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ABSTRACT

Random testing is frequently an attractive
alternative to deterministic test generation.
How to estimate the coverage obtafned by random
testing is an important problem. This paper
consjders a possible technique for combinational
¢ircuits. Random testing properties of several
combinational circuits are examined.

INTRODUCTION

With increasing complexity of integration,
determjnistic test-generation is becoming very
costlyl. In several instances random testing
appears to be a very attractive alternative, as
it requires no test generation. The problem
with random testing is well known--given a number
of randomly generated test vectors, how can an
estimate of the coverage be obtainedZ,3,4? The
converse problem is to obtain the number of
random vectors which will obtain a specific
coverage. A possible approach is examined here.

Initially, an empirical approach is briefly
considered. Random testing properties of combi-
national circuits are examined using a parameter-
vector termed detectability-profile. An expres-
ston for the expected coverage obtained in terms
of the detectability-profile is given. The
expression is applicable for any coverage range,
however for high coverage, a very convenient
approximation can be used. Accuracy of the
approximation is examined., Two measures for
testability of combinational circuits are given.
In the final section two heuristic procedures are
outlined, which are based on general observations
of the random testing properties.

AN EMPTRICAL APPROACH

Several researchers have recently reported
results of testing digital components which give
the coverage obtained (also referred as testa-
bi]it§5) against the number of vectors ap-
pliedd.6,7. Tests can be generated using one of
several methods. In purely random testing, the

*
Visiting scholar from University of Science
.and Technology of China, Hefei, Anhui, China.

tests are generated and applied randomly (or at
least pseudo randomly). In semi-random testing,
the random process is modified by using addi-
tional information (e.g. obtained by simula-
tion)/s8:3, In deterministic test generation, the
tests are generated for specific sets of faults
which constitute the fault-model. The deter-
ministically generated tests may be applied in a
random sequence, or the sequence may be obtained
according to some criteria. For all these, the
curves of coverage obtained against the number of
vectors appear fto have similar shapes. The
coverage rises rapidly in the beginning, the slope
then gradually declines and then the curve ap-
proaches unity practically asympotically. If ad-
ditional information is used, it is possible to
maximize the performance for a specific number of
vectors, the coverage obtained by optimization
declines as coverage approaches unity.

The general regularity of the curve suggests
that a simple empirical retationship may be
possible. One approach fs to use a polynomial
of 1imited degree with coefficients as param-
eters10. However, as the curve has a general
shape of a l-exp(-x) curve, it might be better to
start with a resonable hypothesis which will
yield this shape. A simple hypothesis can be
that the rate of increase of coverage C, with
the number k of vectors applied, is proportional
to some power of the fraction of faylts still not
covered, i.e.

& = atcp® (1)
where a and b are some parameters. This has
the solution:

€= 11 + a(b-1)k] M -1 | pp (2)

= 1-exp(-ka) s b=1 (3)

A preliminary check of consistency of this
relationship was done by using the curves re-
ported in [5]. The values of a and b were
evaluated for different ranges in a curve by
choosing two points in the range and evaluating
a and b using equation 2. As closed form rela-
tions are not obtainable, numerical search was
used. As very limited amount of data was used,
the results cannot be stated very definitely.
The velation does not seem to hold well for
coverage below 0.5 or above 0.99. This has the
possible explanation that the numbers below 0.5
or above 0.99 represent situations which are
quite random, where general rules should not be
expected to hold, The parameter 'a' can be
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considered a scale factor for k, as equation 1
can be rewritten as

& = -0 Q)

where k'=ak, The parameter 'b' is harder to
interpret directly. Its value seems to be in the
neighborhood of 1.6 to 3.0 for different devices
examined in [5]. ATthough equation 2 appears to
hold only for a Timited range; this range is
perhaps the range of interest. It may be use-
ful in predicting the increase in coverage with
the increase of test cost atlowed. It is
interesting to notice here that if b=2 and
k>>1/a, then k(1-C)=1/a. Then having twice as
many test-vectors will Teave only half as many
uncovered faults. Further study is needed to
evaluate usefulness of equation 1.

THE DETECTABILITY PROFILE

In order to mathematically examine the
random testing properties of combinational net-
works, another approach is considered here. It
uses a parameter-vector called detectability-
profile. It is applicable to any assumed fault
model, and thus can be used for both gate-level
and transistor-Tevel faults. The detectability-
profile m of a circuit is given by (5)

5

I = {ny,To500. my}
where w{ is thé number of faults which are
tested by exactly i vectors, out of all possible
N vectors. The detectability-profile is thus

a partitioning of all the faults assumed in the
chosen fault model. We have obtained detecta-
bility-profiles for a number of commonly used
combinational functions, as shown in Figures 1-7.
Notice that Figure 4 uses data about transistor
level faults, given in [17]. As the figures
indicate, the detectability profile is often a
sparse vector. Generally it takes considerable
effort to evaluate a detectability profile. It
is hoped that examination of representative
combinational circuits will provide better
understanding of random testing properties of
general combinational circuits.

COVERAGE OBTAINED BY RANDOM TESTING

tlere, an expression will be obtained for the
number of new faults tested when k-th vector is
applied. This expression will be in terms of I;
it corresponds to equation 1, which was in terms
of the empirical parameters a and b. Let

pL = Pr {k~-th vector will detect the (6)
fault fj (M)it was not detected
before}

If the vectors are selected randomly with
replacement (i.e. a vector can be chosen again),
then the probabitity that any vector is a test
for fault fj is equal to ni/N where ni is the
number of vectors which test for fault fj. For
this case equation 6 gives

P = f(1- gkl 7)
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It is useful to examine the case when the
random vectors are chosen without replacement. A
vector once applied will not be ghosen again.

To arrive at an expression for pﬁ for thie case,
let us define

X} = Pr {f; is tested by the Tth vector}

= ni/MN-1+1. (8)
Here it should be noticed that for 1=N-ni+l,
X] = 1. This is because all the remaining ni
vectors at this stage, test for f;. Corre-
sponding to equation 7 we have

L I
P = [0 (1-X])1.X,, 1<keN (9)
1-1

; . i_ni i _ niN-ni

This gTves ?1 = NT] P = W N-T>

p; = aluigf%lluiﬂﬁg%:ll, etc. In this
form, equation 9 can be rewritten as

i :(N-ni)! -ni- !

pl = il ﬁ}}(ﬁfﬂ)?1 KL ik, (10)

Let us now define random variables dﬁ,
i=1 to M, where M is the total number of
faults possible. The r.v. dl =1 if the fault
f3 is first detected by the k-th vector, other-
wise d} = 0. The total number of new faults
tested by the k-th vector is given by

M

= i
Fk_- izl dk. (11)
The ensemble average or the expected number of
new faults tested by the k-th vector is then,

=] M i
Fe = EF ) = E{iil d}.

As mean of a sum is the sum of the Tians,
regardless of the statistical dependencell, we
may write

F.= z pi
k™oL Pk
N i
= h§=1 Ti Pk {12}

The last form of the R.H.S. uses the
detectability-profile partiioning of the faults.
When the vectors are chosen with replacement,
then from equations 8 and 12 we obtain

N . ;
- gy migk-1
Fk n§=1“"i'N (1 N A {13)
The total expected coverage (as a fraction of
total faults covered) is then obtained as

k

T =13 z p. 0 0hl-ly, (14)
ko a1 VTN

N

I M e

ni=1 M

The denominator of equation 14 is equal to

M, the total number of faults. Equation 14 can
be simplified by reversing the order of summa-
tion, to



ni* (15)

N i N
T =0z v [1-(0- My 2 o
k ni=g M N ni=1

It is interesting to compare this with equa-
tions 2 and 3. It will be difficult to reduce
equation 15 to equations 2 or 3 except in special
situations. This suggests that equations 2 or
3 should not be expected to hold over a wide
range of values.

A similar expression can be obtained for
random testing without replacement of vectors.
Using equations 8, 9 and 12, we have

X .

To-ts 3 G Cnaahlxhy g6
= z E L I - oA
LR IR A
N
by
ni=i

Some pseudo-random test pattern generation
technigues will not generate a vector twice if
Tess than the exhaustive number of vectors is
generated. In such a case equation 16 can be
used. In most cases, except for smaller circuits
and when extremely high coverage is required,
both eguations 15 and 16 will yield about the
same result.

M oee
m

A USEFUL APPROXIMATION

The equation 15 contains a [1-(1-ni/N)¥]
term for each fault. This allows us to examine
the effects of individual faults with different
testability. Its compliment, (1-ni/N)K, which
may be termed the uncoverage factor, is given
in Table 1 for different detectability ngues and
number of vectors. Similarly individﬂa] terms
in equation 13, given by ni/N(1-ni/N)K-1, can be
called increase factor; its values are given in
Table Z.

Number of Detectability of fault (ni/N)
vectors 0.01 0.1 0.5

1 0.990 0.900 0.500

5 0.951 0.590 3.12E-2
10 0.904 - 0,348 9.76E-4
50 0.605 5.15E-3 8.88E-16
100 0.366 2.65E-5 7.88E-31
500 6.57E-3 1.32E-23 0.0

Table 1: Uncoverage factor for faults with
different detectability.

Number of Detectability of fault (ni/N)
vectors 0.01 0.1 0
1 0.01 0.10 0.5
5 9,60E-3 6.56E-2 3.12E-2
10 9.13E-3 3.87E-2 9,76E-4
50 6.11E-3 5.72E-4 8.88E-16
100 3.69E-3 2.95E-6 7.88E-31
500 6.63E-5 1.468E-24 0.0

Table 2: Increase factor for faults with
different detectability.

It is apparent that in the beginning of the
test experiment, most of the increase in coverage
will be due to faults with small ni. As testing
proceeds, only faults with low detectability are
1ikely to be left uncovered. In the region of
very high coverage, further increase in expected
coverage is mainly due to fault with low de-
tectability. This observation is significant.
This suggests that the behavior at very high
coverage can be approximated by considering only
a suitable set of faults with lowest detecta-
bility. Thus only the lower components of the
detectability profile need to be evaluated or
estimated to predict the behavior in the high
coverage region,

This approximation is consistent with the
conclusions reached by other researchers. David
et al.12 have used an effectiveness measure for
random testing called detection quality, which is
the probability of detectlng the Teast detectable
fault. Savir and Bardel1* have used a measure
called escape probability, which is the proba-
bility that at Teast one fault will not be de-
tected by the test experiment. By examining the
testing process involving two faults with con-
joint %i.e. not disjoint) test sets, they have
observed that the fault with significantly higher
detectability has no practical effect on the num-
ber of vectors to be used to achieve given escape
probability. The technique suggested by
Agrawall6 to see if a circuit is suitable for
random testing can be justified by using similar
considerations as fan-in and the number of Tevels
will characterize the faults most difficult to
detect.

For a preliminary examination of the
validity of this approximation, let us assume
that the two least detectable sets of faults have
detectability A/N and B/N, and Tet the corre-
sponding components of the detectability profile
be ¥4 and np. Let us assume that the contribu-
tion of the’second set is insignificant when its
contribution is one tenth or less, i.e.

wa(1-Am)K > 1075180k, (17)

This can be used to evaluate k when the assump-
tion just starts to hold. The corresponding
uncoverage (l-coverage) can be computed by this
approximate form of equation 15,

U= 1M [rg(1-A)K + wg(1-8/M)K] (18)

Three devices were examined: a double
4-to-1 MUX (74S153), Schneider's examplel3, and
a (3x6x3) PLA. The results are given in Table 3.
The value of k and the uncoverage, for which
assumption holds, is given. The approximation
always holds for the MUX and for the Schneider's
example at and above the coverage of 0.93; how-
ever for the PLA, it does not hold until the
coverage of 0.996 has been obtained. The major
reason for the difference is the relative values
of the first two components of the detectability
profile. The conclusion is that at Teast in some
cases considering only the set of most undetect-
able faults may not be enough.
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min,
Device M N A B ™ T k u
1 112 409 256 512 72 6 I 0.65
2 48 16 1 2 23 19 31 0.07
3 98 8 1 2 6 15 21 0.0D4

Table 3: Examination of approximation,

It should be observed from the above that
the expected coverage asymptoticaily approaches
unity with increasing number of vectors applied,
but is never exactly one, if the vectors are
selected with replacement. When vectors are
selected without replacement, coverage of one
is always obtained with the exhaustive number of
vectors.

MEASURES OF TESTABILITY

Recently, considerable attention has been
given to measures of testability. Some measures
define testability of a node in terms of its
controllability and observability. However
correlation of such measures with experimental
behavior may not be very highl4. It has been
shown by Savir, the testability may not directly
depend on the number of vectors which control the
fault_and the number of vectors which observe the
faultld, It rather depends on the number of
vectors in the intersection of the two sets.

From the very definition, a detectability profiie
is a vector-measure of testability. It is
possible to define a scalar measure for a combi-
national circuit using detectability profile
concept,

Let us define a testability measure T1,
which is the average number of vectors (nor-
malized by dividing by the total number of passi-
ble vectors) needed to detect a fauit. It is
assumed that only one of all possible faults
exists.

Let us assume that a fault fj exists. Then,
Prik-th vector will detect N f; was not detected
before} = Pr{k-th vector will detect fi|it was not
detected before} . Pr{it was not detected before}
= ni/N(1-ni/N)k=1,

If the average value of k, which will detect
the fault is shown by K;, then,

R, = 5 k.M. piyk-l
iy N N
N

ni’
If all faults are equally likely, then the
average value of K for all the faults is given by
K=£"(1)N‘=1§ N_ (19)
oy WnT T M 2 i

"ni

=3

_-J

Ny
M ni=

=

1 T

Then the measure T1 is
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N 7.
nt
nie M1 (20)
The values of T1 for some devices is found to be
as follows. Double 4-to-1 MUX = 0,003 (11.8/
4096), 1-of-4 decoder: 0.76 (3.04/4), Schneider's
example 0.75 {12/16), 3x6x3 PLA: 0.46 (3.6/8)
and 3-level NAND tree 0.04 (9.5/256). The low
value of the measure for the 1-of-4 decoder and
the Schneider's example are because of the higher
values of the detectability profile at the low
end.

_1
=g

Another measure, T2, can be the fraction of
vectors needed to obtan a specific expected
coverage, say 0.99, It can be easily obtained
using equation 15, and numerical search. The
results for devices considered are given here.
Double 4-to-1 MUX: 0.016 (65/4096), 1-of-4
decorder: 3.5 (14/4), Schneider's example 3.87
(62/16), 3x6x3 PLA: 2.75 (22/8) and 3-level
NAND tree 0.195 (50/256). The devices with T2-1
are clearly not suitable for random testing.
However if the random test patterns are generated
without replacement, then T2 will always be at
most one. Result of a simulation will greatly
depend on the algorithm used to generate the
random or pseudo-random vectors. The numbers
abtained by Agrawal by simulation for the MUX
and the Schneider's example show little correla-
tioh with T216,

Another perhaps even more directly usable
measure (if it can be evaluated) can be the ex-
pected number of vectors which will provide
complete coverage, Following the approach of
Savir and Bardel14, the complexity involved can
be illustrated by considering only two faults.
Let nl and n2 be the number of vectors testing
for faults fy and fo. Let nl12 be the number of
vectors whic& test for both 1 and f5. Consider
Pr{total coverage obtained wi%h exactly k vector)

= Pr{Both detected with k vectors ™ both
not detected with k-1 vectors}

Pr{Both detected with k vectors}
-Pr{Both detected with k vectors M both
defected with k-1 vectors}

= Pr{Both detected with k vectors}

-Pr{Both detected with k-1 vectors}, (21)
PriBoth detected with k vectors}
=1_(1_ E_l)k_(l_ Q‘Z)k+(1_ n1+;2—n12)k

=l-eg {22)
where ey represents the three terms. Using
equation 22, equation 21 can be written as
Pr{total coverage obtained with exactly k vectors;

23

= €1 - e
The expegtéd number of vectors needed for total
coverage s then

o

K= 1 ke -e)
PR S B

_N N N
=Rt n2 - nTmRie (24)

obtained after some arithmetic manipulations.
Here presence of nl2 must be noticed. This shows



the conjointness among the faults must be taken
into account. As most practical combinational
circuits have a Targe number of faults, an ex-
pression corresponding to equation 24 will be
too complex to obtain.

TEST GENERATION PROCEDURES

Based on the observations in the previous
sections, two heuristic procedures can be out-
lined. They are useful if a major assumption
is satisfied. The assumption is that the major
classes of combinational circuits have been
examined, and the circuit to be tested either be-
longs to one of the known classes (and thus two
lowest components of the detectability profiles
can be estimated), or is unknown except for its
functional behavior. A test experiment will
have one of these objectives:

(i} Total coverage is required. This would
be necessary for ultra-high reliability applica-
tions and for manufacturing testing of newly
developed devices. In this case the objective of
using random testing would be to reduce the cost
of deterministic test generation. Procedure 1
below outlines a possible procedure.

(i} Moderately high coverage {90-99%) is
required. This would be the case when a Tow
field unacceptance rate is not catastrophic and
is cost effective. Procedure 2 presents a possi-
ble procedure.

(i11) An unknown circuit is to be tested to
an 'acceptable' degree. In thie case, although
the functionality of the circuit is known, its
internal design is unknown. Obviously, Pro-
cedures 1 and 2 cannot be applied directly. It
is necessary to first obtain a reasonable,
assumed set of faults, and then use a modifica-
tion of Procedure 1 or 2. There are two options.
One is to define a set of functional faults. The
other is for the test engineer to implement the
functional behavior as a logic diagram, and then
identify the physically possible faults. The
second option would always be at least as good as
the first option, as the test set for the pro-
duced Togic diagram will always exercise the
functionality.

Procedure 1: Test-generation

for total coverage
I. Partition the combinational circuit into

disjoint parts if possible. Consider each part
separately for the following steps.

2. Make a preliminary determination of
random testabjlity of the circuit, Attempt random
test generation only if the circuit is suitable
for random testing.

3. Identify the hardest to test faults
using methods Tike in [18], corresponding to the
Jowest element of the detectability profile.
Deterministically generate tests for these.

4. By simulation, obtain set of faults which
will be detected by tests generated in step 4.
Remove these from further consideration.

5. Generate a number of random tests. The
number of random tests to be generated can be
obtained as the number necessary to obtain

coverage of 0.95, using the second lowest element
of the detectability profile. Accuracy in this
computation is not required.

6. By simulation, obtain the set of faults
covered in step 5.

7. Use deterministic test generation for the
rest of the faults.

Procedure 2: Test generation
for high coverage

Here it 75 assumed that the expected coverage
to be obtained is given. The first four steps
are same as in Procedure 1,

5. Recompute the coverage to be obtained in
terms of the remaining number of faults.

6. Using the second Towest element of the
detectability profile, obtain the number of random
vectors needed to obtain the required coverage.

If necessary, simulation can be used after
step 6 to verify the coverage obtained, and
appropriate corrective action may be taken.

The two procedures above will have advantage
over deterministic test generation only if total
cost of obtaining and running a simulator is less
than the alternative, [1] suggests it may not
always be so.

CONCLUSION

From the above discussion, it is seen that
the defectability profile can provide significant
information about random testing properties of
combinational circuits. Although the defecta-
bility profile dees not contain information about
conjointness of test-sets for individual faults,
some useful expressions can be obtained. The
validity of the assumption that only the Towest
component of the detectability profile is needed
to estimate coverage.has been examined, It ap-
pears that the data from a large number of cir-
cuits must be examined before definitive observa-
tions can be made.
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a. Logic diagram of Schneider’s Example
b. Detectability profile
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