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Abstract problems over Abelian groups are well-understood, for

The quantum Fourier transform{QFT) is the principal non—AbeIian groups our underst_anding of these pr.oblems
ingredient of most efficient quantum algorithms. WEEMains embarras_smgly sporadic. Aside frqm their natu-
present a generic framework for the construction [l appeal, these lines of research are motivated by their
efficient quantum circuits for the QFT by “quantizing’direCt relationship to the graph isomorphism problem: an
the highly successfuseparation of variablesechnique efficient solution to the hidden subgroup problem over the
for the construction of efficient classical Fourier tran§00n-Abelian) symmetric groups would yield an efficient
forms. Specifically, we apply the existence of computafélantum algorithm for graph isomorphism. _
Bratteli diagrams, adapted factorizations, and Gel'fand- OVver the cyclic groupZy, the quantum Fourier
Tsetlin bases to provide efficient quantum circuits for t{gansform refers to the transformation taking the
QFT over a wide variety of finite Abelian and non-Abeliagtate Y -z, f(2)[2) to the state} ez, f(w)|w), where
groups, including all group families for which efficientf : Zn — C is a function with || f|l, = 1 and f(w) =
QFTs are currently known and many new group familie3: f (2) e?97/n denotes the familiar discrete Fourier trans-
Moreover, our method provides the first subexponenti#®rm at the frequencyo. Over an arbitrary finite group
size quantum circuits for the QFT over the linear groujss this analogously refers to the transformation taking the
GLk(9), SLk(q), and the finite groups of Lie type, for anystatey ,cc f(2) [2) to the statey . f(p)ij [P 1, j), where

fixed prime poweq. f :G— C, as before, is a function withf|, = 1 and
f(p)ij denotes the j entry of the Fourier transform at the
1 Introduction representatiop. This is explained further in Section 2.

Peter Shor's seminal discovery of efficient quantum While there is no known explicit relatiopship between
algorithms for factoring and discrete logarithm [25] réh€ quantum Fourier transform and the hidden subgroup
lies crucially on the fact that the Fourier transform ovéroblem over a grous, all known efficient hidden sub-
the cyclic groupZs can be carried out efficiently on a9"0UpP algorithms rely on an efficient quantum Fourier
guantum computer, even whenis exponentially large. trans_form. Indeed, it is fair to say that the quantum
This has motivated broad interest in the problem of efffourier transform—the so-callacansform and measure
cient quantum computation over arbitrary groups; see e3PProach—is the only known non-trivial quantum algo-
[3,9, 11, 13, 14, 20, 21, 27]. While this research effort h§&mic paradigm for such problems.

already become quite ramified, two related themes have In this article we focus on the construction of efficient
emerged: guantum Fourier transforms. Our research is motivated by

dramatic progress over the last decade in the theory of ef-
(i.) development of efficientjuantum Fourier trans- ficient classicalFourier transforms, e.g. [4, 5, 8, 18, 22].
forms and These developments have provided a collection of tech-
igues which, taken together, yield a uniform framework
or the efficient computation of Fourier transforms over a
wide variety of important families of groups. These in-
The complexity of these two problems appears to be iclude, for example, the finite groups of Lie type (properly
timately related to the structure of the group in questioparametrized) and the symmetric groups.
while quantum Fourier transforms and hidden subgroup

(ii.) development of efficient quantum algorithms for th
hidden subgroup problem



Our main result is an adaptation to the quantuth Representation theory background

setting of the most successful and general of these teghyrier analysis over a grou@ consists of expressing
niques, namely the “separation of variables” approacdyyitrary functionsf : G — C as linear combinations of
While almost all efficient classical Fourier transformgasis functions which reflect the group’s structure and
are divide-and-conquer algorithms, which recursively P&ymmetries. IfG is Abelian, these are theharactersof
form the Fourier transform for a series of subgroups agfl j e. the homomorphisms @ into C; for a general
combine the results according to their coset structure, Eﬂ%up, they are thizreducible matrix elementsThen the
separation of variables approach uses the existence=@firier transform is the change of basis from the basis of
adapted basew streamline this process considerably. gelta functions to the basis of irreducible matrix elements.
_ Specifically, we define a broad classpaflynomially In order to be precise we need the language of (finite)
uniformgroups and show group representation theory (see, e.g., Serre [24] for an

THEOREM1.1. If G is a polynomially uniform group €xcellent introduction). Arepresentationp of a finite
with a subgroup tower G= Gy > Gp_1 > --- > {1} 9roupG is a homomorphisrp : G — U(V), where UV)
with adapted diameter D, maximum multiplicity M, angenotes the group of unitary linear operators on a finite-
maximum index k= max[G; : Gi_1], then there is a dimensional vector spadé whose dimension we denote
quantum circuit of sizgoly(I x D x M x log|G|) which dp. Once we fix an orthonormal basis f&, each

computes the quantum Fourier transform over G. P(9) is ady x dp unitary matrix and is called anatrix
representatiorof G. Each of thedf, functionspi; (g) =

This quantifies the complexity of the quantum Fouri%(g)]ij is called amatrix elementf p; note that whilep

transform in exactly the same fashion as Corollary 3,1 homomorphism, in genergi is not.

of [17] does for the classical case. In fact, for many of = , matrix representatiop of G onV is calledirre-

the group fam|l_|<_as we study, the quantum a”?' Class'?ﬁjcibleif the only subspaces it preserves are the trivial
circuit complexities of the F.ouner transform differ by %ne,{O}, andV itself. This is equivalent to the statement
factor of |G|. We extend this class further by showin at there is no change of basis that simultaneously gives a

that it is closed under a certain type of Abelian extensi%rpock diagonalization (of a given shape)ig) for all g.

which may have exponential mdex._ . Otherwise the representation is said torbéucible The
Th's. framework allows us to give efficient QFTS__TrreducibIe representations will play a role in the theory

t_hat Is, circuits of polylogG|) S|ze—f.0r-many new farm- analogous to that of the characters of an Abelian group.
!les of groups, as well as to plac_e existing QFT algorlthnﬁvo representationp and o are equivalentif they dif-
in a uniform framework. These include fer only by a change of basis, so that for some fixed uni-
(i.) the Clifford groupsCLy; tary matrixU, o(g) = U~to(g)U for all ge G. Up to
equivalence, a finite grou@ has a finite number of irre-
ducible representations equal to the number of its conju-
(iii.) wreath product$ S, where|G| = poly(n); gacy classes. For a gro@ we letG denote a collection

of representations d& containing exactly one from each

(iv.) metabelian groups (semidirect products of ™W,momhism class of irreducible representations.
Abelian groups) including metacyclic groups such as  geecting explicit bases for the representation€of

the dihedral and affine groups, recovering the algfsqits in a set of (inequivalent irreducible) matrix rep-
rithm of Hayer [13]; resentations, whosenatrix elementshen form an or-

(v.) bounded extensions of Abelian groups such as t@normal basis for théG|-dimensional vector space of

generalized quaternions, recovering the algorithm g@mplex-valued functions o®. Since there must be
Pischel et al. [21]. enough matrix elements to span this space, this implies

. ! .. _the following important relationship betwe¢@| and the
Our methods also give the first subexponential Slffmensions of the irreducible representations:
quantum circuits for the linear groups @k), Sk(q),

PGLk(q), and PSk(q) for fixed prime powerq, finite z dg =G| .
groups of Lie type, and the Chevalley and Weyl groups.
The paper is structured as follows. Sections 2
and 3 briefly summarize the representation theory of finite We are now equipped to give the general definition of
groups, the Bratteli diagram, and adapted bases. We give Fourier transform over arbitrary groups. Marvelously,
our algorithms in Section 4 along with a list of group fanthis definition possesses many of the properties of the
ilies for which our techniques provide efficient circuits foFourier transform ovef, that we know and love; for
the QFT. We conclude with open problems in Section 5instance, it transforms convolution into (matrix) product.

(ii.) symmetric groups, recovering Beals’ algorithm [3];

peG



DEFINITION 1. Let f:G—C; let p: G— U(V) be a & e
matrix reprgsentation of G. THeourier transform off at o .\eo
p, denotedf (p), is the matrix o

—<(—e
f(p) = \/fgg;f(g)p(g) : 6-1//

We typically restrict our attention td (p) where p is

irreducible. @) e
)
@D e e 1)
The Fourier transform is linear if; with the constants (2,2) .l.@ o~ o0
\/do/|G| we use here, it is in fact unitary, taking the 211 < \/
2 = " 0/
|G| complex numberg(f(g))gec to a total of 3 dj 1119 D 10

|G| complex numbers organized int&| matrices with
varying dimensionsl,. . .
For two complex-valued function§; and f, on a Figure 1: The Bratteli diagrams for the subgroup tqwers
group G, there is a natural inner produéfy, f,) given 26> Z3>1(top)ands > S >$ > 1 (bottom). Cyclic.
by ﬁ 54 f1(9)f2(g)*. The orthonormality of the matrix 9roups of orden have representations indexed by the in-

elements can then be expressed as follows: for any pai}%}ers :jn.odwi gnd ia}stsu[nl?hm n) the rer,)[ri.s entation cor- d
matrix representations, € G, responding tg restricts to the representation correspond-

ing to j modm. The lower diagram uses the well-known
0 ifpso correspo_qdence between irreducible representatioﬁs of

(2.1) {pij,0n) = { L5 5 i ’ and partitions ofn. In this case restrictions fror§, to

g, 0x0y ifp=0 S._1 are determined by those partitions obtained via the

decrement of a part of the original partition.
This is one form ofSchur’s lemmd24]. We can use this

orthonormality to invert the Fourier transform, giving th@ Making divide-and-conquer feasible: Bratteli

Fourier inversion formula diagrams, Gel'fand-Tsetlin bases, and adapted
diameters
dp A1 The classic Cooley-Tukey Fast Fourier Transform relies
f(s) = Z @ r (p(s)f(p) ) ‘ on the fact that the cyclic groupx can be decomposed
peG

into a tower of subgroups:

A reducible matrix representatign: G — U (V) can Lk > Lik—1 > -+ > TLa > Lo > 71 = {1}

always be decomposed into a direct product of irreducible . .
representations. Specifically, there is a basig ifwhich | '€ Cooley-Tukey algorithm works recursively, by calcu-

o is block diagonal, where thi¢h block of p is precisely Iating'the FFT for each subgroup in the tower, and then
o; for some irreducible matrix representation In this combining the results from that subgroup’s two cosets to
case we writep = @; 0i. The number of times a giveniorm the FET at the next level up.

o; € G appears in this decomposition is thaultiplicity Almost all efficient classical algorithms for the
of oi in p; denoting this multiplicityw;, we will write Fourier transform work in this way. However, in the non-

p=aYag;...a" a. Abelian case, making Fhis dividg-and—conquer approach
concrete is far from trivial. Even if the group has a natu-
ral subgroup tower, we need to choose a set of bases for
the representations which allows us to embed the cosets
of each subgroup in the next one up in an efficient way.
Furthermore, we need to choose a set of generators into
which we can factor group elements efficiently, and our
Remark. The familiarDiscrete Fourier TransforniDFT) choice of bases should make the matrix representations
corresponds to the case= Z,. In this case the repre-for these generators sparse and highly structured, so that
sentations are all one-dimensional, and the Fourier tratteey can be multiplied together efficiently. (Finally, in the
form is ann x n Vandermonde matrix whose entries arguantum setting, we will have to write the resulting trans-
nth roots of unity. form as a product of elementary unitary operations.)

A representatiop of a groupG is also automatically
a representation of any subgrotth We refer to this
restricted representation orH as p|,. Note that in
general, representations that are irreducible @enay
be reducible when restricted kb.
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Luckily, there are principled ways to choose thed® a tower of subgroups of length for G. The corre-
bases and these generating sets. These techniques afmmdingBratteli diagram denoted®, is a leveled di-
us to construct an efficient classical Fourier transforracted multigraph whose nodes at levet 0,...,m are
from the following ingredients: in one-to-one correspondence with the (inequivalent) ir-
) ) . reducible representations &. For convenience, we re-
(i.) a tower (or “chain”) of subgroups, by which thge 1o vertices in the diagram by the representation with
Fourier transform oG can be built recursively as anyhich they are associated. The number of edges from an
accumulation of Fourier transforms on increasinglyyequcible representatiam of G; to p of Gj,1 is equal to
larger subgroups; the multiplicity of o in the restriction ofp to G;. Since

(i) a natural indexing scheme for the representatio%hsere is a unique irreducible representation of the trivial

. . S . “group, a Bratteli diagram for a given tower is in fact a
given by paths in th8ratteli diagramcorresponding o .
S . rooted tree. Bratteli diagrams for the cyclic grazipand
to that subgroup tower, which in turn provides . S
convenient basis for each representation; and finally" symmetric groufy are shown in Figure 1.
P ' Y We now describe how paths in the Bratteli diagram

(iii.) a factorization of group elements in terms of a bas|gdex the rows and columns of each representation, and
set of generators, which, when judiciously chosemus provide a natural set of bases. Each edge, from a node
provide a factorization of the Fourier transform as@: Gi — U (Vo) of Gi to anodep: Gi;1 — U (V) of Gi1,

product of structured (direct sums of tensor producté§Presents an embedding @ into V. Thus the edges
and sparse matrices. into p describe a decomposition ¥ into a direct sum

of orthogonal subspacéé;, each of which are invariant
The complexity of the resulting algorithm can then bender the (restricted) action &;; and conversely, the
derived in terms of the basic representation-theoretic agajes out fromo correspond to embeddings 9§ into
combinatorial data of the subgroup tower, the Brattalithogonal subspaceg,. Thus these edges describe
diagram, and the generating set. We describe the recipébw the subspaces acted on by the representations of
which these ingredients are made into efficient classi@)l. ; are decomposed into smaller subspaces acted on by

transforms in the next two sections. representations db;, and conversely how the subspaces
of Gj are embedded in the subspace&qf.
3.1 Bratteli diagrams and Gel'fand-Tsetlin bases Since the only representation of the trivial grolig

Much of Abelian Fourier analysis is simplified by the fads one-dimensional, composing these edges into paths
that in this case the the set of charact@rs {X:G—C}, fromtheroottoagiven nodec Gi gives a decomposition
also called thelual, forms a group isomorphic to the orig-of V, into a direct sum of orthogonal one-dimensional
inal groupG. Furthermore, in this isomorphism lies a nasubspaces; but this is tantamount to providing a basis for
ural correspondence which provides an indexing of the ;. Moreover, since paths from the root poconsist of
reducible representations, and thus the matrix elementgaths from the root to variouscomposed with paths from
the transform. However, in the general case there is @ado p, whereo € Gj for someG; < G;, this basis has the
immediate indexing scheme for the d@aland the land- following property: for anyG; < Gj, there is a partition
scape is further complicated by the absence of a canoniiadhe basis vectors into subsets, each of which spans an
basis for the (now multidimensional) representations. linreducibleG;-invariant subspace. Therefore, in this basis
deed, where efficient Fourier analysis is concerned, notthié matrix representatiop is block diagonal according
bases are created alike! to this partition when restricted 6; and, moreover, the

A fairly general methodology for the constructiomlocks corresponding to son@ewhich appears ip with
of group FFTs, the "separation of variables” approachultiplicity greater than 1 are actually equal. Such bases
[17, 18] relies on the use dbel'fand-Tsetlinor adapted are said to b&;-adaptedor Gel'fand-Tsetlin
bases. These bases allow us to carry out the recursive Note that the number of paths to a noplés equal
divide-and-conquer approach described above, builditegd, (so, for instance, the Bratteli diagram of an Abelian
the transform efficiently at each level of the subgrougroup is a directed tree). Furthermore, each ordered pair
tower. To construct these bases, we need a natwhpaths with common endpoiptindexes an irreducible
indexing scheme for the representations, and for eachntdtrix element op, since one path indexes a row and the
their matrix elements, Happily, such an indexing scherother indexes a column.
is given by theBratteli diagramformalism, which we now Following the divide and conquer approach, the
present. Given a finite group, let Fourier transform orG = Gy, can be written a sum of

Fourier transforms o/s,_1, each of which is translated
G=Gn>Gmi1>>GCG1>Gy={1}



from a different coset. Specifically, Tt C Gis atransver- can condition on the; to find out which subspace qf

sal, i.e., a set of representatives for the left coseiGpf1  we are in, we can writp(y) as a series of po1) ele-

in G, we definefy : Gm-1 — C by fy(x) = f(ax). Then mentary quantum operations wheéfle= max m in (3.3).
Therefore, the total number of elementary quantum oper-

fp) = G; p(a) (;Z P f(ax) ators we need to implemepta) is D x poly(M).
XEA mt Moreover, ify is itself in a subgrouH > K, and
(3.2) = er(or)- fa(pPlg,, ,)- p is adapted to botii andK, thenp(y) also possesses
ac

the block structure corresponding ful,,. This places
These matricep(a) are called the “twiddle factors”. an upper bound oM, namely the maximum multiplicity
Note that the number of terms in this sum |i§| = with which representations df appear in restrictions
[Gm : Gm-1] = |Gm|/|Gm-1|, the index of Gy_; in Gy, of representations ofi. Thus we can minimizé/ by
As we will see below, the recursion of (3.2) will bechoosing generatorswhich (1) are inside subgroups as
greatly simplified by the fact that in the adapted basis, tlisv on the tower as possible, and (2) centralize subgroups
restricted representatior]s|Gj become block diagonal,as high on the tower as possible.
where the blocks are simply the matriaes For instance, for the symmetric gro®p we take the
tower to be
3.2 Strong generating sets and adapted diameters S$>Sa>--> {1},
Adapted representations are only part of the story for %

construction of efficient Fourier transforms. In generaé P . P )
X : . be the set of pairwise adjacent transpositiong + 1);
the twiddle factorsp(a) in Equation (3.2) could be aNach of these is contained 8.1 and centralizes;_1.

arbitrary matrices of exponential size, so an algorltht’[rhe maximum multiplicity with which a representation of

which simply performs the sum in (3.2) could be costl)é__l appears in a representationSf ; is 2, correspond-

Luckily, under fairly milq assumptions, these twiddl?ng to the two orders in which we can remove two cells
factors can be factored into polyld@|) sparse, highly from a Young diagram. In this case the adapted basis de-

str uctured matrices, and can therefore be _|mplemenﬁ?] d by the Bratteli diagram is exactly theung orthogo-
with polylog(|G|) elementary quantum operations. nal basis in which each block op((j, j +1)) differs from

We say thaSis astrong generating sdbr the tower ; : : : :

N . . the identity only by a % 2 minor. Since the adapted diam-

Ef sub%roups{(‘il} i Smg_G.r generﬁtgsj.. .Sa%/hthat Wf eter is easily seen to I&(n?), this means that the twiddle
ave chosen a transverdafor eachi indexing the cosets ¢ o) can be carried out iD(n?) — polylog(|S)

of Gi—1in G;. Now define elementary quantum operations [3]. We will see in the
Di = min{¢ > 0:Uj<,(SN Gi)j oT}, next section that a similar situation obtains for a large

class of groups.
i.e., the length of words ove®N G; we need to generate
every representative if, and define thadapted diameter 4 Efficient quantum Fourier transforms
D = 3;D;. Then clearly any group element can b@v

i : o e describe our algorithm in this section. As in the classi-
factored as a series of coset representatives, which in tyrn

can be factored as a total of at meselements o al case, we perform the Fourier transform inductively on
- &he tower of subgroups, using the structure of the Bratteli
Of course, to perform the QFT efficiently we would,.
. . . diagram to construct the transform at each level from the
like p(y) to have a simple form for eache S. Given a

) . transform at the previous level.
subgroupK < G, recall that thecentralizerof K is the
subgroupZ(K) — {g € G : gk— kgforallk € K}. The Recall that for each level of our tower of subgroups

R . ) G =Gn > Gnp1 > --- > G = {1} we have chosen a
following is implicit in the oft-cited lemma of Schur: transversall, for the left cosets oG ; in G;. At the

LEMMA 3.1. (Schur, [17, Lemma 5.1]) Let K G, let beginning of the computation, we represent each group

y € Z(K), and letp be a K-adapted representation of Gelementg as a productt = o --- a1 Wherea; € T;. This
Suppose thap|, = &™n;---®™ n,. Thenp(y) has the string becomes shorter as we work our way up the tower,

ere§ fixes all elements of1,...,n} greater tham. Let

form and after having performed the Fourier transform @r
the remaining stringt = o --- ;41 indexes the coset of
(3.3) (GLm (C)®14,) &+ & (GLm (C) ® g, ) Gi in G in whichg lies.

At the end of the computation, we have a pair of paths
in the Bratteli diagrams==s; - - - sSyyandt =ty - - - t,, which
Since any unitary operator in GI(C) can be carried out index the rows and columns of the representatn§G.
with poly(m) elementary quantum gates [2], and since wighese paths begin empty and grow as we work our way up

where | is the kx k identity matrix and o= dy,.
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the tower; after having performed the Fourier transforRecall that the matrixfy(p|,) is a direct sum of sub-

for Gj, the pathgp = p1---p; andg= g1 ---q; of lengthi matrices of the fornfq(o), summed over the appearing

index the rows and columns of representatiordf G;. in p. We will constructf( ply) via anembeddingpera-
With a compact encoding, one could starén the tion which reverses the restriction It

same registers asandt, at each step replacing a coset

representativer; with a pair of edges,t;. (This is how (4.7) lo) — > Asp|p)

Coppersmith’s circuit for the QFT oveéfx works; see p:a appears irp|y

below.) However, our algorithm is simpler to describe if . L

we double the number of qubits and stareands;t in where this “scale factor” is

separate registers. Padding aus, andt to lengthmwith q
zeroes, our computational basis consists of unit vectors of Agp= Hi )
the form ' |G| ds

@) [st) =|am-0i10) @[s1--5 0™t 50™) . Note thaty, |Agpl? = 1.
L . Thus the algorithm consists of (i.) embedding thie
Keep in mind that the basi§s,t)}, wheres andt have . appropriate, (ii.) applying the “twiddle factorp(a),

Iengthi and end in the same' represent_ation, is j_USt a P&Ad (iii.) summing over the cosets. However, as discussed
mutation of our adapted Gel'fand-Tsetlin bagie, j, k) } above, doing these things efficiently is no simple matter.

for G." whereq ranges over the representationGiand First, a giverno might appear in a givep with an arbitrary
1< J.’k < 0o !ndex Its rows aqd columr?s..A Thereforechange of basis; the twiddig(a) could be an arbitrary
we will sometimes abuse notation by writirfd@s,t) and unitary matrix of exponential size; and, 6 : H] is
f(o)jlk for the Fourier transform ove; indexed in these exponentially large, summing over the cosets will take
two different ways. , . . exponential time unless parallelized in some way.
Each stage of the algorithm consists of calculating The Bratteli diagram, and the adapted basis it pro-
the Fourier transform ove@;.; from that overGi. BY \ijeq allow us to accomplish (i) and (ii) above with a
induction it suffices to consider the Igst stage, where We .. \m of trouble. For (i), the embedding operation,
go fromH = Gp_y 10 G = Gy. Specifically, choose apqe tharf, (s,t) is nonzero only whes andt end in the
tra_nsversaﬂ' of H in G such that eveng € G can be same representatiam of G, i.e., in the same vertex of
written ah Wh‘?fe“ €T ar_1dh € H. Asin (3.2), for each the diagram. Moreover, recall that the Bratteli diagram
ae T we defm_e a functiorfq onH as fa(h) = f(ah); indexes an adapted basis in whiph, is block-diagonal
this is the restriction of to the cosetiH, translated into | wt the g as its blocks. This means that th@ppear in
H. After hgving performed the Fourier transform bin the p in ar% extremely simple way: namely, whesandt
our state will be are extended by appending the same eglgeboth. The
o) ® f, (s)[s.t) only change of basis required is tg literally pick the matrix
q; st of lehgthm—1 elements ob up and place them in the appropriate place
, . in p, and we discuss below how to do this unitarily.
- 0‘; @ (o j%eﬂ fal0)ile, 1o Similarly, when coupled with a strong generating set
o of small adapted diameter as discussed in Section 3.2,
Our goal is to transform this state into the Fourier basiséfe adapted basis allows us to carry (ii) out efficiently

G, namely by writing p(a) as a product of a small nhumber pfy),
R each of which has the block-diagonal structure given by
0) ® Z f(st)lst) Lemma 3.1.
st of lengthm For (i), summing over the cosets, for now we simply
(4.5) = [0) ® z fA(p)j,k|p7 ik . take the time to sum over all the cosets serially, paying a
(P} k)G cost of [G; : Gj_1] per level as reflected in Theorem 1.1.

) ] This makes sense for subgroup towers where the index
WhereJO> occupies the register that held the coset repisreach subgroup in the one above it is polynomial, such
sentativen before. _ . as the tower forS, above, and we focus on that case
~ As described in Equation (3.2) abové, can be i, section 4.1. However, in Section 4.2 we will see
written as a sum over contributions frofs values on inat even when the index of some level of the tower
each cosetiH, giving is exponentially large, in some cases we can use the
- P llelism of quantum mechanics to sum over all the
4.6 f(p) = a)- f . parafielis 1anics v
(4.6) P) a; p(a) - fa(ply) cosets simultaneously, and still achieve an efficient QFT.



We adopt the following notation. Given a pathin in at most[G : H] manyp. We then carry out a series
the Bratteli diagram of lengttm— 1 or m, denote the of [G: H] conditional rotations, each of which rotates the
representation in which it ends loys| or p[s] respectively, appropriate amplitude frornf0) |s,t) to |0) |[sete). Thus
and ifs=s;---sy_1, denotes; ---sy_1e asse We will U, and thereford) ~, can be carried out i®([G : H])
index the edges of each vertgk ..., k} wherekis its out- quantum operations.
degree. It will be convenient to carry out this embedding To apply the twiddle factor and sum over the cosets as
only if the register containing the coset representativeitis(4.6), we use a technique of Beals [3] and carry out the
zero, and leave other basis vector§TnJ {0}) ® H fixed. following for-loop. For eactu € T, we do the following

Then (4.7) becomes three things: left multiplyf (p) by p(a)~%; add fy(p) to
f(p); and left multiply f(p) by p(a). This loop clearly
4.8) U: { 0)[8,t) = |0) TeAois pisq [SETE) producesy o1 p(a) - f(p), so we just need to show that
o) |s,t) — [a)[s;t) foralla e T each of these three steps can be carried out efficiently.

Recall thatf(p) is given in the|s,t) basis, where
s andt index the row and column op respectively.
"To left multiply f(p) by p(a), we applyp(a) to thes
register and leave theregister unchanged. Sine€g is

where the sum is over all outgoing edgssf a[g) = oft].
Note that we have not definddl on the entire space

in particular, since we are moving probability frdfhto

G, basis vectors0) [sete) € (T U{0}) ® G cannot stay

- . . . olynomially uniform, a classical algorithm can factor
fixed. As we will see below, it does not matter premseP y y 9

how U behaves on the rest of the state space, as Iongzs the product oD generatorsy; € S, and provide
. . A . . : a factorization of eaclp(y;) as the product of polyv)
as its behavior o is as described in (4.8). This can . :
be accomplished simply by putting theth registers o oY elementary quantum operations, in poly|ay)
comp Ply by putting 9 time. This implementp(a) andp(a)~tin D x poly(M) +
andt in the superpositiory Aq(s p(sq |€) @ |€), and for a olylog(|G|) operations
large class of extensions we can prepare this superposiﬁoryﬂ? p dof ' £(oV is sliahtl
efficiently ~ The step “a 0(.(p) to f(p)” is slightly more mys-
i . erious, and indeed it does not even sound unitary at first.
We shall focus on group towers for which the Bratte]l ) _
owever, as Beals points out, at each point in the loop

diagram data can be effectively computed: we are addingf (p), which is the Fourier transform of a

- . _1 Fal
DEFINITION 2. For a group G and a tower of subgroupgunction with support only oti, 10 3 gq p(a™"B) fa(p),
Gi, letB be the corresponding Bratteli diagram, lgtte which is the Fourier transform of a function with support

a set of coset representatives at each level, and let S outside H Thus these two states are orthogonal, and

a strong set of generators for G. Then we say that G34ding two orthogonal vectors can be done unitarily by

polynomially uniform(with respect tq{G;}, %, {T;}, and rotating one ve_ctor into the other while fixing _the sub-

S) if the following functions are computable by a classic@Pace perpendicular to both. ét be the operation that

algorithm in polylog(|G|) time: (i.) Given two paths ¢ €Xchangeso) [s,t) with |0) [s,t) and leaves) |s,t) fixed

in B, whetherp[s = p[t]; (ii.) Given a path s inB, the for all B < a,0; then Beals showed that this step can be
’ ’ . ’ . it . .

dimension and the out-degreeg§; (iii.) Given a coset WrittenU~"VqU whereU is the embedding operator de-

representatives; € T, a factorization ofa as a word of fined in (4.8). We showed earlier thidt can be carried

polylog(|G|) length in(SNG))*. outinO([G: H}).quantum ope.rations,. andis a simply a
Boolean operation on the register. Finally, the for-loop

4.1 Extensions of small indexWe begin by focusing "'uns|T| = [G: H] times, and we are done. N

on groups and towers which are fairly refined, i.e., Wiroof of Theorem 1.1This follows by induction as the

polynomial indexes at each level. depth of the Bratteli diagram is at most lGj. O

LEMMA 4.1. If G is polynomially uniform with respect For many families of groups, the maximum index

to a tower of subgroups where € Gy and H= Gm-1 | = max|[G; : G,_4], the adapted diamet&, and the max-

and a strong generating set S with adapted diameterifjum multiplicity M are all polylod|G|). In this case,
and maximum multiplicity M, then the Fourier transfornTheorem 1.1 gives circuits for the QFT of polyldG|)

of G can obtained from the stat@.4) using poly([G : size. This includes the following three families of groups:
H] x D x M x log|G|) elementary quantum operations. _
The symmetric groupsS,. As stated above, we take the

Proof. First, to carry out the embedding transformatiotower S, > S,_1 > --- > {1}, so thel = n= o(log|S,|).

U, we use the classical algorithm to compute the list @he generators are the adjacent transpositiond) so
edgese andd,s¢ conditional ons, and thus compute theO(n?) andM = 2. The adapted basis is precisely the
Ag o (say, ton digits in poly(n) time). Note that appears Young orthogonal basis.
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Wreath products G=H1 S, for H of sizepoly(n). These 4.2 Extensions of large index; Coppersmith-type cir-
groups arise naturally as automorphism groups of graphsts The reader familiar with Coppersmith’s circuit [7]
obtained by composition [12]. As in [23] the tower is  for the QFT overG = Zan, whereH = Zn-1, will recall
that the Hadamard gate embeds a characteit in two

HiS > Hx(H1S-1) >H1S-1>->{1} . characterp € G, applies part of the twiddle factor, and
sums over both cosets bf, all in one operation. This is
"M contrast to the technique of the previous section, which
sums over the cosets serially—and which takes exponen-
tial time if, for instance,G is an extension oH by Zp
wherep is exponentially large.

For a certain type of extension, we can construct

The Clifford groups. The Clifford groupsCL, are circuits analogous to Coppersmith’s, which use quantum

Then| = max(n,|H|), the generators are the adjace
transpositions and an arbitrary set of |big generators
for each factor oH, D = O(n?log|H|), andM = O([H|).
Then note thatH| = polylog(|G|). See [17] for details
and [15] for discussion on wreath products.

generated by, ..., X, wherex? = 1 andxx; = —xx; for parallelism to embed in the p, sum over all the cosets
alli # j [26]. We take the tower simultaneously, and apply the twiddle factor as well.
Recall thatG is asplit extensioror semidirect producof
CLpn > CLp_1 > --- > {1} H by T, written T x H, if H <G and there is a transverse

i subgroupl < G so thatT = G/H.
for which| = 2, and the generatofs, X1X2, . . ., Xn—1%n }
ThenD = O(n), and since eackix1 centralizesCLi_1  DerINITION 3. Suppose G is a split extension of H by T,
we haveM = 4. let S be a set of at mosg,|T| generators for T, and

In addition to giving polylog|G|)-size circuits for SUPPOSE that G is polynomially uniform with respect to a

these groups, our techniques give the first subexponend@Wer of subgroups where & Gy and H= Gm_1 and a
size circuits for the following classical groups: Bratteli diagram®. Then G is ahomothetic extension

) of H by T if(i.) Giveno € H andy € S, defines¥(h) =
The linear groups GLn(Q), SLn(g), PGLn(qg), and T n. A v .
PSLn(q); the finite groups of Lie type; the Chevalley a(y""hy); then for eveny € H, eithero? = o, or the orbit

and Weyl groups. The case of Gk(q) is emblematic of of q distinct representations"', for 0 < j < g where g
all these families. We have a natural tower: divides the order of, appears among the representations
' ' of H given byB; (ii.) For eachy € S, there is a classical

GLn(q) > Pn(q) > GLn_1(q) x GL1(q) > GLn_1(q) > --- algorithm which runs impolylog(|G|) time which, given a
path s in®8 indexing a row ob([s| and an integer j, returns
Here R(q) is the so-callednaximal parabolic subgroyp the size g ob’s orbit under conjugation by, and returns

consisting of elements of the form apath ¢ that indexes the same rowofs"'] = o'.
( A |V ) THEOREM4.1. If G is a homothetic extension of H by an
0---0|c Abelian group, then the Fourier transform of G can be ob-

tained from the staté4.4) usingpolylog(|G|) elementary
whereA € GLy_1(q),V € F§ %, andc € Fy, sol =g . quantum operations .

Our generators are the block-diagonal matrices with an

arbitrary element of Gi(q) in thei,i — 1 block and all Proof. It is easy to show that a homothetic extension of

other diagonal elements equal to 1. Th2r- O(n?) and H by A x B consists of a homothetic extension lgfby

M = g°M. Analogous factorizations arise for the finite\, followed by a homothetic extension 1 Therefore

groups of Lie type as well as the finite unitary groups [18}. suffices to prove the lemma for homothetic extensions
Theorem 1.1 then implies a quantum circuit of sizgy cyclic groups of prime power order, so without loss of

q®™ for the QFT over these groups. Sin& = O(q”z) generality we lefl be generated byof orderp?.

we can write this afG|%/" which is exfO(y/log|G])) We recall some representation theory from [6, 22].
if qis fixed. On the other hand, he best-known classidalvenc € H, thestabilizerof cisK = {xe T : 0* = g},
FFT for these groups [17] has complexit$|g®™ = and for a homothetic extension we can replate~ o

|G|1+O(1/M  Note for the group families above for whichwith 6* = 6. ThenK is the subgroup off of order
we obtain circuits of size polyld¢G|), there are classical p’ generated by? whereq = p? ¢, anda’s orbit under
algorithms of complexityG| polylog(|GJ). In both cases, conjugation byy is of sizeq.

it seems that the natural quantum speedup is a factor of The representationp in which o appears can be
|G|, modulo polylogarithmic terms; of course, we wouldbtained in two steps. First, we extendto K x H by
like to know if this is the best possible. multiplying o by one of thep’ characters oK. This yields



T € K x H wheretp(Y9h) = xp(j)o(h) and xp(y)) = Closure under homothetic extensions and metacyclic
wzj_ Sincedy, = dy, we haveAsy, = /1/p’ and o groups. Th.eorem 4.1 shows 'that the §et of groups for
embeds in a uniform superposition over the so we which circuits of pplylog|G|) size exist is closed under
append a uniform superposition of edges @< p where homothetic extensions by Abelian groups. It also general-

b= e— 1. Combining this with the twiddle factog, gives izes the efficient quantum Fourier transform of Hgyer [13]
the unitary transformation for the metacyclicgroupsZq x Zp, since these are homo-

thetic extensions of, by Zq. Note that the metacyclic
. groups include the dihedral groups (where: 2) and the
¢ Disete) .  affine groups (wherg= p— 1) as special cases.

1 2
NG
B The quaternionic groups. The generalized quaternion

Here we write the power of in two registers 0< j < p’ group is an extension dfl = Z, by Z, wherey? is the
and 0< k < g. Then this operation Fourier transformglement of order 2 itd. ThenC(y) = \/a(y?) = 1 ori.
the first register oveZ  and transfers the result to thd>schel, Rtteler and Beth [21] gave an efficient quantum
mth register ofs andt. This transform can be carried oufourier transform for these groups in the case where
with O(log pfloglogp’) = O(log|G|loglog|G|) elemen- is & power of 2. Of course, these groups are extensions
tary operations [10, 16] Note thaf takes at most |0g3‘ of Abelian groups with bounded index, so Lemma 4.1
different values, and can be obtained from the classiéieady provides an efficient QFT for them.
algorithm which computes.

If K=T, then thep € G containingo are simply the
extensionsty and we're done. IK < T, i.e,, ifq> 1,

@9) 1) Ist) = [¥) e

Metabelian groups. Even if an extension is neither ho-
mothetic nor of polynomial index, we can still construct

an efficient QFT if we can apply arbitrary powers of
we carry out a second step as follows. Eaghappears C(y) in polynomial time—for instance, {E(y) is of poly-

in & single induced representatippwhose restriction 0y, ia| size, which is true whenever all the representa-

Kx His the direct product of all the rfpr_esentatlons’m tions of H are of polynomial size. This includes the
b : i _ q- i : . : i )

orbit, timesx: that is, Pply = Xb Bizo oY : The.tW|ddIe metabeliargroups, i.e., split extensions of Abelian groups

factor pu(Y¥) is then a permutation matrix which cycleg,y apelian groups, since all the representationsicire

thesep blocksk times, with an additional phase changgne-dimensional. We discuss this further in the full paper.
. This gives the unitary transformation _ .
The general case. In general, Abelian extensions can

be slightly more complicated; consider extensions by
Zp. It oY is isomorphic too, rather than equal to ity
induces an additional twiddle fact@(y) which changes
Sinces’ can be calculated by the classical algorithm i&'s basis [22]. This occurs, for instance, yf is an
polylog(|G|) time, and since it is easy to implemang'z‘ element ofH other than the identity, in which case the
with phase shiftao2? for 0 <y < log, k conditioned on cyclic group generated byis not transverse tbl and the
the binary digit sequence &k, we can perform this op- extension is not split; the@(y) is a pth root of a(y?).

eration in polylod|G|) quantum steps. Composing (4.9)

and (4.10) transforms the state (4.4) to the Fourier trafs- Conclusion and open problems

form (4.5) overG. U  We have shown that a general technique for constructing

efficient classical fast Fourier transforms on groups—

separation of variables using an adapted basis—can be
Relation to Coppersmith’s circuit. Lety be a generator carried over to the quantum context, producing circuits
of G=Zx. ThenG is an extension oH = Z,, 1 with of polylog(|G|) size for a wide variety of groups, and of
transversal1,y}. Sincey? # 1, y induces an additional subexponential size for classical linear groups mod
phase shifC(y) = /Xp(Y2) = wgn. (Similarly, the addi- While separation of variables is one of the most
tional phase shift in (4.10) is due to the fact tiat is not general techniques for classical FFTs, it is not the only
a split extension ofZ.) In Coppersmith’s circuitC(y) one. It is possible to use the Bratteli diagram in a
appears as a set of phase shift gates conditional on ttiare precise fashion, looking for redundancy and sparsity
low-order bit of j. Finally, the Hadamard gate in Copperen the level of individual matrix elements. This finer
smith’s circuit is precisely the operation (4.9) in the casmalysis is responsible for the fastest known classical
p=2,¢/=1andq=1, and where we use the same qubiRFTs for the groups Sl(q), as well asS, and its wreath
register fore (the high-order bit of the frequency) as for products [19]. It would be interesting to explore adapting
(the low-order bit of the time). these technigues to the quantum setting.

(4.10) ‘\/(> |sete) — wgi_l)k|0> ’syke,te> .
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