti- 

fied pseudonatural expressions with quantifiers ‘at least one” and 

“no”, respectively. The domain specification is in the inner block, 

and the restriction is in the outer block. 

Category-Q, -M and -E nestings in SQL can be handled 

with quantified pseudonatural language expressions. The nesting 

types related to natural quantifiers are shown in Table 2. 

(a) Modifications to Algorithm 1 for Category-Q 

Nestings 

A Category-Q nesting with ANY or SOME quantifier checks 

whether or not there exists one value, in the set returned by 

the inner block, which satisfies the scalar comparison 0 with the 

attribute value in the outer block. This can be described using 

‘at least one” as the quantifier in Template (15). The domain 

specification is obtained from the inner block by the modified 

version of the algorithm in Section 3. 

(c) Modifications to Algorithm 1 for Category-C 

Nestings with the COUNT Function 

A Category-C predicate using the COUNT function also expresses 

the natural quantifier. In this case, <constant >> must be a 

cardinal number. Let B be ‘5’ and the number be n(> 0). Then, 

the predicate checks whether the interblock reference attribute 

has “at least n” values associated with it. 

Figure 5: An Example of a Type-M Nested Query 

A Type-Q nesting with ALL returns TRUE if the attribute value Example 5 : Suppose that we have a Type-M nested query in 

satisfies the 0 relationship for all the values returned by the inner Figure 5. The domain specification is expressed in the inner 

block. This can be expressed using “all” as the quantifier. block. The modified algorithm attaches the subclause for the 
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domain specification just after the phrase L%or at least one type 

of part n. The restriction part, in the outer block, is translated 

into a sentence in the same manner as. an SPJ query, except that 

the quantified attribute noun must be replaced with its plural. 

List [S#] such that: 

For at least one type of parts (those supplied by supplier 

with supplier-code ‘OOS’), 

supplier with supplier-code [S#] supplies such parts. 

4.3 Composite Nested Predicates in SQL 

The inner block of a nested predicate may contain another block, 

or it may contain a conjunction or disjunction of several nested 

predicates. Such composite nested predicates are used to express 

more complex quantifications or to describe a combination of 

several quantified expressions. 

iELECT Q outpupt B 1 
-ROM R1 X 
JVHERE <condition1 P 

AND NOT EXISTS 

( SELECT * 2 

FROM R2 Y 
WHERE Qcondition2P 

AND NOT EXISTS 

iELECT * outpupt P 
:ROM R1 X 

(b) 

Figure 6: Two Equivalent Nested Queries 

Example 6 : The SQL query previously shown in Figure 2 con- 

tains a composite nesting. It is not easy to interpret such a com- 

plex query. In [lo], however, the equivalence between the two 

nested queries shown in Figure 6 is proved. The query in Fig- 

ure 6(b) uses a now-abolished operator CONTAINS. The meaning 

of the operation is more obvious in this formulation than in the 

original one. From this equivalence, we can now interpret the 

meaning of the query in Figure 2. This form of nested predicates 

are used for queries involviag the quantifier “all”. The quantified 

pseudonatural expression of the query in Figure 2 is: 

List [S#] such that: 

For all types of parts (those which have color ‘Red’), 

supplier with supplier-code /S#] supplies those parts. 

E- J 
3 
f J 

E- 

(1) “all” 

(3) “exactlyt <n >“, etc. 

Domain 
’ Specifications 

0 Restrictions 

(2) “only” 

0 
J J 

~~ 
V 

K N- 

(4) *‘no” 

Figure 7: Composite Nested Predicates and Natural Quantifiers 

We have analyzed various composite nested predicates and ob- 

tained nesting forms which can be translated into a quantified 

pseudonatural language expression. Figure 7 shows some of the 

cases for which we have obtained results so far. Shaded squares 

and half shaded squares indicate the domain specification and 

the restrictions, respectively. 

Suppose that we have a nesting graph obtained from a given 

SQL query containing a composite nested predicate. If the graph 

is equivalent to one of those shown in Figure 7, we can obtain 

a pseudonatural language expression using the method discussed 

in the previous subsection. 

Some composite nested predicates may have a structure similar 

(but not equivalent) to one of those in Figure 7. The following 

heuristics find such a similarity, if any. If the transformed graph 

matches one of those in Figure 7, our algorithms for text gener- 

ation can generate a compact expression. Otherwise, we should 

translate each nested predicate separately. 

Heuristic 1 (Subgraph Contraction) If there is a subgraph 

which is connected to only one block node directly or through an 

AND-node, collapse that subgraph into the node. If the whole 

graph matches any of the forms shown in Figure 7, use the mod- 

ified algorithm for text generation. This will cause a nesting of 

quantified pseudonatural language expressions, if the collapsed 

subgraph expresses quantification. 

Heuristic 1 searches a subgraph which is essentially a part of the 

domain specification or the restriction of the upper level quan- 

tification. If the subgraph itself corresponds to a quantified ex- 

123 



pression, its pseudonatural language translation is embedded in 

the domain specification or the restriction of the upper level. 

I 
;ELECT SNAME 1 

‘ROM SUPPLIER 5X 
NHERE NOT EXISTS 

( SELECT * 
FROM PARTS PX 
WHERE EXISTS 

( SELECT * 
FROM SUPPLY SPX 

I I WHERE SPX.S# = ‘012’ 
AND SPX.P# = PX.P# I I ) 

I ’ 
I 

AND NOT EXISTS 
I I I I 

( SELECT * I I FROM SUPPLY SPY 

(a) 
cl t-2 
E- J 

2 E 
9 

B 
3 E J 

4 

(b) (cl 

Figure 8: An Example of an Application of Heuristic 1 

Example 7 : For an SQL query in Figure S(a), Heuristic 1 col- 

lapses Block 3 into Block 2. We obtain the following pseudonat- 

ural language expression: 

List [SNAME] such that: 

FOT all types of parts (those which satisfy: FOT at least 

one of the same type of parts, supplier with supplier-code 

‘01.2’ supplies those parts.), 

supplier with supplier-code {S#} (called [SNAME]) sup- 

plies those parts. 

Heuristic 2 (Branch Split) If there is an OR node which has 

no interblock reference between a block beneath it and a block 

above it, split up the branches below the OR node by copying its 

outer block node and raising the OR node. Repeat this until: 

- The OR node jumps over the outermost block node; 

or, 

- The outer block node of the OR node is adjacent to a Category- 

A nesting edge. 

Heuristic 2 splits up OR-branches, and generates several pseudo- 

natural language expressions to be combined with “or” in the 

output text. Aggregations, however, prohibit this transforma- 

tion, since we cannot in general calculate an aggregated value 

for a set on its subsets. This heuristic is based on the obser- 

vation that a pseudonatural language expression is conjunction- 

oriented. Since it assumes a conjunction when there are several 

modifiers in one sentence, the occurrence of “or” in the middle 

of the expression may obscure its meaning. 

iELECT SNAME 1 
:ROM SUPPLIER 
WHERE S# IN 

I 
( SELECT S# 

FROM SUPPLY 
WHERE QTY>lOO 
AND ( P# IN 

L? 

1 - 

OR P# NOT IN 

(a) 0 1 
IV2 

0 
M 
$ 2 

El El 
Mt Mf 

/A l-7 F-l 

(b) 

Figure 9: An Example of an Application of Heuristic 2 

Example 8 : For an SQL query in Figure 9(a), Heuristic 2 

transforms the nesting graph shown in Figure 9(b) into the one in 

(c). We obtain the following pseudonatural language expression: 

List [SNAME] satisfying (a) OT (b): 

(a) FOT at least one supplier with supplier-code {S#} 

(those which satisfy: 

FOT at least one type of purts (those which are 

called ‘Bolts ‘), 

supplier with supplier-code { S#} supplies 

those parts in quantity { QTY) (more than loo)), 

the supplier with supplier-code {S#} are called 

[SNA ME]. 
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(b) For at least one supplier with supplier-code {S#} 

[those which satisfy: 

For no types of parts (those which are supplied 

by supplier with supplier-code ‘OO,$ ‘), 

supplier with supplier-code {S#} supplies 

those parts in quantity (more than IOO)), 

the supplier with supplier-code {S#} are called 

[SNA ME]. 

5 Concluding Remarks 

In this paper, we discussed how to translate SQL queries into 

pseudonatural language expressions. This will reduce burdens 

on novice users who want to retrieve information satisfying com- 

plex specifications. This approach employs no complex natural 

language processing technique. Localized information for indi- 

vidual application can be prepared by a database administrator 

or the user in the case of personal databases. SQL queries an- 

alyzed in this paper contain both simple and composite nested 

predicates difficult to understand. Our method will help novice 

users to learn and use the more difficult features of SQL. It can 

be used for SQL tutoring systems. 

Pseudonatural language has other possible applications. First, 

it can be used for translating stored queries. As the needs and 

uses of databases grow, an increasing number of queries will be 

written and executed. Those queries themselves may be too 

precious to be abandoned after only one execution. If a query 

database facility[5] is established, users can compose a new query 
from components stored in a database. The readability problem 

of these stored queries can be solved by our method. 

Furthermore, it can be used in a cooperative environment. 

When a user works with others, he or she must understand their 

works. A pseudonatural language translator will help him or her 

to understand queries written by others. Since the translator will 

add application specific information to these queries, the user will 

find it easier to relate these queries with the work at hand. 
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