The Efficiency of Algorithms

Some mathematical problems can be solved only by methods too slow

for even the fastest computers. More efficient methods have not been

found, but neither has it been proved that there are no better methods

by Harry R. Lewis and Christos H. Papadimitriou

uppose you were asked to plan an
itinerary for a traveling salesman

who must visit a number of cities.
You are given a map on which the dis-
tances between the cities are marked
and you are asked to find the shortest
route that passes through all the cities
and returns to the starting point. An ap-
proach to this problem that is certain to
give the correct answer is to trace all the
possible routes, measure their length
and pick the shortest one. If the tour
included more than a few cities, how-
ever, hundreds or thousands of routes
would have to be checked. If there were
100 cities, then even the fastest comput-
ers would require weeks of calculation
to find the shortest path.

In the search for a quicker solution
you might try some less rigorous meth-
ods. One idea that seems reasonable is
always to visit nearby cities before going
on to those farther away. You would
soon discover, however, that this proce-
dure does not invariably yield the cor-
rect answer. Other shortcuts also fail. In
fact, the best methods known for solving
the problem are not much better than
the obvious but laborious procedure of
checking all the possible itineraries.
Mathematicians now suspect that this
problem and many others like it may
forever remain beyond our ability to
solve in any efficient way. That specula-
tion itself, however, is unconfirmed; al-
though no faster methods of solution
have been found, neither has it been
proved that faster methods do not exist.

In the problem of the traveling sales-
man’s tour it is not the solution for a
particular set of cities that is of the
greatest importance but a general meth-
od for finding the solution for any cities.
Such a method is called an algorithm; it
is a precisely stated procedure or set of
instructions that can be applied in the
same way to all instances of a problem.
If the problem is to be solved with the
aid of a computer, an algorithm is in-
dispensable, because oniy those proce-
dures that can be stated in the explicit
and unambiguous form of an algorithm

can be presented to a computer. Instruc-
tions that are vague or that rely on intui-
tion are unacceptable.

An example of an algorithm is the
procedure taught in the schools for the
subtraction of whole numbers. If each
of the steps in this procedure is applied
correctly one at a time, the algorithm
will always yield the correct result.
What is more, once the algorithm has
been learned or stored in the memory of
a computer or embodied in the circuitry
of an electronic calculator, it can be ap-
plied to an infinite set of subtraction
problems. With this one algorithm the
difference between any two whole num-
bers can be determined.

In principle any problem for which an
algorithm can be devised can be solved
mechanically. It may therefore seem
surprising that there are problems for
which algorithms exist but for which we
so far have no practical general solu-
tion. The algorithms for solving these
problems always give a correct answer,
but they often require an inordinate
amount of time. The problem of the trav-
eling salesman’s tour is among these
intractable tasks.

The efficiency of computer algo-
rithms is a topic of obvious practical
importance. It is also of interest in more
formal areas of mathematics. There are
some problems in mathematics and log-
ic for which no algorithm can ever be
written, and there are many others for
which efficient, fast algorithms are al-
ready known. Between these two groups
is a third class of problems that can al-
ways be solved in principle but for
which there are only inefficient (and
therefore largely unusable) algorithms.
For some of these difficult problems
mathematicians have been able to dem-
onstrate that efficient algorithms can
never be designed. For many of the most
important problems, however, there is
only the suspicion that good algorithms
are impossible.

A given problem can have more than
oite algorithm for its solution. For ex-
ample, children in Evrope learn a proce-
dure for subtraction slightly different

from the one taught in the U.S. Both of
the subtraction algorithms, however,
give the same result in the same amount
of time. That is not invariably the case
with different algorithms for solving ihe
same problem. One celebrated probiem
that can be solved by either a “fast” al-
gorithm or a “slow” one is the probism
of the Kdnigsberg bridges.

In the 18th-century German city of
Ko6nigsberg (which is now the Russian
city of Kaliningrad) a park was built on
the banks of the river Pregel and on :wo
islands in the river. Within the park sav-
en bridges connected the islands and the
riverbanks. A popular puzzle of the time
asked if it was possible to walk through
the park by a route that crossed each of
the bridges once and only once.

For the solution of the problem the
size and shape of the islands and the
length of the bridges are immaterial; the
only essential information is the pattern
of interconnections. This information
can be presented compactly in the math-
ematical structure known as a graph,
which is merely a set of points with fines
drawn to join them. In the case of the
Konigsberg park each of the riverbanks
and each of the islands is condensed to
a single point and each of the bridges
is represented by a line between two
points. Thus the graph consists of iour
points and seven lines. If the lines ar¢
labeled, any path through the park can
be specified by a simple listing of 1abels.

The obvious approach to the probiem
is to list all the paths that cross ail the
bridges and to eliminate from consider-
ation those that cross any bridge mor¢
than once. This is the technique of ex-
haustive search, similar to the one em-
ployed in the problem of the trzvel
ing salesman. When the mathematician
Leonhard Euler was presented wit: the
problem of the Kénigsberg bridges. be
recognized the limitations of the :ech
nique and found another method. If
recognition of his contribution a 78
that traverses each line of a graph ezact
ly once is now called an Eulerian wath

Euler wrote: “The particular prooief®
of the seven bridges of Konigsoert
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could be solved by carefully tabulating
all possible paths, thereby ascertaining
by inspection which of them, if any, met
the requirement. This method of solu-
tion, however, is too tedious and too
difficult because of the large number
of possible combinations, and in other
problems where many more bridges are
involved it could not be used at all.”
Euler’s alternative method is much
simpler. He showed that a tour of the

kind sought must exist if the graph
meets two conditions. First, it must be
possible to go from any point in the
graph to any other point by following
the lines of the graph; in other words,
the graph may not be disconnected. Sec-
ond, every point of the graph, with two
possible exceptions, must be at the junc-
tion of an even number of lines.

It is not hard to understand why a
graph cannot have an Eulerian path un-

less it meets these conditions. All re-
gions of the graph must be connected to
one another if there is to be any path
that traverses all the lines. Each point
must have an even number of lines be-
cause half of them are required to reach
the point and the other half to leave it.
Two points with an odd number of lines
can be allowed if they are chosen as
the starting and finishing points of the
path. Demonstrating that any graph
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TRAVELING SALESMAN’S TOUR is a commonplace problem
that reveals a deep deficiency in the methods available to mathemat-
ics. The problem can be solved, but only by means so arduous and
time-consuming that the solution is generally impractical. The prob-
lem is, given a map showing the airline routes connecting several cit-
ies (@), to find the itinerary for the shortest round-trip tour of the cit-
ies. One approach to the problem that works consistently is to plot all
the possible tours, measure their iength and choose the shortest one,
Even with only seven cities, however, there are more than 350 tours,
and the number increases rapidly (as the factorial of the number of
cities). Several shortcut methods might be attempted. For the sales-
man always to fly to the city farthest from the one where he is clearly

gives a wrong answer; the resulting tour (5) is among the longest tours
possible, Even an arbitrary route, such as one visiting the cities in al-
phabetical order (c), gives a better resuit, Dividing the country into
segments and visiting first the East, then the Middle West and then
the West gives a still shorter tour (d). Finally, the salesman might al-
ways fly to the nearest city, a procedure that leads to two reasonable
itineraries, the difference between them depending on whether he be-
gins at Minneapolis (¢) or Kansas City (f). Even those routes are not
the shortest possible. (The optimum tour is shown in the illustration
on page 107.) The kind of solution sought is an algorithm, or set of
instructions, that will find the shortest tour for any group of cities.
No known algorithm is significantly better than exhaustive search.
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START WITH THE RIGHTMOST COLUMN.

SUBTRACT THE LOWER DIGIT FROM
THE UPPER DIGIT, USING THE TABLE,
AND WRITE THE RESULT AT THE BOTTOM.

IS THE UPPER DIGIT
GREATER THAN OR EQUAL TO
THE LOWER DIGIT?

YES

NO

MARK THE COLUMN YOU ARE
WORKING ON WITH A STAR.

YES

NO

4
MOVE ONE COLUMN TO THE LEFT.

v

SUBTRACT 1 FROM THE UPPER DIGIT,
USING THE TABLE, AND SUBSTITUTE
THIS NEW VALUE FOR THE UPPER DIGIT.

IS THE NEW
VALUE OF THE UPPER DIGIT
EQUAL TO 97

NO

MOVE TO THE RIGHT UNTIL
YOU FIND A STARRED COLUMN.

ARE THERE
ANY DIGITS TO
THE LEFT?

YES

MOVE ONE COLUMN TO THE LEFT.
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that meets these conditions actually has
an Eulerian path requires a somewhat
more complicated argument, which we
shall not present here, but Euler was
able to give a rigorous proof.

It is an easy matter to express Euler's
solution to this problem in an algorithm
that could be executed by a computer.
The first requirement, connectivity, can
be established by marking some point
of the graph, then similarly marking
all points connected to it by lines, then
all the points connected to the newly
marked points, and so on. The graph is
connected if at the end all points have
been marked. The second requirement
is just as easily tested: the machine is
instructed to examine each point of the
graph and count the number of lines that
terminate at that point. If no more than
two of the points have an odd number of
lines, the graph has an Eulerian path.
The park at Konigsberg met the first
condition but not the second, and so
there was no Eulerian tour of the seven
bridges.

Euler’s method is unquestionably the
more economical approach to the
problem of the K&nigsberg bridges: it
requires that each point and line of the
graph be listed just once, whereas the
exhaustive search is not completed until
every path that crosses all the bridges
has been listed. The number of such
paths is much larger than the number of
points and lines in the graph. In that
sense Euler's method is the better algo-
rithm, but how much better? How can
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ALGORITHM for the subtraction of whcle
numbers defines an explicit procedure t:at
can be followed without any need for intuition
and even without an understanding of the sig-
nificance each step has to the operation as a
whole. The algorithm, which is assumed te ‘n-
corporate the table of differences shown here
can be applied to an infinite number of s:=b-
traction problems, Other algorithms are equzi-
ly effective. A method of subtraction tau;ht
in European schools, for example, differs in
the treatment of borrowing where it speci’ies
that 1 should be added to the lower digit in-
stead of being subtracted from the upper ¢



the difference be measured, and how can
one tell if the difference is significant?
For a graph with only four points and
seven lines both techniques are fast
enough to be considered practical. Sup-
pose, however, that more islands and
bridges were added to the park, or in
other words that more points and lines
were added to the graph. If the problem
is being solved by Euler’s method, each
new point merely adds one item to the
list of points that must be checked. If the
paths are to be examined by exhaustive
search, on the other hand, then with
sach new point and line the size of the
iist is multiplied by some factor. A mod-
erate increase in the size of the graph
results in an explosive increase in the
aumber of paths. Ultimately the list of
paths must become prohibitively long.
In this comparison of the two solu-
sions to Euler’s problem there is the ba-
sis for a completely general method of
zvaluating the speed or practicality or
sfficiency of any algorithm. We imagine
that the algorithm is supplied with larg-
=r and larger inputs, and we note the rate
at which the execution time of the algo-
rithm increases. In this way it is possible

;0 make unequivocal judgments of algo- .

rithms. Exhaustive search not only is a
slower method; in general it is too slow
:0 be of any value. Euler's method re-
mains practical for problems of essen-
sially unlimited size.

As the size of the graphs being exam-
ined increases, the lists produced by the
method of exhaustive search grow ex-
ponentially. Each time some fixed num-
ber of points and lines are added to
tne graph the size of the list doubles.
Growth of this kind can be described by
= mathematical function such as 2=,
where n is some measure of the size of
the graph. Many other functions have
similar or even higher rates of growth.
Among them are n7 and n! (which is
read as “n factorial” and signifies n mul-
tiplied by all the integers between 1 and
7). For the purposes of this discussion
ail these functions can be regarded as
having the same property of exponential
growth.

Mathematical functions of anoth-
L¥1 erkind are known as polynomials.
The simplest members of this class are
linear functions, such as 3, which des-
ignate a simple relation of proportional-
ity.»The time needed to solve the prob-
iem of the K6nigsberg bridges by Euler's
method increases as a linear function of
{ae size of the graph. Other polynomials
2re 72, n3 and so on, and the sums of
such functions. What distinguishes poly-
nzomials from exponential functions is
‘nat n never appears in an exponent.
For sufficiently large values of » any
sxponential function will overtake and
zxceed any polynomial function. It was
ine certainty of this result that dismayed
Thomas Malthus when he compared the
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EULER’S PROBLEM asks whether there is a path through a graph that traverses each line
exactly once. In this context a graph is defined as any collection of points with lines connecting
them. The problem was first stated in terms of a walking tour through a park in the 18th-
century German city of Kdnigsberg (fop); the path sought was required to cross each of the
seven bridges in the park exactly once. The park can be represented as a graph in at least two
equivalent ways. One approach to the problem is to list all the paths through the graph that con-
tinue as far as they can without repeating a line. Even for a small graph, however, there are
many such paths; the sampie listing shown includes only those paths that begin with line a. A
more efficient algorithm was discovered by Leonhard Euler. A graph has a path that traverses
each line once, he showed, if every point of the graph {with two possible exceptions) is at the
junction of an even number of lines. Such a path is now called an Eulerian path. Counting the
lines meeting at each point shovws that the graph of the Konigsberg park has no Eulerian path.

exponential rate of population growth
with the polynomial rate of increase in
the food supply. For small values of # a
given polynomial function may well ex-
ceed a given exponential one, but there
is always a value of n beyond which the
exponential function is the greater. The
exact form of the polynomial makes lit-
tle difference, except in changing the
point at which the polynomial function
is overtaken.

It is now generally agreed by comput-
er scientists that algorithms whose exe-
cution time increases exponentially as a
function of the size of the input are not

of practical value. We shall call algo-
rithms of this kind “exponential time”
algorithms, or simply inefficient algo-
rithms. The only algorithms that are con-
sidered fast or efficient enough for gen-
eral application are “polynomial time”
algorithms.

Of course, even among efficient algo-
rithms some are faster than others, but
for the purposes of this discussion it is
important only to distinguish polynomi-
al-time algorithms as a class from expo-
nential-time algorithms. Moreover, this
system of classification has the advan-
tage that it makes the speed of an al-
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RATE OF GROWTH in the execution time of an algorithm as the
size of the problem increases determines the practicality of the algo-
rithm. The rates of growth are described by mathematical functions
that can be classified as either polynomial or exponential. The values
of n in the table at the top and in the graph at the bottom represent
some measure of the size of a problem; the values of the functions
correspond to execution time, For any exponential function and any
polynomial one there is a value of n beyond which the exponential
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function is always the greater. For this reason algorithms whese exe-
cution time increases as an exponential function of the problem size
are considered inefficient and in general are of no practical value.
Algorithms whose execution time increases as a polynomial func-
tion, in comparison, are efficient. In the problem of the Konigsberg
bridges the execution time for Euler’s method iucreases as a poly-
nomial function such as n + 1; the method of exhaustive tabulation re-
quires an amount of time given by an exponential function such as 27,




gorithm a property of the algorithm it-
self and independent of the machine
on which it is executed. For sufficiently
large problems a polynomial-time algo-
rithm executed on even the slowest ma-
chine will find an answer sooner than
an exponential-time algorithm on the
fastest computer.

he mathematical properties of algo-

rithms were studied in the 1930’s by
the British mathematician A. M. Tur-
ing, the inventor of the imaginary com-
puter now called a Turing machine. The
Turing machine was conceived to be an
automaton equipped with an infinite
supply of paper tape marked off in
square regions. The machine was capa-
ble of just four actions: it could move
the tape one square, it could place a
mark in a square, it could erase a mark
already present and at the end of a cal-
culation it could halt. These operations
were to be performed according to a se-
quence of instructions built into the in-
ternal mechanism. Of course, Turing
never built such a machine; it was mere-
ly a conceptual device for automatically
solving problems in mathematics and
logic. Indeed, Turing was interested not
inactually solving problems with the ma-
chine but rather in investigating what
kinds of problems it could solve and
what kinds it could not.

Turing discovered that even a ma-
chine as simple as this one could solve
any problem for which an algorithm
could be devised. The computation
might be laborious and indirect, but
given enough time and paper tape the
machine would eventually find the solu-
tion and halt. Reduced to its essentials
the Turing machine is a language for
stating algorithms, as powerful in princi-
ple as the more sophisticated languages
now employed for communicating with
computers.

In addition to conceiving these ma-
chines Turing demonstrated their limi-
tations. In 1936 he showed that there are
problems that cannot be solved by Tur-
ing machines, and it follows that these
problems cannot be solved by any auto-
matic computer. They are problems for
which algorithms cannot be written,
even in principle. The example first stud-
ied by Turing is the problem of predict-
ing whether a particular Turing machine,
once it is set in motion, will ever finish its
calculation and halt. Through an analy-
sis of this problem he was able to show
that there can be no general procedure
for telling whether mathematical propo-
sitions are true or false. Since then a
variety of other problems with the same
properties have been proposed.

One result of Turing’s work was to
divide all imaginable problems in math-
ematics into two classes. Those prob-
lems for which algorithms can never be
written are in a formal sense permanent-
ly unsolvable. Some instances of these
problems may be solved by rare percep-

HAMILTON’S PROBLEM, formulated by the Irish mathematician William Rowan Hamil-
ton, resembles Euler’s problem superficially but asks whether there is a path through a graph
that touches each point (instead of each line) exactly once, The graph derived from the park at
Konigsberg (top leff) has a Hamiltonian path (color) although it has no Eulerian path, By re-
moving two lines a graph is formed (top right) that has an Eulerian path (beginning at point D
and proceeding, for example, along lines ¢, a, 4, ¢ and d) but not a Hamiltonian path, The
third graph (botfom) has neither property. No efficient algorithm for solving Hamilton’s prob-
lem is known; the available methods are fundamentally no better than exhaustive search.

THREE-COLOR-MAP PROBLEM asks whether three colors can be applied to the regions of
a map so that no two regions sharing a border have the same color. The problem can be solved
for any particular map by examining all the possible colorings, but such a procedure is extreme-
ly tedious; for the map shown there are 316, or about 43 million, possible colorings. No efficient
algorithm for solving the problem is known, but where a three-color solution does exist it can
be found in principle by guessing (a nonalgorithmic method). If there is no solution, guessing is
of no value, The trial solution shown fails on reaching country J, which communicates with all
three colors and therefore cannot be assigned any of them. The failure does not prove, however,
that no three-color solution exists; indeed, a solution can be found fairly quickly by exchanging
the colors of regions K and L and continuing the series of guesses in the rest of the graph.
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ASSIGNMENT OF ROOMMATES in a dormitory is a problem that can be solved efficiently
if two students are to share each room but not if there are to be three in a room. The problem
can be stated in the form of a graph in which each student is represented as a point, and a line
is drawn between two points if those students would be compatible roommates (@). Pairs of
students can be assigned to rooms by a technique called augmentation: an incomplete assign-
ment is made (), then a complete one is found (if it exists) by a sequence of rearrangements (c).
There is no equivalent efficient procedure for finding groups of three compatible students.
Once an acceptable room assignment has been found, however, it can readily be exhibited (d).

PROVABLY UNSOLVABLE PROBLEMS
TURING-MACHINE HALTING PROBLEM

PROVABLY DIFFICULT PROBLEMS

NP-COMPLETE

HAMILTON'S PROBLEM

co-NP

EULER'S PROBLEM

CLASSIFICATION OF PROBLEMS derives from present conjectures about the existence
and nonexistence of efficient algorithms. The “provably unsolvable” problems are those for
which there are no algorithms of any kind; the “provably difficult” ones havé only exponential-
time algorithms. Problems with known polynomial-time algorithms are assigned to the class P
(for polynomial). The status of the remaining problems is less certain: only exponential-time
algorithms are known for them, but it has not been proved that efficient algorithms do not
exist. These problems are assigned to the classes NP and co-NP. The letters NP stand for “non-
deterministic polynomial” and signify that the problems can be solved quickly by guessing.
Co-NP includes the yes-or-no problems whose complementary no-or-yes versions are in NP.
NP-complete is a subset of the class NP made up of problems with a special property: if any
one of them could be solved by an efficient algorithm, then all other problems in the class NP
could also be solved efficiently. The discovery of such an algorithm would constitute a proof
that P and NP are identical, but most mathematicians believe such an algorithm does not exist.
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tion or by luck, but a general method for
their solution will never be found.

All other problems in mathematics
and logic can be solved by algorithms.
As we have seen, however, some algo-
rithms are more useful than others. The
class of solvable problems can therefore
be divided into two subgroups: those for
which there are efficient, polynomial-
time algorithms and those for which
there are only exponential-time algo-
rithms. Euler’s problem is a member of
the class with polynomial-time solu-
tions, since Euler’s method is itself a
polynomial-time algorithm. Problems
that can be proved to have only expo-
nential-time algorithms are also known,
although they are rather obscure.

Although these two groups of prob-
lems are quite distinct, it is not always a
straightforward task to assign a problem
to one group or the other. Indeed, a very
interesting class of problems seems to
fall somewhere between them. For these
problems no efficient algorithms are
known and the best available solutions
require exponentially increasing time,
yet no one has been able to prove that
the problems do not have polynomial-
time solutions.

One such problem was considered in
the 19th century by the Irish mathemati-
cian William Rowan Hamilton. Superfi-
cially Hamilton’s problem is much like
Euler’s. The problem is to decide wheth-
er a given graph has a path that takes in
each point exactly once (whereas Euler
looked for a path that traversed each
line once). Actually the tasks are quite
different, and Euler’s method cannot be
applied to Hamilton’s problem. The
graph derived from the plan of the park
at Konigsberg has a Hamiltonian path,
although, as we have seen, it has no
Eulerian path. On the other hand, remov-
ing two lines results in a graph that has
an Eulerian path but not a Hamiltonian
one. Many other graphs have neither
kind of path.

Hamilton’s problem can be solved
by exhaustive search; indeed, the
procedure is not substantially different
from that employed in listing all the pos-
sible paths that might have the Eulerian
property. For Hamilton’s problem, how-
ever, no efficient algorithm comparable
to Euler's method has been found. The
problem has been pondered by many of
the best mathematicians of the past cen-
tury, but the most efficient methods
available today are fundamentally no
better than exhaustive tabulation. On
the other hand, all attempts to prove
that there is no better method have also
failed, and it must be considered a possi-
bility that an efficient algorithm will be
discovered tomorrow.

Problems that are known to have
polynomial-time solutions, such as Eu-
ler’s problem, are said to be members of
the class P (for polynomial). Hamilton’s
problem is a member of another class,
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PROBLEMS IN THE CLASS NP ask a yes-or-no question that often
can be answered only through a time-consuming, inefficient proce-
Zure, but when the answer is known to be yes, that fact can be demon-
strated by a short proof. For the present there is no efficient way to
jetermine whether a graph has a Hamiitonian path, but if it does
‘aave one, a brief “certificate® can be issued to prove it. The certifi-
cate simply lists the lines of the path in the order they are traversed.
Znother problem in the class NP asks whether a number is compos-
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ite, that is, whether it can be written as the product of two other num-
bers. No efficient way of answering this question is known; indeed,
in one case it took almost 100 years to show that a number is compos-
ite. In 1640 Pierre de Fermat proposed that 4,294,967,297, which is
equal to 232 + 1, is a prime number, and he was not proved wrong until
Euler discovered the factors of the number in 1732. Once a number
is known to be composite, however, that fact can be demonstrated
by exhibiting a multiplication that gives the number as an answer.

designated by the letters NP, signify-
ing “nondeterministic polynomial.” The
class NP encompasses all the problems
in P, or in other words P is a subset of
NP. In addition NP includes problems
whose status is less certain. They are all
solvable problems in principle; they
have algorithms, but for now only ex-
ponential-time algorithms are known.
They may also have polynomial-time
zigorithms (in which case NP and P are
identical), or they may prove to be per-
manently intractable, with only ineffi-
cient solutions.

The problems considered here, and all
problems classified in this way, can be
described as an infinite set of similar
questions each of which can be an-
swered yes or no. For problems that are
formally unsolvable, such as the prob-
lem of predicting whether a Turing ma-
chine will halt, these questions simply
cannot be answered by any algorithmic
procedure. For problems of the class P
the questions can invariably be an-
swered, whether the answer turns out to
be yes or no, by an efficient procedure.
In order for a problem to qualify for the

class NP there need not be an efficient
means of answering the yes-or-no ques-
tions. What is required is that whenever
the answer 1s yes there be a short and
convincing argument proving it.
Hamilton’s problem, for example,
meets this condition. It is not possible to
tell by any efficient means known today
whether a graph has a Hamiltonian
path, but if it does, then the path itself
can be exhibited. Hence for every Ham-
iltonian graph it is possible to issue a
“certificate” that proves its membership
in this special class of graphs. Such a
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PROPOSITIONAL CALCULUS serves as a universal language for
problems in the class NP, The problem considered here is that of ap-
$iving three colors to a map or its equivalent graph. A sentence in the
Propositional calculus is made up of statements, such as “X is red,”
jeined by the logical connectives “and,” “or” and “not.” If two state-
ments are joined by a logical “and,” the sentence is true only if both
statements are true; a logical “or” requires that at least one of the
t2iements be true, and “not” signifies that a statement is false. The
Sertence representing the map-coloring problem has three parts: the
fr5t two establish that every country has exactly one color and the

W and Z are not the same color.

third part lists the countries that cannot have the same color. The
map-coloring problem is thereby reduced to the problem of deter-
mining whether this sentence can be satisfied, that is, whether it is
possible to assume some statements to be true and others false in such
a way that there are no contradictions. Since all problems in NP could
be expressed as sentences in the propositional calculus, an efficient
general method for solving the satisfiability problem could be applied
to all those problems. No such method is known. The sentence given
here can be satisfied by assuming, for example, that only the state-
ments “X is red,” “Y is blue,” “Z is green” and “W is red” are true.



certificate would name the lines in the
graph in the order the path traverses
them. Finding the path might require
weeks of tabulation, but once it has been
found it can easily be exhibited. Anoth-
er problem that belongs to the class NP
is the question of whether a whole num-
ber is composite, that is, whether it can
be written as the product of two other
numbers. Again there is no known effi-
cient procedure for answering the ques-
tion, but if the number is indeed com-
posite, there is a succinct proof of that
fact, namely a correctly worked-out
multiplication with the number on the
bottom line.

Care must be taken when asking the
yes-or-no question of a problem in the
class NP, since the complementary no-
or-yes problem might not be in the same
class. For example, the complement of
Hamilton’s problem, in which one is
asked to show that a graph does not
have a path passing once through each
point, may well not be in the class NP.
For now the only way to demonstrate
the absence of such a path is to list all
possible paths, and such a proof is too
lengthy to qualify as a certificate of
membership in NP. On the other hand,
the complement of the composite-num-
ber problem, which asks if a number is

prime, turns out to be in the class NP.
The reason, which is far from obvious,
is that relatively short proofs demon-
strating that a number has no factors
other than 1 and itself were discovered
in 1975 by Vaughan Pratt of the Massa-
chusetts Institute of Technology. Still,
it is not known whether the composite-
number problem and its complement
are in the class P.

It is easy to show that every problem
in the class P is also in the class NP. If a
problem is in P, then by definition there
is an efficient algorithm for it. To pro-
duce a short and convincing proof that
the answer to some instance of the prob-
lem is yes, all we need to do is follow the
algorithm; a record of its operation con-
stitutes the required certificate.

Another way of defining NP is as the
class of yes-or-no problems that can be
solved by guessing certificates. If one is
given an instance of a problem in NP for
which the answer happens to be yes,
then with luck one may discover the re-
quired certificate fairly quickly by mak-
ing a sequence of guesses; if the answer
is no, guessing cannot possibly yield an
answer any faster than an exhaustive
search could. For example, in solving
Hamilton’s problem one might find a
correct path (if there is one) on the first

try by tracing small portions of the path
and guessing at each stage how to pro-
ceed. Such a procedure, it should be em-
phasized, is not an algorithm. It could be
made into an algorithm only by crossing
off each trial path as it is tested and
checking all possible paths, but that is
equivalent to the method of exhaustive
search.

A mathematical procedure defined in
terms of lucky guesses may seem bi-
zarre, but it is a quite legitimate ap-
proach to defining the problems in the
class NP. In principle the procedure
could even be mechanized by building a
device called a nondeterministic Turing
machine. This device can do all that an
ordinary Turing machine can do; in ad-
dition, at some points in its operation it
may have more than one choice of what
to do next. Such a machine would be
considered to answer yes to a question if
there were some sequence of choices
that could lead it to a yes conclusion.
NP, the class of nondeterministic poly-
nomial-time problems, consists of pre-
cisely those problems whose yes in-
stances can be identified by machines
making comparatively short guessing
computations.

The inclusion of guessing in the defini-
tion of these problems suggests strongly
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SPANNING-TREE PROBLEM calls for the shortest network of

connected indirectly (such as line 4 here) are omitted. The result is the

lines connecting a set of points, or equivalently the shortest railroad
system connecting a set of cities (a). If the lines are allowed to meet
only at cities, the problem can be solved by an efficient procedure
called the greedy algorithm. First the closest pair of cities are joined,
then the next-closest and so on (b). Lines joining cities that are already
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optimum spanning tree (c). An even shorter network is possible if
lines are allowed to meet at isolated junction points. At each such
point three lines should meet at angles of 120 degrees, but there is no
efficient algorithm for determining where junction points should be
introduced. The optimum network (4) was found by exhaustive search.




to many mathematicians that P and NP
are not the same set and hence that effi-
cient algorithms can never be found for
the intractable problems in the class NP.
If every problem in NP were actually in
P, then all the guesswork and luck could
be replaced by some systematic proce-
dure without great sacrifice in time. It is
hard to believe the ability to guess and
be lucky could win so little.

The class NP includes a variety of
commonly encountered problems
that seem to defy efficient solution. We
have already mentioned Hamilton’s
problem and the problem of composite
numbers. Another example is known as
the matching problem. It can be consid-
ered in terms of the task faced by the
colleges every September, when a new
class of freshmen must be assigned to
shared dormitory rooms.

For the sake of simplicity let us as-
sume that all the information gathered
about the students’ smoking habits, bed-
time hours, taste in music and so forth
results in a single yes-or-no decision as
to the compatibility of each possible
pair of students. The entire class can
then be represented as a graph in which
the points correspond to students and a
line is drawn connecting every two stu-
dents who can be placed in the same
room. If each room holds just two stu-
dents, the assignment can be made effi-
ciently by a clever polynomial-time al-
gorithm discovered by Jack Edmonds
of the University of Waterloo. If each
room is to be shared by three students,
however, there is no known efficient al-
gorithm. The problem is in the class NP,
since all yes instances have succinct cer-
tificates: an acceptable room assign-
ment, once it is discovered, can easily be
exhibited. Of course, a solution could be
found by exhaustive search, albeit ineffi-
ciently. With luck a suitable assignment,
if there is one, can be guessed quickly.

Map coloring is a problem in the class
NP that concerns mathematicians more
than it does cartographers. The question
is whether the countries on a given map
can be colored with a given number of
colors so that no two countries that
share a border have the same color. It is
easy to find out if a map can be colored
with two colors: it can be if there are no
places on the map where an odd number
of countries meet at one point. It is even
easier to tell if a map can be colored
with four colors; indeed, there is no need
even to look at the map, since Kenneth
Appel and Wolfgang Haken of the Uni-
versity of Illinois proved in 1975 that
four colors suffice for any map. Surpris-
ingly, however, no efficient algorithm is
known for determining whether three
colors are enough for a given map. The
problem is in the class NP, since a cor-
rectly colored map can serve to certify a
yes answer.

Map coloring can be regarded as a
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FOR THE LOVER OF FINE INSTRUMENTS ...

The Questar
family of
telescopes

© Questar Corporation, 1977

Because Questar’s inventor loved fine
instrumerits, he designed Questar for
himself. He had begun dreaming about
the kind of telescope he someday wanted
to own, long before such a thing was
considered a possibility.

To begin with, of course, there was to
be a set of optics so fine that no amount
of money, time, or human effort could
improve upon it. Second, since he be-
lieved that the use of a telescope should
not be a difficult physical chore, the size
was extremely important: it should be
easily portable. Preferably it would be
small enough to be used on a table,
where a person could sit in a relaxed
position to observe and be able to have
a writing surface at hand. And since he
planned to carry it in his travels, it
would be packaged handsomely in a
piece of leather luggage.

Third, the accessories which were nec-
essary for the enjoyment of a telescope
were to be built in and should have
fingertip controls within easy reach.

Fourth, the mechanical design must
incorporate a means of putting the tele-
scope into its polar equatorial position
at a moment’s notice and without the
need of a separate tripod.

Fifth, the versatility that he visualized
would make this instrument equally suit-
able for nature studies in the field. It also
should be able to focus on close objects,
which no other telescope in the world
could do.

Sixth, the design must be photovisual
so that he could record on film whatever
these superior optics would present to
the eye.

And finally, the instrument must be of
rugged construction and vibrationless,
without the aggravating oscillations of
long-tubed conventional telescopes.

£ %

As we have said, this was the dream,
but one lacking the possibility of fulfill-
ment within the state of the art at that
time. However, in the 1940’s an impor-
tant discovery in optics occurred. When
Maksutov published, in the Jowrnal of
the Optical Society of America, a paper
on his mixed lens-mirror, or catadioptric,
system, it was immediately apparent to
Questar’s designer, Lawrence Braymer,
that this break-through in optics would
make possible a miniaturized version of
the astronomical telescope which he had
for so long wanted to build.

The Questar telescope reached the
market in 1954: 3.5 inches of aperture
with a 7-foot focal length in a sealed
tube only 8 inches long, and with all
the built-in conveniences that he had
planned. These included a wide-field
finder, power changes without changing
eyepieces, smooth manual controls in

altitude and azimuth, safety clutches, set-
ting circles, a sidereal clock, and synchro-
nous motor drive. Moteover, a totally
safe solar filter had become an additional
feature created for the solar observer.

Included, also, were legs for a table-
top polar equatorial position; and as the
design had progressed it had come to
include two other conveniences: a map
of the moon anodized on the barrel and
a chart of the stars anodized on an alu-
minum sleeve to slip over the barrel.
The chart revolves for monthly star set-
tings and slides forward to serve as a
dewcap. Both charts make other maps
unnecessary during observing sessions.

Most remarkable of all were the optics
—this was a system so fine that it has
consistently délivered resolution surpass-
ing its theoretical limits. Throughout its
subsequent history, the care and preci-
sion with which every set of optics has
been made and star tested has earned for
the Questar telescope its reputation as
the finest in the world.

Other Questars have followed over the
years—the Seven, which is twice the size
of its world-famous predecessor, has
twice the resolving power and four times
the light grasp; and more recently, the
Questar 700. The latter is an f/8 tele-
photo lens for the photographer, and
Modern Photography has simply called
it “the best.” The 700 guarantees perfec-
tion and flatness of field from edge to
edge; also, precise focusing from infinity
to 10 feet with a single turn of the focus-
ing ring.

We always say that when you buy a
Questar telescope you get the whole
observatory. The instrument in its fitted
case contains all that you need to enjoy
the earth or skies, day or night. Your
Questar need never be idle, and you can
carry it with you wherever you go. In a
recent letter a Questar owner called it
“an enchanting companion.”

Our new booklet, described below,
contains a remarkable collection of pho-
tographs by Questar owners, including
a portfolio of our favorite pictures pub-
lished over the years. Be sure to send
for a copy.

QUESTAR, THE WORLD'S FINEST, MOST VERSATILE
TELESCOPE IS DESCRIBED IN OUR BOOKLET IN COL-
OR, WITH PHOTOGRAPHS BY QUESTAR OWNERS.
SEND $1 TO COVER MAILING COSTS ON THIS CONTI-
NENT. BY AIR TO SOUTH AMERICA, $3; EUROPE AND
NORTH AFRICA, $3.50; ELSEWHERE $4. INQUIRE
ABOUT OUT EXTENDED PAYMENT PLAN.

QUESTAR

Box 20-LF, New Hope, PA 18938
Phone (215) 862-5277



special case of another problem called
graph coloring. Any map can be con-
verted into a graph by reducing each
country to a point and drawing a line
between two points if the corresponding
countries share a border. Coloring the
graph is then equivalent to coloring the
map, subject to the rule that two points
connected by a line cannot have the
same color. Graph coloring, however, is
a more general problem, with applica-
tions outside graph theory. For exam-
ple, a graph can represent the schedul-
ing of work in a factory. Each point
of the graph stands for some job to be
done, and two points are connected by
a line if the jobs cannot be done con-
currently, perhaps because they require
the same piece of machinery. A coloring
of the graph with three colors would
then supply a schedule dividing the
work of the factory into three shifts.
Like map coloring, the graph-coloring
problem is in the class NP.

It often happens that if one problem
can be solved efficiently, so can many
others. For example, if an efficient algo-
rithm could be found for the problem of
graph coloring, it could be applied with
only minor modifications to the prob-
lems of map coloring and factory sched-
uling. Map coloring and factory sched-

uling are therefore said to be efficiently
reducible to graph coloring. In the past
several years it has become apparent
that some of the problems in the class
NP have a remarkable property: all the
problems in NP are efficiently reducible
to them. These elite problems within the
class NP are called NP-complete. If any
one of them has an efficient algorithm,
then every problem in NP can be solved
efficiently.

The first proof that a problem is NP-
complete was presented in 1971 by Ste-
phen A. Cook of the University of To-
ronto. His reasoning follows a path es-
sentially parallel to the path of Turing’s
earlier work on mathematical machines
and their relation to problems of formal
logic. Cook stated his proof in terms of
the propositional calculus, the formal
language in which separate logical state-
ments, which individually may be either
true or false, are joined together by the
lexical elements “and,” “or” and “not.”
In general a sentence in the proposition-
al calculus can be shown to be either
true or false depending on which of its
component statements are assumed to
be true or false. Certain sentences, how-
ever, cannot be true under any interpre-
tation because they are self-contradicto-
ry. Sentences that cannot be made true
are said to be unsatisfiable.

Cook employed the propositional cal-
culus to describe the operation of the
nondeterministic Turing machines, the
mechanized guessing devices essential
to the definition of the class NP. He
showed that the calculations of any such
machine can be described succinctly by
sentences of the propositional calculus.
When the machine is given a yes in-
stance of a problem in NP, its operation
is described by a satisfiable sentence,
whereas the operation of a machine giv-
en a no instance is described by a sen-
tence that cannot be satisfied.

It follows from Cook’s proof that if
one could efficiently determine whether
a sentence in the propositional calculus
can be satisfied, one could also deter-
mine efficiently in advance whether the
problem presented to a nondeterminis-
tic Turing machine will be answered yes
or no. Since the problems in the class NP
are by definition all those that can be
solved by nondeterministic Turing ma-
chines, one would then have an efficient
method for solving all those problems.
The catch, of course, is that there is no
known efficient method of determining
whether a sentence in the propositional
calculus can be satisfied.

Cook’s argument states in essence that
the propositional calculus is a universal
language for describing problems in the
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SHORTEST-TOUR PROBLEM cannot be solved exactly by any
known efficient algorithm. Mathematicians have therefore devised
solutions that are good even if they are not optimal. One efficient pro-
cedure draws a tour guaranteed to be no more than twice the shortest
length. The method begins with the optimum spanning tree (a), which
can be found efficiently with the greedy algorithm. The spanning tree
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can be converted into a tour simply by traversing each Jine once in
each direction (5). This tour is clearly just twice as long as the span-
ning tree itself; the spanning tree in turn must be shorter than any
tour of the cities, since a tour could be made into a tree (albeit a
tree with no branches) by omitting one segment. The tour produced
by this method can generally be improved by taking shortcuts (¢, d).



class NP. Every instance of such a prob-
lem corresponds to a sentence in that
language, and if the sentence is satisfia-
ble, the instance has a yes answer. Many
other problems have since been shown
to be NP-complete because the satisfia-
bility problem can efficiently be reduced
to them. Hamilton’s problem, the prob-
lem of matching groups of three room-
mates and the problem of coloring
graphs with three colors are all NP-com-
plete. The first to point out the broad
applicability of this theory was Richard
M. Karp of the University of California
at Berkeley. Similar investigations were
independently conducted by the Rus-
sian mathematician P. A. Levin. Since
NP-complete problems capture the diffi-
culty of all other problems in NP, it is
widely thought today that all NP-com-
plete problems are computationally in-
tractable. A proof that a problem is NP-
complete is usually considered a strong
argument for abandoning further efforts
to devise an efficient algorithm for its

solution.

Even the assumption that all NP-
complete problems are intractable
would not settle all questions about the
class NP. In addition to the mystery of
the NP-complete problems there is an
even more obscure area: problems in

NP for which no efficient algorithms are
known but which have not been proved
to be NP-complete either. The problem
of composite numbers is one of these.

Not all problems that can be solved
by a computer are of the yes-or-no
type. Another common type is the op-
timization problem. For example, sup-
pose one is given the positions of some
cities on a map and asked to find the
shortest possible railroad network con-
necting them. In one version of this
problem one is allowed to lay down a
straight section of track between any
two cities, but one is not allowed to in-
stall isolated junction points; tracks can
be joined only at cities. One property of
the solution to this problem is immedi-
ately apparent: the optimum network
can never include a closed circuit, be-
cause if it did, the network could be
made shorter simply by omitting one
link in the circuit. Thus the best network
always branches like a tree, and the
problem itself is called the spanning-tree
problem.

The spanning-tree problem can be
solved correctly and quite efficiently by
a method called the greedy algorithm,
devised by Joseph B. Kruskal of Bell
Laboratories. The procedure is simply
to connect the closest pair of cities, then
the next-closest and so on without add-

ing any superfluous lines (lines joining
cities that are already linked indirectly).
It is far from obvious that this method
always yields the shortest network, but
it does, and it has the pleasant property
of requiring no foresight and no recon-
sideration of earlier decisions.

The greedy algorithm can be relied on
to find the shortest network between cit-
ies under the rules specified, but in gen-
eral that network will not be the shortest
possible one. Further savings can be
achieved by establishing junction points
between cities. The properties of net-
works with such junctions were stud-
ied by the Swiss mathematician Jakob
Steiner. It can be shown that any short-
est network must be arranged so that
each junction point is made up of three
lines that meet at angles of 120 degrees.
This rule provides some guidance in
evaluating networks, but there are many
possible networks with Steiner junction
points. No algorithm has been discov-
ered that finds the best network quickly.

The problem of the traveling sales-
man’s tour is closely related. Again one
is given a set of cities, but now one is
asked to find the shortest round-trip
tour. As a first guess the greedy algo-
rithm suggests that perhaps the sales-
man should always go to the nearest city
he has not yet visited, but this procedure
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IMPROVED ALGORITHM for the traveling salesman problem
yields a tour that is certain to be no more than S0 percent longer than
the optimum. The procedure was devised by Nicos Christofides of the
\ Imperial College of Science and Technology. The first step is again
to generate the shortest spanning tree, All the cities that are linked
10 an odd number of cities are then singled out; in this example all

the cities except Kansas City have an odd number of connections.
These cities are next linked in pairs by a procedure similar to the one
employed in matching pairs of students to yield a tour (a) that can
be improved by making shortcuts (5, c). The result is only a little long-
er than the optimum tour (d), found by exhaustive search. Note that
in the shortest tour the line between the two closest cities is omitted.
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does not work. Indeed, the problem is
notorious for having resisted all at-
tempts to find an efficient solution.
Optimization problems are not funda-
mentally different from those that ask
yes-or-no questions; in fact, every op-
timization problem can be rewritten in a
yes-or-no form. In the traveling sales-
man problem, for example, we might be
given a length along with a set of cities
and asked to state whether a tour can be
constructed that does not exceed the
specified length. This yes-or-no problem
cannot be harder than the associated op-
timization problem, because if the opti-
mum tour could be found by some effi-
cient method, it would be a trivial task
to determine whether it exceeds a given
number. Hence if the yes-or-no version
is computationally intractable, one can-
not hope to solve the optimization prob-
lem itself efficiently. For this reason cer-
tain optimization problems, such as that
of the traveling salesman’s tour and
that of placing Steiner junction points,
are said to be NP-complete.
Optimization problems are encoun-
tered often in engineering, economics,
operations research and other fields.
The discovery that at least some of these

problems are NP-complete is therefore
of considerable practical interest. Since
the NP-complete problems probably
have no efficient algorithms, there would
seem to be little point in expending fur-
ther effort in seeking optimum solutions.
An alternative that has recently been
adopted is to seek approximate solu-
tions that are good even if they are not
precisely optimal.

One technique that has been ap-
plied to the traveling salesman
problem offers a solution that may not
be optimum but is guaranteed to be no
worse than twice the optimum path. The
procedure starts with the shortest span-
ning tree, which can be generated effi-
ciently by the greedy algorithm. This
network can be converted into a tour of
the cities by traversing each line twice
and returning to the origin. It is known
that the optimum spanning tree must be
shorter than any possible tour of the cit-
ies, since a tour can be converted into a
spanning tree (albeit one without any
branches) by simply omitting one seg-
ment. Thus twice the length of the opti-
mum spanning tree cannot be longer
than twice the optimum tour. The meth-
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APPROXIMATE SOLUTION to the traveling salesman problem is not guaranteed to find a
tour within any specified range of the optimum tour, but when it is applied to many instances
of the problem, it is not far wrong very often. The algorithm, which was devised by Richard M.
Karp of the University of California at Bexrkeley, divides a map into many small regions, each
one containing only a few cities. Within each region the optimum tour is found by exhaustive
search, a procedure that is practical since the number of points is small. Each of the small tours
is then regarded as a single entity to be linked to the others, a task that can be performed effi-
ciently by an algorithm similar to the greedy algorithm for finding an optimum spanning tree,
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od is a polynomial-time algorithm. Re-
cently Nicos Christofides of the Iimperi-
al College of Science and Technology
in London has found a way to improve
the algorithm so that it yields a tour
guaranteed to be no more than half
again as long as the optimum.

A more profound compromise gives
up not only the requirement that a solu-
tion be optima! but also the insistence
that a less than optimum solution be
guaranteed to fall within a specified
range. Instead the assurance is given
that the solution will not often deviate
far from the optimum. An underlying
assumption of such techniques is that
the maps encountered in practice are not
concocted to confound basically plausi-
ble techniques; such maps are encoun-
tered frequently only when they are con-
structed by computer scientists to reveal
the flaws in methods proposed by their
cclleagues. Indeed, if the salesman’s-
tour algorithms discussed above are ap-
plied to “natural” maps, they deliver far
more than they promise. The resulting
tours are not 100 percent or 50 percent
longer than the optimum but closer to 5
percent.

A reasonable assumption about the
properties of many maps is that cities
are randomly placed. A theorem de-
scribing the statistical properties of opti-
mum tours through such randomly dis-
tributed points was proved in 1958 by
Jillian Beardwood, J. H. Halton and
John M. Hammersley of the University
of Oxford. Relying on that theorem,
Karp has shown that a simple method of
constructing tours almost always yields
near-optimum results when it is applied
to maps with many cities.

Karp begins by dividing the map into
many small regions. Within each of
these regions the cities are sufficiently
few to find the optimum tour by exhaus-
tive search, even though that method in-
volves an exponential-time algorithm.
The tours of the small areas are then
linked by a variant of the greedy algo-
rithm. Perhaps significantly, the method
is not very different from the method
usually adopted by people solving the
preblem manually.

Efﬁcient but approximate solutions
can be found for many NP-com-
plete optimization problems. From the
standpoint of mathematics, however,
the important question is whether NP is
identical with P. The repeated failure of
attempts to find an efficient algorithm
for the NP-complete problems has cre-
ated considerable confidence that NP
and P are not the same. There is now
suspicion that they are not identical, but
the proof of their distinctness may be
beyond present mathematical capabili-
ties. The question may join that select
group of mathematical enigmas that re-
main unresolved for decades, and the
solution may have to await the develop-
ment of new methods in mathematics.
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