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Abstract

The quantum Fourier transform(QFT) is the principal
ingredient of most efficient quantum algorithms. We
present a generic framework for the construction of
efficient quantum circuits for the QFT by “quantizing”
the highly successfulseparation of variablestechnique
for the construction of efficient classical Fourier trans-
forms. Specifically, we apply the existence of computable
Bratteli diagrams, adapted factorizations, and Gel’fand-
Tsetlin bases to provide efficient quantum circuits for the
QFT over a wide variety of finite Abelian and non-Abelian
groups, including all group families for which efficient
QFTs are currently known and many new group families.
Moreover, our method provides the first subexponential-
size quantum circuits for the QFT over the linear groups
GLk(q), SLk(q), and the finite groups of Lie type, for any
fixed prime powerq.

1 Introduction

Peter Shor’s seminal discovery of efficient quantum
algorithms for factoring and discrete logarithm [25] re-
lies crucially on the fact that the Fourier transform over
the cyclic groupZn can be carried out efficiently on a
quantum computer, even whenn is exponentially large.
This has motivated broad interest in the problem of effi-
cient quantum computation over arbitrary groups; see e.g.,
[3, 9, 11, 13, 14, 20, 21, 27]. While this research effort has
already become quite ramified, two related themes have
emerged:

(i.) development of efficientquantum Fourier trans-
forms, and

(ii.) development of efficient quantum algorithms for the
hidden subgroup problem.

The complexity of these two problems appears to be in-
timately related to the structure of the group in question:
while quantum Fourier transforms and hidden subgroup

problems over Abelian groups are well-understood, for
non-Abelian groups our understanding of these problems
remains embarrassingly sporadic. Aside from their natu-
ral appeal, these lines of research are motivated by their
direct relationship to the graph isomorphism problem: an
efficient solution to the hidden subgroup problem over the
(non-Abelian) symmetric groups would yield an efficient
quantum algorithm for graph isomorphism.

Over the cyclic groupZn, the quantum Fourier
transform refers to the transformation taking the
state ∑z∈Zn f (z) |z〉 to the state∑ω∈Zn f̂ (ω) |ω〉, where
f : Zn → C is a function with ‖ f‖2 = 1 and f̂ (ω) =
∑z f (z)e2πiωz/n denotes the familiar discrete Fourier trans-
form at the frequencyω. Over an arbitrary finite group
G, this analogously refers to the transformation taking the
state∑z∈G f (z) |z〉 to the state∑ρ∈Ĝ f̂ (ρ)i j |ρ, i, j〉, where
f : G → C, as before, is a function with‖ f‖2 = 1 and
f̂ (ρ)i j denotes thei, j entry of the Fourier transform at the
representationρ. This is explained further in Section 2.

While there is no known explicit relationship between
the quantum Fourier transform and the hidden subgroup
problem over a groupG, all known efficient hidden sub-
group algorithms rely on an efficient quantum Fourier
transform. Indeed, it is fair to say that the quantum
Fourier transform—the so-calledtransform and measure
approach—is the only known non-trivial quantum algo-
rithmic paradigm for such problems.

In this article we focus on the construction of efficient
quantum Fourier transforms. Our research is motivated by
dramatic progress over the last decade in the theory of ef-
ficient classicalFourier transforms, e.g. [4, 5, 8, 18, 22].
These developments have provided a collection of tech-
niques which, taken together, yield a uniform framework
for the efficient computation of Fourier transforms over a
wide variety of important families of groups. These in-
clude, for example, the finite groups of Lie type (properly
parametrized) and the symmetric groups.



Our main result is an adaptation to the quantum
setting of the most successful and general of these tech-
niques, namely the “separation of variables” approach.
While almost all efficient classical Fourier transforms
are divide-and-conquer algorithms, which recursively per-
form the Fourier transform for a series of subgroups and
combine the results according to their coset structure, the
separation of variables approach uses the existence of
adapted basesto streamline this process considerably.

Specifically, we define a broad class ofpolynomially
uniformgroups and show

THEOREM 1.1. If G is a polynomially uniform group
with a subgroup tower G= Gm > Gm−1 > · · · > {1}
with adapted diameter D, maximum multiplicity M, and
maximum index I= maxi [Gi : Gi−1], then there is a
quantum circuit of sizepoly(I ×D×M× log|G|) which
computes the quantum Fourier transform over G.

This quantifies the complexity of the quantum Fourier
transform in exactly the same fashion as Corollary 3.1
of [17] does for the classical case. In fact, for many of
the group families we study, the quantum and classical
circuit complexities of the Fourier transform differ by a
factor of |G|. We extend this class further by showing
that it is closed under a certain type of Abelian extension
which may have exponential index.

This framework allows us to give efficient QFTs—
that is, circuits of polylog(|G|) size—for many new fami-
lies of groups, as well as to place existing QFT algorithms
in a uniform framework. These include

(i.) the Clifford groupsCLn;

(ii.) symmetric groups, recovering Beals’ algorithm [3];

(iii.) wreath productsG o Sn where|G|= poly(n);

(iv.) metabelian groups (semidirect products of two
Abelian groups) including metacyclic groups such as
the dihedral and affine groups, recovering the algo-
rithm of Høyer [13];

(v.) bounded extensions of Abelian groups such as the
generalized quaternions, recovering the algorithm of
Püschel et al. [21].

Our methods also give the first subexponential size
quantum circuits for the linear groups GLk(q), SLk(q),
PGLk(q), and PSLk(q) for fixed prime powerq, finite
groups of Lie type, and the Chevalley and Weyl groups.

The paper is structured as follows. Sections 2
and 3 briefly summarize the representation theory of finite
groups, the Bratteli diagram, and adapted bases. We give
our algorithms in Section 4 along with a list of group fam-
ilies for which our techniques provide efficient circuits for
the QFT. We conclude with open problems in Section 5.

2 Representation theory background

Fourier analysis over a groupG consists of expressing
arbitrary functionsf : G→ C as linear combinations of
basis functions which reflect the group’s structure and
symmetries. IfG is Abelian, these are thecharactersof
G, i.e., the homomorphisms ofG into C; for a general
group, they are theirreducible matrix elements. Then the
Fourier transform is the change of basis from the basis of
delta functions to the basis of irreducible matrix elements.

In order to be precise we need the language of (finite)
group representation theory (see, e.g., Serre [24] for an
excellent introduction). Arepresentationρ of a finite
groupG is a homomorphismρ : G→ U(V), where U(V)
denotes the group of unitary linear operators on a finite-
dimensional vector spaceV whose dimension we denote
dρ. Once we fix an orthonormal basis forV, each
ρ(g) is a dρ × dρ unitary matrix and is called amatrix
representationof G. Each of thed2

ρ functionsρi j (g) =
[ρ(g)]i j is called amatrix elementof ρ; note that whileρ
is a homomorphism, in generalρi j is not.

A matrix representationρ of G on V is called irre-
ducible if the only subspaces it preserves are the trivial
one,{0}, andV itself. This is equivalent to the statement
that there is no change of basis that simultaneously gives a
block diagonalization (of a given shape) ofρ(g) for all g.
Otherwise the representation is said to bereducible. The
irreducible representations will play a role in the theory
analogous to that of the characters of an Abelian group.
Two representationsρ and σ are equivalentif they dif-
fer only by a change of basis, so that for some fixed uni-
tary matrixU , σ(g) = U−1σ(g)U for all g ∈ G. Up to
equivalence, a finite groupG has a finite number of irre-
ducible representations equal to the number of its conju-
gacy classes. For a groupG, we letĜ denote a collection
of representations ofG containing exactly one from each
isomorphism class of irreducible representations.

Selecting explicit bases for the representations ofĜ
results in a set of (inequivalent irreducible) matrix rep-
resentations, whosematrix elementsthen form an or-
thonormal basis for the|G|-dimensional vector space of
complex-valued functions onG. Since there must be
enough matrix elements to span this space, this implies
the following important relationship between|G| and the
dimensions of the irreducible representations:

∑
ρ∈Ĝ

d2
ρ = |G| .

We are now equipped to give the general definition of
the Fourier transform over arbitrary groups. Marvelously,
this definition possesses many of the properties of the
Fourier transform overZn that we know and love; for
instance, it transforms convolution into (matrix) product.



DEFINITION 1. Let f : G → C; let ρ : G → U(V) be a
matrix representation of G. TheFourier transform off at
ρ, denotedf̂ (ρ), is the matrix

f̂ (ρ) =

√
dρ

|G| ∑
g∈G

f (g)ρ(g) .

We typically restrict our attention tôf (ρ) where ρ is
irreducible.

The Fourier transform is linear inf ; with the constants√
dρ/ |G| we use here, it is in fact unitary, taking the

|G| complex numbers〈 f (g)〉g∈G to a total of ∑d2
ρ =

|G| complex numbers organized into|Ĝ| matrices with
varying dimensionsdρ.

For two complex-valued functionsf1 and f2 on a
group G, there is a natural inner product〈 f1, f2〉 given
by 1

|G| ∑g f1(g) f2(g)∗. The orthonormality of the matrix
elements can then be expressed as follows: for any pair of
matrix representationsρ,σ ∈ Ĝ,

(2.1)
〈
ρi j ,σkl

〉
=

{
0 if ρ 6∼= σ ,
1
dρ

δikδ jl if ρ = σ .

This is one form ofSchur’s lemma[24]. We can use this
orthonormality to invert the Fourier transform, giving the
Fourier inversion formula:

f (s) = ∑
ρ∈Ĝ

√
dρ

|G|
tr

(
ρ(s) f̂ (ρ)−1

)
.

A reducible matrix representationρ : G→U(V) can
always be decomposed into a direct product of irreducible
representations. Specifically, there is a basis ofV in which
ρ is block diagonal, where theith block ofρ is precisely
σi for some irreducible matrix representationσi . In this
case we writeρ =

L
i σi . The number of times a given

σi ∈ Ĝ appears in this decomposition is themultiplicity
of σi in ρ; denoting this multiplicitywi , we will write
ρ =⊕w1σ1 . . .⊕wr σr .

A representationρ of a groupG is also automatically
a representation of any subgroupH. We refer to this
restricted representation onH as ρ|H . Note that in
general, representations that are irreducible overG may
be reducible when restricted toH.

Remark. The familiarDiscrete Fourier Transform(DFT)
corresponds to the caseG = Zn. In this case the repre-
sentations are all one-dimensional, and the Fourier trans-
form is ann× n Vandermonde matrix whose entries are
nth roots of unity.
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Figure 1: The Bratteli diagrams for the subgroup towers
Z6 > Z3 > 1 (top) andS4 > S3 > S2 > 1 (bottom). Cyclic
groups of ordern have representations indexed by the in-
tegers modn, and (assumingm|n) the representation cor-
responding toj restricts to the representation correspond-
ing to j modm. The lower diagram uses the well-known
correspondence between irreducible representations ofSn

and partitions ofn. In this case restrictions fromSn to
Sn−1 are determined by those partitions obtained via the
decrement of a part of the original partition.

3 Making divide-and-conquer feasible: Bratteli
diagrams, Gel’fand-Tsetlin bases, and adapted
diameters

The classic Cooley-Tukey Fast Fourier Transform relies
on the fact that the cyclic groupZ2k can be decomposed
into a tower of subgroups:

Z2k > Z2k−1 > · · ·> Z4 > Z2 > Z1 = {1}

The Cooley-Tukey algorithm works recursively, by calcu-
lating the FFT for each subgroup in the tower, and then
combining the results from that subgroup’s two cosets to
form the FFT at the next level up.

Almost all efficient classical algorithms for the
Fourier transform work in this way. However, in the non-
Abelian case, making this divide-and-conquer approach
concrete is far from trivial. Even if the group has a natu-
ral subgroup tower, we need to choose a set of bases for
the representations which allows us to embed the cosets
of each subgroup in the next one up in an efficient way.
Furthermore, we need to choose a set of generators into
which we can factor group elements efficiently, and our
choice of bases should make the matrix representations
for these generators sparse and highly structured, so that
they can be multiplied together efficiently. (Finally, in the
quantum setting, we will have to write the resulting trans-
form as a product of elementary unitary operations.)
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Luckily, there are principled ways to choose these
bases and these generating sets. These techniques allow
us to construct an efficient classical Fourier transform
from the following ingredients:

(i.) a tower (or “chain”) of subgroups, by which the
Fourier transform onG can be built recursively as an
accumulation of Fourier transforms on increasingly
larger subgroups;

(ii.) a natural indexing scheme for the representations
given by paths in theBratteli diagramcorresponding
to that subgroup tower, which in turn provides a
convenient basis for each representation; and finally

(iii.) a factorization of group elements in terms of a basic
set of generators, which, when judiciously chosen,
provide a factorization of the Fourier transform as a
product of structured (direct sums of tensor products)
and sparse matrices.

The complexity of the resulting algorithm can then be
derived in terms of the basic representation-theoretic and
combinatorial data of the subgroup tower, the Bratteli
diagram, and the generating set. We describe the recipe by
which these ingredients are made into efficient classical
transforms in the next two sections.

3.1 Bratteli diagrams and Gel’fand-Tsetlin bases
Much of Abelian Fourier analysis is simplified by the fact
that in this case the the set of charactersĜ= {χ : G→C},
also called thedual, forms a group isomorphic to the orig-
inal groupG. Furthermore, in this isomorphism lies a nat-
ural correspondence which provides an indexing of the ir-
reducible representations, and thus the matrix elements of
the transform. However, in the general case there is no
immediate indexing scheme for the dualĜ and the land-
scape is further complicated by the absence of a canonical
basis for the (now multidimensional) representations. In-
deed, where efficient Fourier analysis is concerned, not all
bases are created alike!

A fairly general methodology for the construction
of group FFTs, the ”separation of variables” approach
[17, 18] relies on the use ofGel’fand-Tsetlinor adapted
bases. These bases allow us to carry out the recursive
divide-and-conquer approach described above, building
the transform efficiently at each level of the subgroup
tower. To construct these bases, we need a natural
indexing scheme for the representations, and for each of
their matrix elements, Happily, such an indexing scheme
is given by theBratteli diagramformalism, which we now
present. Given a finite groupG, let

G = Gm > Gm−1 > · · ·> G1 > G0 = {1}

be a tower of subgroups of lengthm for G. The corre-
spondingBratteli diagram, denotedB, is a leveled di-
rected multigraph whose nodes at leveli = 0, . . . ,m are
in one-to-one correspondence with the (inequivalent) ir-
reducible representations ofGi . For convenience, we re-
fer to vertices in the diagram by the representation with
which they are associated. The number of edges from an
irreducible representationσ of Gi to ρ of Gi+1 is equal to
the multiplicity of σ in the restriction ofρ to Gi . Since
there is a unique irreducible representation of the trivial
group, a Bratteli diagram for a given tower is in fact a
rooted tree. Bratteli diagrams for the cyclic groupZ6 and
the symmetric groupS4 are shown in Figure 1.

We now describe how paths in the Bratteli diagram
index the rows and columns of each representation, and
thus provide a natural set of bases. Each edge, from a node
σ : Gi →U(Vσ) of Ĝi to a nodeρ : Gi+1 →U(Vρ) of Ĝi+1,
represents an embedding ofVσ into Vρ. Thus the edges
into ρ describe a decomposition ofVρ into a direct sum
of orthogonal subspacesVσ, each of which are invariant
under the (restricted) action ofGi ; and conversely, the
edges out fromσ correspond to embeddings ofVσ into
orthogonal subspacesVρ. Thus these edges describe
how the subspaces acted on by the representations of
Gi+1 are decomposed into smaller subspaces acted on by
representations ofGi , and conversely how the subspaces
of Gi are embedded in the subspaces ofGi+1.

Since the only representation of the trivial group{1}
is one-dimensional, composing these edges into paths
from the root to a given nodeρ∈ Ĝi gives a decomposition
of Vρ into a direct sum of orthogonal one-dimensional
subspaces; but this is tantamount to providing a basis for
Vρ. Moreover, since paths from the root toρ consist of
paths from the root to variousσ composed with paths from
σ to ρ, whereσ ∈ Ĝ j for someG j < Gi , this basis has the
following property: for anyG j < Gi , there is a partition
of the basis vectors into subsets, each of which spans an
irreducibleG j -invariant subspace. Therefore, in this basis
the matrix representationρ is block diagonal according
to this partition when restricted toG j and, moreover, the
blocks corresponding to someσ which appears inρ with
multiplicity greater than 1 are actually equal. Such bases
are said to beG j -adaptedor Gel’fand-Tsetlin.

Note that the number of paths to a nodeρ is equal
to dρ (so, for instance, the Bratteli diagram of an Abelian
group is a directed tree). Furthermore, each ordered pair
of paths with common endpointρ indexes an irreducible
matrix element ofρ, since one path indexes a row and the
other indexes a column.

Following the divide and conquer approach, the
Fourier transform onG = Gm can be written a sum of
Fourier transforms onGm−1, each of which is translated



from a different coset. Specifically, ifT ⊂G is atransver-
sal, i.e., a set of representatives for the left cosets ofGm−1

in Gm, we definefα : Gm−1 → C by fα(x) = f (αx). Then

f̂ (ρ) = ∑
α∈T

ρ(α) ∑
x∈Gm−1

ρ(x) f (αx)

= ∑
α∈T

ρ(α) · f̂α(ρ|Gm−1
).(3.2)

These matricesρ(α) are called the “twiddle factors”.
Note that the number of terms in this sum is|T| =
[Gm : Gm−1] = |Gm|/|Gm−1|, the index of Gm−1 in Gm.
As we will see below, the recursion of (3.2) will be
greatly simplified by the fact that in the adapted basis, the
restricted representationsρ|G j

become block diagonal,
where the blocks are simply the matricesσ.

3.2 Strong generating sets and adapted diameters
Adapted representations are only part of the story for the
construction of efficient Fourier transforms. In general,
the twiddle factorsρ(α) in Equation (3.2) could be an
arbitrary matrices of exponential size, so an algorithm
which simply performs the sum in (3.2) could be costly.
Luckily, under fairly mild assumptions, these twiddle
factors can be factored into polylog(|G|) sparse, highly
structured matrices, and can therefore be implemented
with polylog(|G|) elementary quantum operations.

We say thatS is astrong generating setfor the tower
of subgroups{Gi} if S∩Gi generatesGi . Say that we
have chosen a transversalTi for eachi indexing the cosets
of Gi−1 in Gi . Now define

Di = min{` > 0 :∪ j≤`(S∩Gi) j ⊇ Ti} ,

i.e., the length of words overS∩Gi we need to generate
every representative inT, and define theadapted diameter
D = ∑i Di . Then clearly any group element can be
factored as a series of coset representatives, which in turn
can be factored as a total of at mostD elements ofS.

Of course, to perform the QFT efficiently we would
like ρ(γ) to have a simple form for eachγ ∈ S. Given a
subgroupK < G, recall that thecentralizerof K is the
subgroupZ(K) = {g ∈ G : gk = kg for all k ∈ K}. The
following is implicit in the oft-cited lemma of Schur:

LEMMA 3.1. (Schur, [17, Lemma 5.1]) Let K< G, let
γ ∈ Z(K), and letρ be a K-adapted representation of G.
Suppose thatρ|K = ⊕m1η1 · · ·⊕mr ηr . Thenρ(γ) has the
form

(3.3) (GLm1(C)⊗ Id1)⊕·· ·⊕ (GLmr (C)⊗ Idr )

where Ik is the k×k identity matrix and di = dηi .

Since any unitary operator in GLm(C) can be carried out
with poly(m) elementary quantum gates [2], and since we

can condition on theηi to find out which subspace ofρ
we are in, we can writeρ(γ) as a series of poly(M) ele-
mentary quantum operations whereM = maxi mi in (3.3).
Therefore, the total number of elementary quantum oper-
ators we need to implementρ(α) is D×poly(M).

Moreover, if γ is itself in a subgroupH > K, and
ρ is adapted to bothH andK, thenρ(γ) also possesses
the block structure corresponding toρ|H . This places
an upper bound onM, namely the maximum multiplicity
with which representations ofK appear in restrictions
of representations ofH. Thus we can minimizeM by
choosing generatorsγ which (1) are inside subgroups as
low on the tower as possible, and (2) centralize subgroups
as high on the tower as possible.

For instance, for the symmetric groupSn we take the
tower to be

Sn > Sn−1 > · · ·> {1} ,

whereSi fixes all elements of{1, . . . ,n} greater thani. Let
Sbe the set of pairwise adjacent transpositions( j, j +1);
each of these is contained inSj+1 and centralizesSj−1.
The maximum multiplicity with which a representation of
Sj−1 appears in a representation ofSj+1 is 2, correspond-
ing to the two orders in which we can remove two cells
from a Young diagram. In this case the adapted basis de-
fined by the Bratteli diagram is exactly theYoung orthogo-
nal basis, in which each block ofρ(( j, j +1)) differs from
the identity only by a 2×2 minor. Since the adapted diam-
eter is easily seen to beO(n2), this means that the twiddle
factorsρ(α) can be carried out inO(n2) = polylog(|Sn|)
elementary quantum operations [3]. We will see in the
next section that a similar situation obtains for a large
class of groups.

4 Efficient quantum Fourier transforms

We describe our algorithm in this section. As in the classi-
cal case, we perform the Fourier transform inductively on
the tower of subgroups, using the structure of the Bratteli
diagram to construct the transform at each level from the
transform at the previous level.

Recall that for each level of our tower of subgroups
G = Gm > Gm−1 > · · · > G0 = {1} we have chosen a
transversalTi for the left cosets ofGi−1 in Gi . At the
beginning of the computation, we represent each group
elementg as a productα = αm· · ·α1 whereαi ∈ Ti . This
string becomes shorter as we work our way up the tower,
and after having performed the Fourier transform forGi

the remaining stringα = αm· · ·αi+1 indexes the coset of
Gi in G in whichg lies.

At the end of the computation, we have a pair of paths
in the Bratteli diagram,s= s1 · · ·sm andt = t1 · · · tm, which
index the rows and columns of the representationsρ of G.
These paths begin empty and grow as we work our way up
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the tower; after having performed the Fourier transform
for Gi , the pathsp = p1 · · · pi andq = q1 · · ·qi of lengthi
index the rows and columns of representationsσ of Gi .

With a compact encoding, one could storeα in the
same registers ass and t, at each step replacing a coset
representativeαi with a pair of edgessi , ti . (This is how
Coppersmith’s circuit for the QFT overZ2k works; see
below.) However, our algorithm is simpler to describe if
we double the number of qubits and storeα and s, t in
separate registers. Padding outα, s, andt to lengthmwith
zeroes, our computational basis consists of unit vectors of
the form

|α〉 |s, t〉=
∣∣αm· · ·αi+10i〉⊗ ∣∣s1 · · ·si 0

m−i , t1 · · · ti 0m−i〉 .

Keep in mind that the basis{|s, t〉}, wheres and t have
lengthi and end in the same representation, is just a per-
mutation of our adapted Gel’fand-Tsetlin basis{|σ, j,k〉}
for Ĝi , whereσ ranges over the representations ofGi and
1 ≤ j,k ≤ dσ index its rows and columns. Therefore,
we will sometimes abuse notation by writinĝf (s, t) and
f̂ (σ) j,k for the Fourier transform overGi indexed in these
two different ways.

Each stage of the algorithm consists of calculating
the Fourier transform overGi+1 from that overGi . By
induction it suffices to consider the last stage, where we
go from H = Gm−1 to G = Gm. Specifically, choose a
transversalT of H in G such that everyg ∈ G can be
written αh whereα ∈ T andh∈ H. As in (3.2), for each
α ∈ T we define a functionfα on H as fα(h) = f (αh);
this is the restriction off to the cosetαH, translated into
H. After having performed the Fourier transform onH,
our state will be

∑
α∈T

|α〉 ⊗ ∑
s,t of lengthm−1

f̂α(s, t) |s, t〉

= ∑
α∈T

|α〉 ⊗ ∑
(σ, j,k)∈Ĥ

f̂α(σ) j,k |σ, j,k〉 .(4.4)

Our goal is to transform this state into the Fourier basis of
G, namely

|0〉 ⊗ ∑
s,t of lengthm

f̂ (s, t) |s, t〉

= |0〉 ⊗ ∑
(ρ, j,k)∈Ĝ

f̂ (ρ) j,k |ρ, j,k〉 .(4.5)

where|0〉 occupies the register that held the coset repre-
sentativeα before.

As described in Equation (3.2) above,̂f can be
written as a sum over contributions fromf ’s values on
each cosetαH, giving

(4.6) f̂ (ρ) = ∑
α∈T

ρ(α) · f̂α(ρ|H) .

Recall that the matrixf̂α(ρ|H) is a direct sum of sub-
matrices of the formf̂α(σ), summed over theσ appearing
in ρ. We will construct f̂ (ρ|H) via anembeddingopera-
tion which reverses the restriction toH,

(4.7) |σ〉 → ∑
ρ:σ appears inρ|H

Aσ,ρ |ρ〉

where this “scale factor” is

Aσ,ρ =

√
|H|
|G|

dρ

dσ
.

Note that∑ρ |Aσ,ρ|2 = 1.
Thus the algorithm consists of (i.) embedding theσ in

the appropriateρ, (ii.) applying the “twiddle factor”ρ(α),
and (iii.) summing over the cosets. However, as discussed
above, doing these things efficiently is no simple matter.
First, a givenσ might appear in a givenρ with an arbitrary
change of basis; the twiddleρ(α) could be an arbitrary
unitary matrix of exponential size; and, if[G : H] is
exponentially large, summing over the cosets will take
exponential time unless parallelized in some way.

The Bratteli diagram, and the adapted basis it pro-
vides, allow us to accomplish (i) and (ii) above with a
minimum of trouble. For (i), the embedding operation,
note that f̂α(s, t) is nonzero only whens andt end in the
same representationσ of Gt , i.e., in the same vertex of
the diagram. Moreover, recall that the Bratteli diagram
indexes an adapted basis in whichρ|H is block-diagonal
with theσ j as its blocks. This means that theσ appear in
theρ in an extremely simple way: namely, wheres andt
are extended by appending the same edgee to both. The
only change of basis required is to literally pick the matrix
elements ofσ up and place them in the appropriate place
in ρ, and we discuss below how to do this unitarily.

Similarly, when coupled with a strong generating set
of small adapted diameter as discussed in Section 3.2,
the adapted basis allows us to carry (ii) out efficiently
by writing ρ(α) as a product of a small number ofρ(γ),
each of which has the block-diagonal structure given by
Lemma 3.1.

For (iii), summing over the cosets, for now we simply
take the time to sum over all the cosets serially, paying a
cost of [Gi : Gi−1] per level as reflected in Theorem 1.1.
This makes sense for subgroup towers where the index
of each subgroup in the one above it is polynomial, such
as the tower forSn above, and we focus on that case
in Section 4.1. However, in Section 4.2 we will see
that even when the index of some level of the tower
is exponentially large, in some cases we can use the
parallelism of quantum mechanics to sum over all the
cosets simultaneously, and still achieve an efficient QFT.



We adopt the following notation. Given a paths in
the Bratteli diagram of lengthm− 1 or m, denote the
representation in which it ends byσ[s] or ρ[s] respectively,
and if s = s1 · · ·sm−1, denotes1 · · ·sm−1e asse. We will
index the edges of each vertex{1, . . . ,k}wherek is its out-
degree. It will be convenient to carry out this embedding
only if the register containing the coset representative is
zero, and leave other basis vectors in(T∪{0})⊗ Ĥ fixed.
Then (4.7) becomes

(4.8) U :

{
|0〉 |s, t〉 → |0〉∑eAσ[s],ρ[se] |se, te〉
|α〉 |s, t〉 → |α〉 |s, t〉 for all α ∈ T

where the sum is over all outgoing edgeseof σ[s] = σ[t].
Note that we have not definedU on the entire space;

in particular, since we are moving probability from̂H to
Ĝ, basis vectors|0〉 |se, te〉 ∈ (T ∪ {0})⊗ Ĝ cannot stay
fixed. As we will see below, it does not matter precisely
how U behaves on the rest of the state space, as long
as its behavior onĤ is as described in (4.8). This can
be accomplished simply by putting themth registers ofs
andt in the superposition∑eAσ[s],ρ[se] |e〉⊗ |e〉, and for a
large class of extensions we can prepare this superposition
efficiently.

We shall focus on group towers for which the Bratteli
diagram data can be effectively computed:

DEFINITION 2. For a group G and a tower of subgroups
Gi , let B be the corresponding Bratteli diagram, let Ti be
a set of coset representatives at each level, and let S be
a strong set of generators for G. Then we say that G is
polynomially uniform(with respect to{Gi}, B, {Ti}, and
S) if the following functions are computable by a classical
algorithm in polylog(|G|) time: (i.) Given two paths s, t
in B, whetherρ[s] = ρ[t]; (ii.) Given a path s inB, the
dimension and the out-degree ofρ[s]; (iii.) Given a coset
representativeαi ∈ Ti , a factorization ofα as a word of
polylog(|G|) length in(S∩Gi)∗.

4.1 Extensions of small indexWe begin by focusing
on groups and towers which are fairly refined, i.e., with
polynomial indexes at each level.

LEMMA 4.1. If G is polynomially uniform with respect
to a tower of subgroups where G= Gm and H = Gm−1

and a strong generating set S with adapted diameter D
and maximum multiplicity M, then the Fourier transform
of G can obtained from the state(4.4) using poly([G :
H]×D×M× log|G|) elementary quantum operations.

Proof. First, to carry out the embedding transformation
U , we use the classical algorithm to compute the list of
edgese anddρ[se] conditional ons, and thus compute the
Aσ,ρ (say, ton digits in poly(n) time). Note thatσ appears

in at most[G : H] many ρ. We then carry out a series
of [G : H] conditional rotations, each of which rotates the
appropriate amplitude from|0〉 |s, t〉 to |0〉 |se, te〉. Thus
U , and thereforeU−1, can be carried out inO([G : H])
quantum operations.

To apply the twiddle factor and sum over the cosets as
in (4.6), we use a technique of Beals [3] and carry out the
following for-loop. For eachα ∈ T, we do the following
three things: left multiplyf̂ (ρ) by ρ(α)−1; add f̂α(ρ) to
f̂ (ρ); and left multiply f̂ (ρ) by ρ(α). This loop clearly
produces∑α∈T ρ(α) · f̂ (ρ), so we just need to show that
each of these three steps can be carried out efficiently.

Recall that f̂ (ρ) is given in the|s, t〉 basis, where
s and t index the row and column ofρ respectively.
To left multiply f̂ (ρ) by ρ(α), we applyρ(α) to the s
register and leave thet register unchanged. SinceG is
polynomially uniform, a classical algorithm can factor
α as the product ofD generatorsγi ∈ S, and provide
a factorization of eachρ(γi) as the product of poly(M)
many elementary quantum operations, in polylog(|G|)
time. This implementsρ(α) andρ(α)−1 in D×poly(M)+
polylog(|G|) operations.

The step “addf̂α(ρ) to f̂ (ρ)” is slightly more mys-
terious, and indeed it does not even sound unitary at first.
However, as Beals points out, at each point in the loop
we are addingf̂α(ρ), which is the Fourier transform of a
function with support only onH, to ∑β<α ρ(α−1β) f̂β(ρ),
which is the Fourier transform of a function with support
only outside H. Thus these two states are orthogonal, and
adding two orthogonal vectors can be done unitarily by
rotating one vector into the other while fixing the sub-
space perpendicular to both. LetVα be the operation that
exchanges|α〉 |s, t〉 with |0〉 |s, t〉 and leaves|β〉 |s, t〉 fixed
for all β ≤ α,0; then Beals showed that this step can be
written U−1VαU whereU is the embedding operator de-
fined in (4.8). We showed earlier thatU can be carried
out inO([G : H]) quantum operations, andV is a simply a
Boolean operation on theα register. Finally, the for-loop
runs|T|= [G : H] times, and we are done. �

Proof of Theorem 1.1.This follows by induction as the
depth of the Bratteli diagram is at most log|G|. �

For many families of groups, the maximum index
I = maxi [Gi : Gi−1], the adapted diameterD, and the max-
imum multiplicity M are all polylog(|G|). In this case,
Theorem 1.1 gives circuits for the QFT of polylog(|G|)
size. This includes the following three families of groups:

The symmetric groupsSn. As stated above, we take the
tower Sn > Sn−1 > · · · > {1}, so theI = n = o(log|Sn|).
The generators are the adjacent transpositions, soD =
O(n2) and M = 2. The adapted basis is precisely the
Young orthogonal basis.
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Wreath products G= H oSn for H of sizepoly(n). These
groups arise naturally as automorphism groups of graphs
obtained by composition [12]. As in [23] the tower is

H oSn > H× (H o Sn−1) > H o Sn−1 > · · · > {1} .

Then I = max(n, |H|), the generators are the adjacent
transpositions and an arbitrary set of log|H| generators
for each factor ofH, D = O(n2 log|H|), andM = O(|H|).
Then note that|H| = polylog(|G|). See [17] for details
and [15] for discussion on wreath products.

The Clifford groups. The Clifford groupsCLn are
generated byx1, . . . ,xn wherex2

i = 1 andxix j =−xix j for
all i 6= j [26]. We take the tower

CLn > CLn−1 > · · ·> {1}

for which I = 2, and the generators{x1,x1x2, . . . ,xn−1xn}.
ThenD = O(n), and since eachxixi+1 centralizesCLi−1

we haveM = 4.

In addition to giving polylog(|G|)-size circuits for
these groups, our techniques give the first subexponential-
size circuits for the following classical groups:

The linear groups GLn(q), SLn(q), PGLn(q), and
PSLn(q); the finite groups of Lie type; the Chevalley
and Weyl groups. The case of GLn(q) is emblematic of
all these families. We have a natural tower:

GLn(q) > Pn(q) > GLn−1(q)×GL1(q) > GLn−1(q) > · · ·

Here Pk(q) is the so-calledmaximal parabolic subgroup,
consisting of elements of the form(

A ~v
0· · ·0 c

)
whereA∈ GLk−1(q),~v∈ Fk−1

q , andc∈ F×q , so I = qn−1.
Our generators are the block-diagonal matrices with an
arbitrary element of GL2(q) in the i, i − 1 block and all
other diagonal elements equal to 1. ThenD = O(n2) and
M = qO(n). Analogous factorizations arise for the finite
groups of Lie type as well as the finite unitary groups [18].

Theorem 1.1 then implies a quantum circuit of size
qO(n) for the QFT over these groups. Since|G| = O(qn2

)
we can write this as|G|O(1/n), which is exp

(
O(

√
log|G|)

)
if q is fixed. On the other hand, he best-known classical
FFT for these groups [17] has complexity|G|qΘ(n) =
|G|1+Θ(1/n). Note for the group families above for which
we obtain circuits of size polylog(|G|), there are classical
algorithms of complexity|G|polylog(|G|). In both cases,
it seems that the natural quantum speedup is a factor of
|G|, modulo polylogarithmic terms; of course, we would
like to know if this is the best possible.

4.2 Extensions of large index; Coppersmith-type cir-
cuits The reader familiar with Coppersmith’s circuit [7]
for the QFT overG = Z2n, whereH = Z2n−1, will recall
that the Hadamard gate embeds a characterσ ∈ Ĥ in two
charactersρ ∈ Ĝ, applies part of the twiddle factor, and
sums over both cosets ofH, all in one operation. This is
in contrast to the technique of the previous section, which
sums over the cosets serially—and which takes exponen-
tial time if, for instance,G is an extension ofH by Zp

wherep is exponentially large.
For a certain type of extension, we can construct

circuits analogous to Coppersmith’s, which use quantum
parallelism to embedσ in the ρ, sum over all the cosets
simultaneously, and apply the twiddle factor as well.
Recall thatG is asplit extensionor semidirect productof
H by T, writtenT nH, if H CG and there is a transverse
subgroupT < G so thatT ∼= G/H.

DEFINITION 3. Suppose G is a split extension of H by T,
let S be a set of at mostlog2 |T| generators for T , and
suppose that G is polynomially uniform with respect to a
tower of subgroups where G= Gm and H= Gm−1 and a
Bratteli diagramB. Then G is ahomothetic extension
of H by T if (i.) Givenσ ∈ Ĥ and γ ∈ S, defineσγ(h) =
σ(γ−1hγ); then for everyσ∈ Ĥ, eitherσγ = σ, or the orbit
of q distinct representationsσγ j

, for 0 ≤ j < q where q
divides the order ofγ, appears among the representations
of H given byB; (ii.) For eachγ ∈ S, there is a classical
algorithm which runs inpolylog(|G|) time which, given a
path s inB indexing a row ofσ[s] and an integer j, returns
the size q ofσ’s orbit under conjugation byγ, and returns
a path sγ

j
that indexes the same row ofσ[sγ j

] = σγ j
.

THEOREM 4.1. If G is a homothetic extension of H by an
Abelian group, then the Fourier transform of G can be ob-
tained from the state(4.4)usingpolylog(|G|) elementary
quantum operations .

Proof. It is easy to show that a homothetic extension of
H by A×B consists of a homothetic extension ofH by
A, followed by a homothetic extension byB. Therefore
it suffices to prove the lemma for homothetic extensions
by cyclic groups of prime power order, so without loss of
generality we letT be generated byγ of orderpz.

We recall some representation theory from [6, 22].
Givenσ ∈ Ĥ, thestabilizerof σ is K = {x∈ T : σx ∼= σ},
and for a homothetic extension we can replaceσx ∼= σ
with σx = σ. Then K is the subgroup ofT of order
p` generated byγq whereq = pz−`, andσ’s orbit under
conjugation byγ is of sizeq.

The representationsρ in which σ appears can be
obtained in two steps. First, we extendσ to K n H by
multiplying σ by one of thep` characters ofK. This yields



τb ∈ K̂ nH whereτb(γq jh) = χb( j)σ(h) and χb(γq j) =
ωb j

p` . Since dτb = dσ, we haveAσ,τb =
√

1/p` and σ
embeds in a uniform superposition over theτb, so we
append a uniform superposition of edges 1≤ e≤ p` where
b= e−1. Combining this with the twiddle factorχb gives
the unitary transformation

(4.9)
∣∣∣γq j+k

〉
|s, t〉 →

∣∣∣γk
〉
⊗ 1√

p`

p`

∑
e=1

ω(e−1) j
p` |se, te〉 .

Here we write the power ofγ in two registers 0≤ j < p`

and 0≤ k < q. Then this operation Fourier transforms
the first register overZp` and transfers the result to the
mth register ofs andt. This transform can be carried out
with O(logp` log logp`) = O(log|G| log log|G|) elemen-
tary operations [10, 16]. Note thatp` takes at most log|G|
different values, and can be obtained from the classical
algorithm which computesq.

If K = T, then theρ ∈ Ĝ containingσ are simply the
extensionsτb and we’re done. IfK < T, i.e., if q > 1,
we carry out a second step as follows. Eachτb appears
in a single induced representationρb whose restriction to
K nH is the direct product of all the representations inσ’s
orbit, timesχb: that is, ρb|H = χb⊕q−1

i=0 σγi
. The twiddle

factor ρb(γk) is then a permutation matrix which cycles
thesep blocksk times, with an additional phase change
ωbk

pz. This gives the unitary transformation

(4.10)
∣∣∣γk

〉
|se, te〉 → ω(e−1)k

pz |0〉
∣∣∣sγk

e, te
〉

.

Sincesγk
can be calculated by the classical algorithm in

polylog(|G|) time, and since it is easy to implementωbk
pz

with phase shiftsω2yb
pz for 0 < y < log2k conditioned on

the binary digit sequence ofbk, we can perform this op-
eration in polylog(|G|) quantum steps. Composing (4.9)
and (4.10) transforms the state (4.4) to the Fourier trans-
form (4.5) overG. �

Relation to Coppersmith’s circuit. Let γ be a generator
of G = Z2n. ThenG is an extension ofH = Z2n−1 with
transversal{1,γ}. Sinceγ2 6= 1, γ induces an additional
phase shiftC(γ) =

√
χb(γ2) = ωb

2n. (Similarly, the addi-
tional phase shift in (4.10) is due to the fact thatZpz is not
a split extension ofZp` .) In Coppersmith’s circuit,C(γ)
appears as a set of phase shift gates conditional on the
low-order bit of j. Finally, the Hadamard gate in Copper-
smith’s circuit is precisely the operation (4.9) in the case
p = 2, ` = 1 andq = 1, and where we use the same qubit
register fore (the high-order bit of the frequency) as forα
(the low-order bit of the time).

Closure under homothetic extensions and metacyclic
groups. Theorem 4.1 shows that the set of groups for
which circuits of polylog(|G|) size exist is closed under
homothetic extensions by Abelian groups. It also general-
izes the efficient quantum Fourier transform of Høyer [13]
for themetacyclicgroupsZq nZp, since these are homo-
thetic extensions ofZp by Zq. Note that the metacyclic
groups include the dihedral groups (whereq = 2) and the
affine groups (whereq = p−1) as special cases.

The quaternionic groups. The generalized quaternion
group is an extension ofH = Z2n by Z2 whereγ2 is the
element of order 2 inH. ThenC(γ) =

√
σ(γ2) = 1 or i.

Püschel, R̈otteler and Beth [21] gave an efficient quantum
Fourier transform for these groups in the case wheren
is a power of 2. Of course, these groups are extensions
of Abelian groups with bounded index, so Lemma 4.1
already provides an efficient QFT for them.

Metabelian groups. Even if an extension is neither ho-
mothetic nor of polynomial index, we can still construct
an efficient QFT if we can apply arbitrary powers of
C(γ) in polynomial time—for instance, ifC(γ) is of poly-
nomial size, which is true whenever all the representa-
tions of H are of polynomial size. This includes the
metabeliangroups, i.e., split extensions of Abelian groups
by Abelian groups, since all the representations ofH are
one-dimensional. We discuss this further in the full paper.

The general case. In general, Abelian extensions can
be slightly more complicated; consider extensions by
Zp. If σγ is isomorphic toσ, rather than equal to it,γ
induces an additional twiddle factorC(γ) which changes
σ’s basis [22]. This occurs, for instance, ifγp is an
element ofH other than the identity, in which case the
cyclic group generated byγ is not transverse toH and the
extension is not split; thenC(γ) is a pth root ofσ(γp).

5 Conclusion and open problems

We have shown that a general technique for constructing
efficient classical fast Fourier transforms on groups—
separation of variables using an adapted basis—can be
carried over to the quantum context, producing circuits
of polylog(|G|) size for a wide variety of groups, and of
subexponential size for classical linear groups modq.

While separation of variables is one of the most
general techniques for classical FFTs, it is not the only
one. It is possible to use the Bratteli diagram in a
more precise fashion, looking for redundancy and sparsity
on the level of individual matrix elements. This finer
analysis is responsible for the fastest known classical
FFTs for the groups SL2(q), as well asSn and its wreath
products [19]. It would be interesting to explore adapting
these techniques to the quantum setting.
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