
Security Vulnerabilities in Software Systems:
A Quantitative Perspective

Omar Alhazmi, Yashwant Malaiya, and Indrajit Ray

Department of Computer Science, Colorado State University, Fort Collins, CO 80523, USA
{omar, malaiya, indrajit}@cs.colostate.edu

Abstract. Security and reliability are important attributes of complex software
systems. It is now common to use quantitative methods for evaluating and man-
aging reliability. In this work we examine the feasibility of quantitatively charac-
terizing some aspects of security.In particular, we investigate if it is possible to
predict the number of vulnerabilities that can potentially be identified in a future
release of a software system. We use several major operating systems as repre-
sentatives of complex software systems. The data on vulnerabilities discovered in
some of the popular operating systems is analyzed. We examine this data to de-
termine if the density of vulnerabilities in a program is a useful measure. We try
to identify what fraction of software defects are security related, i.e., are vulner-
abilities. We examine the dynamics of vulnerability discovery hypothesizing that
it may lead us to an estimate of the magnitude of the undiscovered vulnerabilities
still present in the system. We consider the vulnerability-discovery rate to see if
models can be developed to project future trends. Finally, we use the data for both
commercial and open-source systems to determine whether the key observations
are generally applicable. Our results indicate that the values of vulnerability den-
sities fall within a range of values, just like the commonly used measure of defect
density for general defects. Our examination also reveals that vulnerability dis-
covery may be influenced by several factors including sharing of codes between
successive versions of a software system.

1 Introduction

Reliance on networked systems has brought the security of software systems under con-
siderable scrutiny. Much of the work on security has been qualitative, focused on de-
tection and prevention of vulnerabilities in these systems. There is a need to develop a
perspective on the problem so that methods can be developed to allow risks to be evalu-
ated quantitatively. Quantitative methods can permit resource allocation for achieving a
desired security level, as it is done for software or system reliability. Thus far, only lim-
ited attention has been paid to the quantitative aspects of security. To develop quantitative
methods for characterizing and managing security, we need to identify metrics that can
be evaluated in practice and have a clearly defined interpretation. In this work we ex-
amine the problem of quantifying vulnerabilities in a complex software system. Security
vulnerabilities are “ defect(s) which enables an attacker to bypass security measures” [1].
Malicious attackers seek to identify and exploit system vulnerabilities to cause security
breaches. Reducing the number of vulnerabilities in a system is thus of utmost impor-
tance.

S. Jajodia and D. Wijesekera (Eds.): Data and Applications Security 2005, LNCS 3654, pp. 281–294, 2005.
c© IFIP International Federation for Information Processing 2005

282 O. Alhazmi, Y. Malaiya, and I. Ray

Quantitative methods for general defects are now widely used to evaluate and man-
age overall software reliability. Since software system vulnerabilities – the faults as-
sociated with maintaining security requirements – can be considered a special case of
software defect, a similar measure for estimating security vulnerabilities appears long
overdue. In this paper, we quantitatively examine the number of vulnerabilities in sev-
eral popular operating systems. Such quantitative characterization of vulnerabilities can
be used to evaluate metrics that can guide the allocation of resources for security test-
ing, development of security patches and scheduling their releases. It can also be used
by end-users to assess risks and estimate the needed redundancy in resources and pro-
cedures for handling potential security breaches.

It is not possible to guarantee absence of defects in non-trivial sized programs like
operating systems. While extensive testing can isolate a large fraction of the defects, it
is impossible to eliminate them. This is because the effort needed to discover residual
defects increases exponentially [2]. Nonetheless, examination of defect densities (that
is the number of defects identified in the unit size of the software code) is still use-
ful. It can lead to the identification of fault-prone modules that need special attention.
Researchers have evaluated the ranges of defect densities typically encountered during
different phases of the software life cycle using data from available sources [3]. This has
led to industry wide standards for software defect densities. The information can be used
for comparison with the defect density measured in a project at a specific phase. The
result can identify if there is a need for further testing or process improvement. Similar
methods for managing the security aspects of systems by considering their vulnerabil-
ities, can potentially reduce the risk of adopting new software systems. Researchers in
software reliability engineering have analyzed software defect finding rates. Software
reliability growth models relate the number of defects found to the testing time [2,3,4].
Methods have been developed to project the mean time to failure (MTTF) or the failure
rate that will occur after a specific period of testing . Software defect density [5,6,7] has
been a widely used metric to measure the quality of a program and is often used as a
release criterion for a software project. Very little quantitative work has been done to
characterize security vulnerabilities along the same lines.

Security can be characterized by several possible metrics. Littlewood et al. [8,9] dis-
cuss some possible metrics to measure security based on dependability and reliability
perspectives. They propose using effort rather than time to characterize the accumula-
tion of vulnerabilities; however, they do not specify how to assess effort. An analysis
of exploits for some specific vulnerabilities has been considered by Arbaugh [10] and
Browne [11]. The security intrusion process has also been examined by Johnson and
Olovsson [12] and Madan et al. [13]. Other researchers have focused on modeling and
designing tools that make some security assessment possible [1]. Only a few studies have
examined the number of vulnerabilities and their discovery rates. Rescorla [14] has ex-
amined vulnerability discovery rates to determine the impact of vulnerability disclosures.
Anderson [15] has proposed a model for a vulnerability-finding rate using a thermody-
namics analogy. Alhazmi and Malaiya [16] have presented two models for the process
of vulnerabilities discovery using data for Windows 98 and NT 4.0. In the current work
we focus on the density of defects in software that constitute vulnerabilities, using data
from five versions of Windows and two versions of Red Hat Linux.

Security Vulnerabilities in Software Systems: A Quantitative Perspective 283

Vulnerability density is analogous to defect density. Vulnerability density may en-
able us to compare the maturity of the software and understand risks associated with its
residual undiscovered vulnerabilities. We can presume that for systems that have been
in deployment for a sufficient time, the vulnerabilities that have been discovered repre-
sent a major fraction of all vulnerabilities initially present. For relatively new systems,
we would like to estimate the number of remaining vulnerabilities. This requires devel-
opment and validation of appropriate vulnerability discovery models. Ounce Labs uses
a metric termed V-density [17] which appears to be somewhat related. However, their
definition and evaluation approach is proprietary and is thus not very useful to the gen-
eral community. Unlike the data for general defects in a commercial operating system,
which are usually hard to obtain, the actual data about known vulnerabilities found in
major operating systems are available for analysis. We analyze this data to address a
major question: Do we observe any similarity in behavior for vulnerability discovery
rates for various systems so that we can develop suitable models?

We examine several software systems, which we group into related families after
determining the cumulative number of their vulnerabilities. One of our objectives is
to identify possible reasons for the changes in the vulnerability detection trends. One
major difference makes interpreting the vulnerability discovery rate more difficult than
the discovery rate of general defects in programs during testing. Throughout its lifetime
after its release, an application program encounters changes in its usage environment.
When a new version of a software is released, its installed base starts to grow. As the
newer version of the software grows, the number of installations of the older version
starts to decline. The extent of vulnerability finding effort by both “white hat” and
“black hat” individuals is influenced by the number of installations; this is because the
larger the installed base the more is the reward for the effort. Thus, the rates at which
the vulnerabilities are discovered are influenced by this variation in usage.

The rest of the paper is organized as follows. In section 2 we introduce the major
terms we use in this work. We analyze, in section 3, the data for some of the Windows
operating systems to evaluate the densities of vulnerabilities that are known. We talk
about the remaining vulnerabilities (yet to be discovered) in section 3.1. In section 3.2
we present a model for the vulnerability discovery process. We then examine in section
4 the applicability of our major observations for two version of Linux, an open-source
operating system. Finally, we conclude the paper in section 5 by identifying future
research that is needed.

2 Measuring Systems’ Vulnerability Density

We begin by introducing a new metric, vulnerability density, that describes one of the
major aspects of security. Vulnerability density is a normalized measure, given by the
number of vulnerabilities per unit of code size. Vulnerability density can be used to
compare software systems within the same category (e.g., operating systems, web-
servers, etc.). To measure the code size we have two options. First, we can use the
size of the installed system in bytes; the advantage of this measure is that information
is readily available. However, this measure will vary from one installation to another.
The second measure is the number of source lines of code. Here, we chose this mea-

284 O. Alhazmi, Y. Malaiya, and I. Ray

sure for its simplicity and its correspondence to defect density metric in the software
engineering domain. Let us now present a definition of vulnerability density (VD):

Definition 1. Vulnerability density is the number of vulnerabilities in the unit size of a
code. It is given by

Vd =
V
S

(1)

where S is the size of the software and V is the number of vulnerabilities in the system.

Following the common practice in software engineering, we consider one thousand
source lines as the unit code size. When two systems, one large and one small, have the
same defect density, they can be regarded as having similar maturity with respect to de-
pendability. In the same manner, vulnerability density allows us to compare the quality
of programming in terms of how secure the code is. If the instruction execution rates
and other system attributes are the same, a system with a higher defect or vulnerabil-
ity density is likely to be compromised more often. Estimating the exact vulnerability
density would require us to know the number of all the vulnerabilities of the system.
Consequently, we define another measure in terms of the known vulnerabilities.

Definition 2. The known vulnerability density is the number of known vulnerabilities
in the unit size of a code. The known vulnerability density is given by

Vkd =
Vk

S
(2)

where is the number of known vulnerabilities in the system.

It is the residual vulnerability density (VRD) given by

Vrd = Vd −Vkd (3)

that (depending on vulnerabilities not yet discovered) contributes to the risk of potential
exploitation. Other aspects of the risk of exploitation include the time gap between the
discovery of a vulnerability and the release and application of a patch. In this study
we focus on vulnerabilities and their discovery. Recently there have been a number of
comparisons between several attributes of open-source and commercial software [7,15].
This is not, however, the focus of this paper. Rather, we want to probe the suitability of
vulnerability density and vulnerability as metrics that can be used to assess and manage
components of the security risk.

3 The Windows Family of Operating Systems

Table 1 presents values of the known defect density DKD and known vulnerability den-
sity VKD based on data from several sources [18,19,20,21] as of January 2005. Windows
95, 98 and XP are three successive versions of the popular Windows client operating
system. We also include Windows NT and Windows 2000, which are successive ver-
sions of the Windows server operating systems. The known defect density values for
Windows 95 and Windows 98 client operating systems are 0.33 and 0.55 per thousand

Security Vulnerabilities in Software Systems: A Quantitative Perspective 285

Table 1. Vulnerability density vs. defect density measured for some software systems

Systems Msloc Known
Defects

Known
Defect
Density
(per
Ksloc)

Known
Vulnera-
bilities

VKD (per
Ksloc)

VKD /
DKD

Ratio
(%)

Release
Date

Windows 95 15 5 0.3333 50 .0033 1.00% Aug 1995
Windows 98 18 10 0.5556 66 .0037 0.66% Jun 1998
Windows XP 40 106.5 2.6625 88 .0022 0.08% Oct 2001
Windows NT 4.0 16 10 0.625 179 .0112 1.79% Jul 1996
Windows 2000 35 63 1.80 170 .0049 0.27% Feb 2000

lines of code, respectively. The higher defect density for Windows XP is due to the fact
the data available is for the beta version. We can expect that the release version had
significantly fewer defects. The defect density values for Windows NT and 2000 are
0.6 and 1.8, respectively. The Known Vulnerabilities column gives a recent count of the
vulnerabilities found since the release date. We note that the vulnerability densities of
Win 95 and 98 are quite close. The known vulnerability density for Win XP is 0.0020,
much lower than the values for the two previous Windows versions. This is due to the
fact that at this time VKD represents only a fraction of the overall VD. We can expect the
number to go up significantly, perhaps to a value more comparable to the two previous
versions. We notice that the vulnerability density for Windows NT 4.0 is about three
times that of Win 95 or Win 98. There are two possible reasons for this. Since NT is
a server, a larger fraction of its code involved external access, resulting in about three
times the number of vulnerabilities. In addition, as a server operating system, it must
have gone through more thorough testing, resulting in the discovery of more vulnerabil-
ities. Windows 2000 also demonstrates nearly as many vulnerabilities as NT, although
due to its larger size, the vulnerability density is lower than that of NT.

One significant ratio to examine is, which gives the fraction of defects that are vul-
nerabilities. McGraw [19] hypothetically assumed that vulnerabilities might represent
5% of the total defects. Anderson assumed a value of 1% in [15]. Our results show that
the values of the ratio are 1.00% and 0.66% for Win95 and Win98. For Windows XP,
the number of known defects is given for the beta version, and is therefore higher than
the actual number at release. In addition, since it was released last, smaller fractions
of XP vulnerabilities have thus far been found. This explains why the ratio of 0.083%
for XP is significantly lower. We believe that this should not be used in a comparison
with other Windows versions. It is interesting to note that the ratio of 1% assumed by
Anderson is within the range of values in Table 1. Windows 2000 was an update of
NT, with a significant amount of code added, much of which did not deal with external
access; thus accounting for its relatively low ratio. In systems that have been in use for
a sufficient time, VKD is probably close to VD. However, for newer systems we can
expect that a significant number of vulnerabilities will be found in the near future. For
a complete picture, we need to understand the process that governs the discovery of the
remaining vulnerabilities, as discussed in the next sub-section.

286 O. Alhazmi, Y. Malaiya, and I. Ray

3.1 An Examination of the Remaining Vulnerabilities

We now examine the rate at which vulnerabilities were reported in the five operating
systems, as shown in Figures 1-3. Some specific vulnerabilities are shared by successive
versions of the system. Such shared vulnerabilities are shown using a separate plot.
The data show that some vulnerabilities were reported even before the general release
date of a particular version. For consistency, we omit vulnerabilities encountered before
the release date of a particular version. Figure 1 gives the cumulative vulnerabilities
for Windows 95 and 98 [18]. At the beginning, the curve for Windows 95 showed
slow growth until about March 1998, after which it showed some saturation for several
months. Windows 98 also showed relatively slow growth until about June 1998. After
that, both Windows 95 and Windows 98 showed a faster rate of growth. The similarity
of the plots in the later phase suggests that Windows 98 and Windows 95 shared a
significant fraction of the code. The installed base of Windows 98 peaked during 1999-
2000 [16]. At some time after this, the discovery rates of vulnerabilities in both versions
slowed down.

The saturation is more apparent in Windows 95. Based on our observation of shared
vulnerabilities, we believe that many of the Windows 95 vulnerabilities discovered later
were actually detected in the Windows 98 release. The cumulative vulnerabilities in
Windows 95 and Windows 98 appear to have reached a plateau. Some vulnerabilities in
Windows 98 were discovered rather late. This is explained by the code shared between
the 98 and XP versions, as discussed next. Figure 2 gives the cumulative vulnerabilities
in Windows 98 and XP [18]. It demonstrates that Windows XP showed swift growth
in vulnerabilities with respect to its release date. There were also many vulnerabilities
shared with Windows 98. However, XP has its own unique vulnerabilities, and they

Fig. 1. Cumulative vulnerabilities in Windows 95 and Windows 98

Security Vulnerabilities in Software Systems: A Quantitative Perspective 287

Fig. 2. Cumulative vulnerabilities in Windows 98 and its successor Windows XP

Fig. 3. Cumulative vulnerabilities of Windows NT and Windows 2000

form the majority. Windows XP shows practically no learning phase; rather, the plot
shows a linear accumulation of vulnerabilities. The slope is significantly sharper than
for Windows 98. The sharpness of the curve for XP is explained by its fast adoption rate
[16], making finding vulnerabilities in XP more rewarding. Windows 98 has showed a
longer learning phase followed by a linear accumulation, later followed by saturation.

288 O. Alhazmi, Y. Malaiya, and I. Ray

The relationship between the vulnerabilities reported in the older Windows 95, Win-
dows 98 and Windows XP is important. As we can observe in Figure 1, Windows 98 in-
herited most of the earlier vulnerabilities found in Windows 95. Vulnerabilities reported
for Windows 98 slowed down at some point, only to pick up again when Windows XP
was released. It appears that Windows XP has contributed to the detection of most of the
later Windows 98 vulnerabilities. The data for the three operating systems demonstrates
that there is significant interdependenceamong vulnerability discovery rates for the three
versions. This interdependence is due to the sharing of codes. The shifting shares of the
installed base need to be taken into account when examining the vulnerability discovery
trends. Windows 98 represents a middle stage between the other two versions from the
perspective of vulnerability detection. Figure 3 shows the vulnerabilities in Windows NT
and 2000; the shared vulnerabilities are also shown. Unlike the two previous figures, we
do not observe a prominent time-lag between the two. The reason is that both of them
gained installed base gradually [16]. The use of NT peaked around end of 2001, but its
share did not drop dramatically as the share for Win2000 grew.

3.2 Modeling the Vulnerability Discovery Process

From the data plotted in the figures above, we can see a common pattern of three phases
in the cumulative vulnerabilities plot of a specific version of an operating system, as
shown in Figure 4.

During these three phases, the usage environment changes, thereby impacting the
vulnerability detection effort. In Phase 1, the operating system starts attracting attention
and users start switching to it. The software testers (including hackers and crackers) be-
gin to understand the target system and gather sufficient knowledge about the system to

Fig. 4. The 3-phases of the vulnerability discovery process

Security Vulnerabilities in Software Systems: A Quantitative Perspective 289

break into it successfully. In Phase 2, the acceptance of the new system starts gathering
momentum. It continues to increase until the operating system reaches the peak of its
popularity. This is the period during which discovering its vulnerabilities will be most
rewarding for both white hat and black hat finders. After a while, in Phase 3, the sys-
tem starts to be replaced by a newer release. The vulnerability detection effort will then
start shifting to the new version. The technical support for that version and hence the
frequency of update patches will then begin to decline. This s-shaped behavior shown
in Figure 4 can be described by a time-based model introduced earlier by Alhazmi and
Malaiya [16]. Let y be the cumulative number of vulnerabilities. We assume that the
vulnerability discovery rate is controlled by two factors. The first of these is due to the
momentum gained by the market acceptance of the product; this is given by a factor
Ay, where A is a constant of proportionality. The second factor is saturation due to a
finite number of vulnerabilities and is proportional to (B - y), where B is the total num-
ber of vulnerabilities. The vulnerability discovery rate is then given by the following
differential equation,

dy
dt

= Ay(B− y) (4)

where t is the calendar time. By solving the differential equation we obtain

y =
B

BCe−ABt + 1
(5)

where C is a constant introduced while solving Equation 4. It is thus a three-parameter
model. In Equation 5, as t approaches infinity, y approaches B, as the model assumes.
The constants A, B and C need to be determined empirically using the
recorded data. An alternative effort-based model [16], which also fits well but requires
extensive usage data collection was recently proposed by the authors. A time-based
model was derived by Anderson [15]; however, its applicability to actual data has not
yet been studied.

Figures 5 and 6 give the data for Windows 95 and NT 4.0 with a fitted plot according
to the model given in Equation 5. The numerically obtained model parameters are given
in Table 2. We have used chi-squared goodness of fit test to evaluate the applicability
of the model. The fit is found be statistically significant, as indicated by a chi-squared
value less than the critical value at the 95% significance level. A similar analysis for
Windows 98, XP and 2000 also demonstrate a good fit of the model to the data.

Table 2. χ2 goodness of fit test results

Systems A B C χ2 χ2
critical

(5%)
P-value

Windows 95 0.001938 49.5 1.170154 40.72 119.87 0.9999998
Windows 98 0.001049031 66 0.140462 64.79 96.2 0.742
Windows XP 0.001391 88 0.190847 25.75 56.94 0.961
Windows NT 4.0 0.000584 153.62 0.47 82.3942 127.69 0.923
Windows 2000 0.000528 163.96 0.073187 60.91 80.23 0.444

290 O. Alhazmi, Y. Malaiya, and I. Ray

Fig. 5. Windows 95 data fitted to the model

Fig. 6. Windows NT 4.0 data fitted to the model

4 Linux Operating System

We examine two versions of Red Hat Linux, versions 6.2 and 7.1, shown in Figure 7.
In both, we observe saturation in the later period. We note that in the later duration, a
majority of the vulnerabilities discovered in version 6.2 are in fact shared.

Security Vulnerabilities in Software Systems: A Quantitative Perspective 291

Fig. 7. Cumulative vulnerabilities of Red Hat Linux version 6.2 and 7.1

Table 3. Vulnerability density vs. defect density measured for Red Hat Linux 6.2 and 7.1

Systems Msloc Known
Defects

Known
Defect
Density
(per
Ksloc)

Known
Vulnera-
bilities

VKD (per
Ksloc)

VKD/
DKD
Ratio
(%)

Release
Date

R H Linux 6.2 17 2096 0.12329 118 .00694 5.63% Mar 2000
R H Linux 7.1 30 3779 0.12597 164 .00547 4.34% Apr 2001

In Table 3 [22,23], we observe that although the code size for Linux 7.1 is twice
as big as Linux 6.2, the defect density and vulnerability density values are remark-
ably similar. We note that the VKD values for the two versions of Red Hat Linux are
significantly higher than for Windows 95 and 98, and are approximately in the same
range as for Windows 2000. However, VKD alone should not be used to compare of
the two competing operating system families. It is not the discovered vulnerabilities but
rather the vulnerabilities remaining undiscovered that form a significant component of
the risk. In addition, the exploitation patterns and the timing of the patch releases also
impact the risk. The VKD value for Red Hat Linux 7.1 can be expected to rise signif-
icantly in near future, just as those of Windows XP. It is interesting to note that ratio
values for Linux are close to the value of 5% postulated by McGraw [19].

Figure 8 presents the raw data for 7.1, together with the fitted model. The model
parameter values and the results of the chi-squared test are given in Table 4. Again, the
application of the chi-squared test shows that the fit is significant.

292 O. Alhazmi, Y. Malaiya, and I. Ray

Fig. 8. Red Hat Linux 7.1 fitted to the model

Table 4. χ2 goodness of fit test results

Systems A B C χ2 χ2
critical

(5%)
P-value

Red Hat Linux 6.2 0.000829 123.9393 0.129678 34.62 76.78 0.999974
Red Hat Linux 7.1 0.001106 163.9996 0.379986 27.62715 61.65623 0.989

While the model of Equation 5 fits the data for all the operating systems examined
here, some aspects of the process need further examination. There is often a significant
overlap between two successive operating systems. The attention received by a version,
n, results in detection of vulnerabilities not only in version n but also in the code shared
between versions n and (n-1). This, in turn, results in a bump-up in the version (n-1)
discovery rate, even though its installed base may be shrinking rapidly. This overlap
causes some deviation for the model. Techniques need to be developed for modeling
this overlap in order to achieve higher accuracy. We would like to be able to project
the expected number of vulnerabilities that will be found during the major part of the
lifetime of a release, using early data and a model like the one given in Equation 5.
This would require an understanding of the three parameters involved and developing
methods for robust estimation.

5 Conclusions

In this paper, we have explored the applicability of quantitative metrics describing vul-
nerabilities and the process that governs their discovery. We have examined the data for
five of the most widely used operating systems, including three successive version of

Security Vulnerabilities in Software Systems: A Quantitative Perspective 293

Windows and two versions of Red Hat Linux. We have evaluated the known vulnerabil-
ity densities in the five operating systems. The lower value for Win XP relative to Win
95 and 98 is attributable to the fact that a significant fraction of Win XP vulnerabilities
have not yet been discovered. As has been observed for software defect densities, the
values of vulnerability densities fall within a range, and for similar products they are
closer together. We note that the ratio of vulnerabilities to the total number of defects is
often in the range of 1% to 5%, as was speculated to be the case by some researchers. As
we would expect, this ratio is often higher for operating systems intended to be servers.
The results indicate that vulnerability density is a significant and useful metric. We can
expect to gain further insight into vulnerability densities when additional data, together
with suitable quantitative models, are available. Such models may allow empirical es-
timation of vulnerability densities along the lines of similar models for software cost
estimation or software defect density estimation.

This paper has presented plots showing the cumulative number of vulnerabilities
for the five operating systems. The vulnerabilities shared by successive versions are
also given. These plots are analogous to reliability growth plots in software reliability.
However, there are some significant differences. The initial growth rate at the release
time is small but subsequently accelerates. Generally the plots show a linear trend for a
significant period. These plots tend to show some saturation, often followed by abrupt
increases later. This behavior is explained by the variability of the effort that goes into
discovering the vulnerabilities. The model given by Equation 5 is fitted to vulnerability
data for the seven operating systems and the fit is found to be statistically significant.
We also observe that the code shared by a new and hence a competing version of the
operating system can impact the vulnerability discovery rate in a previous version. Fur-
ther research is needed to model the impact of the shared code. We expect that with
further research and significant data collection and analysis, it will be possible to de-
velop reliable quantitative methods for security akin to those used in the software and
hardware reliability fields.

References

1. E. E. Schultz Jr., D. S. Brown and T. A. Longstaff, “Responding to Computer Se-
curity Incidents,” Lawrence Livermore National Laboratory, ftp://ftp.cert.dfn.de/
pub/docs/csir/ihg.ps.gz, July 23, 1990.

2. M. R. Lyu, editor., Handbook of Software Reliability Engineering, McGraw-Hill, 1995.
3. J. D. Musa, A. Ianino, K. Okumuto, Software Reliability Measurement Prediction Applica-

tion, McGraw-Hill, 1987.
4. Y. K. Malaiya and J. Denton, “What Do the Software Reliability Growth Model Parameters

Represent?” Proceedings IEEE International Symposium on Software Reliability Engineer-
ing, 1997, pp. 124-135.

5. Y. K. Malaiya and J. Denton, “Module Size Distribution and Defect Density,” Proceedings
IEEE International Symposium on Software Reliability Engineering, Oct. 2000, pp. 62-71.

6. P. Mohagheghi, R. Conradi, O.M. Killi and H. Schwarz, “An Empirical Study of Software
Reuse vs. Defect-Density,” Proceedings 26th International Conference on Software Engi-
neering, 2004, May 2004, pp. 282-291.

ftp://ftp.cert.dfn.de/pub/docs/csir/ihg.ps.gz
ftp://ftp.cert.dfn.de/pub/docs/csir/ihg.ps.gz

294 O. Alhazmi, Y. Malaiya, and I. Ray

7. A. Mockus, R.T. Fielding, and J. Herbsleb, “Two Case Studies of Open Source Software
Development: Apache and Mozilla,” ACM Transactions Software Engineering and Method-
ology, 11(3), 2002, pp. 309-346.

8. B. Littlewood, S. Brocklehurst, N. Fenton, P. Mellor, S. Page, D. Wright, “Towards Opera-
tional Measures of Computer Security,” Journal of Computer Security, V. 2 (2/3), 1993, pp.
211-230.

9. S. Brocklehurst, B. Littlewood, T. Olovsson and E. Jonsson, “On Measurement of Oper-
ational Security,” Proceedings of 9th Annual IEEE Conference on Computer Assurance,
Gaithersburg, IEEE Computer Society, 1994, pp. 257-66.

10. W. A. Arbaugh, W. L. Fithen, J. McHugh, “Windows of Vulnerability: A Case Study Analy-
sis,” IEEE Computer, Vol. 33, No. 12, December 2000, pp. 52-59.

11. H. K. Browne, W. A. Arbaugh, J. McHugh, W.L. Fithen, “A Trend Analysis of Exploitation,”
Proceedings of IEEE Symposium on Security and Privacy, 2001, May 2001, pp. 214-229.

12. E. Jonsson, T. Olovsson, “A Quantitative Model of the Security Intrusion Process Based on
Attacker Behavior,” IEEE Transactions on Software Engineering, April 1997, pp. 235-245.

13. B.B.Madan, K.Goseva-Popstojanova, K.Vaidyanathan, K.S.Trivedi, “Modeling and Quan-
tification of Security Attributes of Software Systems,” Proceedings of IEEE International
Performance and Dependability Symposium (IPDS 2002), June 2002.

14. Eric Rescorla, “Is Finding Security Holes a Good Idea?”, Proceedings Third Annual
Workshop on Economics and Information Security (WEIS04), May 2004, pp. 1-18,
http://www.dtc.umn.edu/weis2004/rescorla.pdf

15. Ross Anderson, “Security in Open versus Closed Systems – The Dance of Boltzmann,
Coase and Moore,” Conf. on Open Source Software: Economics, Law and Policy, Toulouse,
France, June 2002, pp. 1-15, http://www.ftp.cl.cam.ac.uk/ftp/users/rja14/
toulouse.pdf

16. O. H. Alhazmi, Y. K. Malaiya, “Quantitative Vulnerability Assessment of Systems Software,”
Proceedings of International Symposium on Product Quality and Integrity (RAMS 2005),
January 2005, pp. 14D3.1-6.

17. Ounce Labs, “Security by the Numbers: The Need for Metrics in Application Security,”
http://www.ouncelabs.com/library.asp, 2004.

18. ICAT Metabase, http://icat.nist.gov/icat.cfm, February 2004.
19. G. McGraw, “From the Ground Up: The DIMACS Software Security Workshop,” IEEE Se-

curity and Privacy, March/April 2003. Volume 1, Number 2, pp. 59-66.
20. P. Rodrigues, “Windows XP Beta 02. Only 106,500 Bugs,” http://www.lowendmac.

com/tf/010401pf.html, Aug 2001.
21. O.S. Data, Windows 98, http://www.osdata.com/oses/win98.htm, March 2004.
22. The MITRE Corporation, http://www.mitre.org, February 2005.
23. Red Hat Bugzilla, https://bugzilla.redhat.com/bugzilla, January 2005.

http://www.dtc.umn.edu/weis2004/rescorla.pdf
http://www.ftp.cl.cam.ac.uk/ftp/users/rja14/toulouse.pdf
http://www.ftp.cl.cam.ac.uk/ftp/users/rja14/toulouse.pdf
http://www.ouncelabs.com/library.asp
http://icat.nist.gov/icat.cfm
http://www.lowendmac.com/tf/010401pf.html
http://www.lowendmac.com/tf/010401pf.html
http://www.osdata.com/oses/win98.htm
http://www.mitre.org
https://bugzilla.redhat.com/bugzilla

	Introduction
	Measuring Systems' Vulnerability Density
	The Windows Family of Operating Systems
	An Examination of the Remaining Vulnerabilities
	Modeling the Vulnerability Discovery Process

	Linux Operating System
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.33333
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.33333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

