Chapter 9

A SURVEY OF LINK PREDICTION IN SOCIAL NETWORKS

Mohammad Al Hasan

Department of Computer and Information Science
Indiana University- Purdue University
Indianapolis, IN 46202

alhasan@cs.iupui.edu

Mohammed J. Zaki

Department of Computer Science, Rensselaer Polytechnic Institute
Troy, NY 12180

zaki@cs.rpi.edu

Abstract Link prediction is an important task for analying social networks which also
has applications in other domains like, information retrieval, bioinformatics and
e-commerce. There exist a variety of techniques for link prediction, ranging
from feature-based classification and kernel-based method to matrix factoriza-
tion and probabilistic graphical models. These methods differ from each other
with respect to model complexity, prediction performance, scalability, and gen-
eralization ability. In this article, we survey some representative link prediction
methods by categorizing them by the type of the models. We largely consider
three types of models: first, the traditional (non-Bayesian) models which extract
a set of features to train a binary classification model. Second, the probabilistic
approaches which model the joint-probability among the entities in a network
by Bayesian graphical models. And, finally the linear algebraic approach which
computes the similarity between the nodes in a network by rank-reduced simi-
larity matrices. We discuss various existing link prediction models that fall in
these broad categories and analyze their strength and weakness. We conclude the
survey with a discussion on recent developments and future research direction.

Keywords: Link prediction, network evolution model, social network analysis, probabilistic
model, local probabilistic model

242 SOCIAL NETWORK DATA ANALYTICS

1. Introduction

Social networks are a popular way to model the interactions among the peo-
ple in a group or community. They can be visualized as graphs, where a vertex
corresponds to a person in some group and an edge represents some form of
association between the corresponding persons. The associations are usually
driven by mutual interests that are intrinsic to a group. However, social net-
works are very dynamic, since new edges and vertices are added to the graph
over time. Understanding the dynamics that drive the evolution of social net-
work is a complex problem due to a large number of variable parameters. But,
a comparatively easier problem is to understand the association between two
specific nodes. For instance, some of the interesting questions that can be
posed are: How does the association pattern change over time? What are the
factors that drive the associations? How is the association between two nodes
affected by other nodes? The specific problem instance that we address in this
article is to predict the likelihood of a future association between two nodes,
knowing that there is no association between the nodes in the current state of
the graph. This problem is commonly known as the Link Prediction problem.

More formally, the link prediction task can be formulated as followed (based
upon the definition in Liben-Nowell and Kleinberg [36]): Given a social net-
work G(V, F) in which an edge e = (u,v) € E represents some form of
interactions between its endpoints at a particular time ¢(e). We can record
multiple interactions by parallel edges or by using a complex timestamp for
an edge. For time ¢ < ¢ we assume that G[t, ¢'] denotes the subgraph of G
restricted to the the edges with time-stamps between ¢ and £. In a supervised
training setup for link prediction, we can choose a training interval [§, t{] and
a test interval [t1, ¢}] where ¢, < ¢;. Now the link prediction task is to output a
list of edges not present in G/[ty, t(,], but are predicted to appear in the network
Glt1,th].

Link prediction is applicable to a wide variety of application areas. In the
area of Internet and web science, it can be used in tasks like automatic web
hyper-link creation [3] and web site hyper-link prediction [65]. In e-commerce,
one of the most prominent usages of link prediction is to build recommenda-
tion systems [25, 37, 35]. It also has various applications in other scientific
disciplines. For instance, in bibliography and library science, it can be used
for de-duplication [39] and record linkage [4]; in Bioinformatics, it has been
used in protein-protein interaction (PPI) prediction [6] or to annotate the PPI
graph [18]. In security related applications, it can be used to identify hid-
den groups of terrorists and criminals. In many of the above applications, the
graphs that we work on are not necessarily social network graphs, rather they
can be Internet, information networks, biological entity networks, and so on.

A Survey of Link Prediction in Social Networks 243

In this article, we present a survey of existing approaches to link prediction,
with focus mainly on social network graphs. We classify the extant approaches
into several groups. One group of the algorithms computes a similarity score
between a pair of nodes so that a supervised learning method can be employed.
In this class we also include methods that use a kernel matrix, and then employ
a maximum margin classifier. Another class of algorithms consists of those
based on Bayesian probabilistic models, and probabilistic relational models.
Beside these, there are algorithms that are based on graph evolution models or
on linear algebraic formulations. Several methods span multiple classes in the
above classification scheme. After a brief overview, we discuss each group of
methods in more detail below.

2. Background

Liben-Nowell and Kleinberg [36] proposed one of the earliest link predic-
tion models that works explicitly on a social network. Every vertex in the graph
represents a person and an edge between two vertices represents the interaction
between the persons. Multiplicity of interactions can be modeled explicitly by
allowing parallel edges or by adopting a suitable weighting scheme for the
edges. The learning paradigm in this setup typically extracts the similarity be-
tween a pair of vertices by various graph-based similarity metrics and uses the
ranking on the similarity scores to predict the link between two vertices. They
concentrated mostly on the performance of various graph-based similarity met-
rics for the link prediction task. Later, Hasan et. al. [22] extended this work
in two ways. First, they showed that using external data outside the scope of
graph topology can significantly improve the prediction result. Second, they
used various similarity metric as features in a supervised learning setup where
the link prediction problem is posed as a binary classification task. Since then,
the supervised classification approach has been popular in various other works
in link prediction [10, 58, 15].

The link prediction problem has also been studied previously in the context
of relational data [53, 46, 47] and also in the Internet domain [50], where ex-
plicit graph representations were not used. The prediction system proposed in
these works can accept any relational dataset, where the objects in the dataset
are related to each other in any complex manners and the task of the system is
to predict the existence and the #ype of links between a pair of objects in the
dataset. Probabilistic relational models [21], graphical models [40], stochas-
tic relational models [6, 61, 20], and different variants of these are the main
modeling paradigm used in these works. The advantages of these approaches
include the genericity and ease with which they can incorporate the attributes
of the entities in the model. On the down side, they are usually complex, and
have too many parameters, many of which may not be that intuitive to the user.

244 SOCIAL NETWORK DATA ANALYTICS

The research on social network evolution [7, 32, 34] closely resembles the
link prediction problem. An evolution model predicts the future edges of a net-
work, taking into account some well known attributes of social networks, such
as the power law degree distribution [7] and the small world phenomenon [32].
This remains the main difference between evolution models and the link pre-
diction models. The former concentrate on the global properties of the network
and the latter model the local states of the network to predict the probability of
the existence of a link between a specific pair of nodes in the network. Never-
theless, the ideas from these models have been instrumental for some research
works [29] that directly addressed the task of link prediction.

One of the main challenges of link prediction concerns the evolution of In-
ternet scale social networks like facebook, mySpace, flickr, and so on. These
networks are huge in size and highly dynamic in nature for which earlier algo-
rithms may not scale and adapt well—more direct approaches are required to
address these limitations. For instance, Tylenda et. al. [56] shows that utilizing
the time stamps of past interactions, which explicitly utilize the lineage of inter-
actions, can significantly improve the link prediction performance. Recently,
Song et. al. [52] used matrix factorization to estimate similarity between the
nodes in a real life social network having approximately 2 millions nodes and
90 millions edges. Any traditional algorithm that aims to compute pair-wise
similarities between vertices of such a big graph is doomed to fail. Recently,
the matrix based factorization works have been extended to the more richer
higher-order models such as tensors [1].

Having outlined the background methods, we now review the existing meth-
ods to link prediction. We begin with feature-based methods that construct
pair-wise features to use in a classification task. Next we consider Bayesian
approaches, followed by the probabilistic relational models. After reviewing
methods based on linear algebra, we present some recent trends and directions
for future work.

Notation. Typically, we will use small letters, like x, y, 2z to denote a node
in a social network, the edges are represented by the letter e. For a node x,
I'(x) represents the set of neighbors of x. degree(x) is the size of the I'(z).
We use the letter A for the adjacency matrix of the graph.

3. Feature based Link Prediction

We can model the link prediction problem as a supervised classification
task, where each data point corresponds to a pair of vertices in the social net-
work graph. To train the learning model, we can use the link information from
the training interval ([ty, t(]). From this model, predictions of future links in
the test interval ([t;, t}]) can be made. More formally, assume u,v € V are
two vertices in the graph G(V, F) and the label of the data point (u, v) is 3%,

A Survey of Link Prediction in Social Networks 245

Note that we assume that the interactions between v and v are symmetric, so
the pair (u,v) and (v, u) represent the same data point, hence, if%?) = y{v¥),
Now,
(uv) _ { +1, if (u,v) € E
YOS A1, if(u) ¢ E

Using the above labeling for a set of training data points, we build a classi-
fication model that can predict the unknown labels of a pair of vertices (u, v)
where (u,v) ¢ E in the graph G[t1,t]].

This is a typical binary classification task and any of the popular supervised
classification tools, such as naive Bayes, neural networks, support vector ma-
chines (SVM) and k nearest neighbors, can be used. But, the major challenge
in this approach is to choose a set of features for the classification task. Next
we will discuss the set of features that have been used successfully for super-
vised link prediction tasks.

3.1 Feature Set Construction

Choosing an appropriate feature set is the most critical part of any machine
learning algorithm. For link prediction, each data point corresponds to a pair of
vertices with the label denoting their link status, so the chosen features should
represent some form of proximity between the pair of vertices. In existing
research works on link prediction, majority of the features are extracted from
the graph topology. Also, some works develop a feature set constructed from a
graph evolution model. Besides these, the attributes of vertices and edges can
also be very good features for many application domains.

The features that are based on graph topology are the most natural for
link prediction. Here we call them graph-topological feature. In fact, many
works [36, 29] on link prediction concentrated only on the graph topological
feature-set. Typically, they compute the similarity based on the node neigh-
borhoods or based on the ensembles of paths between a pair of nodes. The
advantage of these features are that they are generic and are applicable for
graphs from any domain. Thus, no domain knowledge is necessary to compute
the values of these features from the social network. However, for large social
networks, some of these features may be computationally expensive. Below we
explain some of the popular graph topological features under two categories:
(1) Node neighborhood based and (2) Path based. Majority of these features
are adapted from [36, 22]. Following that we discuss a set of features that are
extracted from the vertex or edge properties of the graph.

3.1.1 Node Neighborhood based Features.

Common Neighbors. For two nodes, x and y, the size of their common
neighbors is defined as |['(z) N I'(y)|. The idea of using the size of common

246 SOCIAL NETWORK DATA ANALYTICS

neighbors is just an attestation to the network transitivity property. In simple
words, it means that in social networks if vertex x is connected to vertex z and
vertex y is connected to vertex z, then there is a heightened probability that
vertex x will also be connected to vertex y. So, as the number of common
neighbors grows higher, the chance that « and y will have a link between them
increases. Newman [41] has computed this quantity in the context of collabo-
ration networks to show that a positive correlation exists between the number
of common neighbors of x and y at time ¢, and the probability that they will
collaborate in the future.

Jaccard Coefficient. The common neighbors metric is not normalized,
so one can use the Jaccard Coefficient, which normalizes the size of common
neighbors as below:

[U(z) NT(y)|
P(z) UT(y)]

Conceptually, it defines the probability that a common neighbor of a pair of
vertices x and y would be selected if the selection is made randomly from
the union of the neighbor-sets of « and y. So, for high number of common
neighbors, the score would be higher. However, from the experimental results
of four different collaboration networks, Liben-Nowell et. al. [36] showed that
the performance of Jaccard coefficient is worse in comparison to the number
of common neighbors.

Jaccard-coefficient(z,y) =

(9.1)

Adamic/Adar. Adamic and Adar [2] proposed this score as a metric of
similarity between two web pages. For a set of features z, it is defined as

below.]
> 9.2)

z : feature shared by x,y 10g(f7“equency(z))

For link prediction, [36] customized this metric as below, where the common
neighbors are considered as features.

1
adamic/adar(z, y) = Z e 9.3)
zel(z)NT'(y)

In this way, Adamic/Adar weighs the common neighbors with smaller degree
more heavily. From the reported results of the existing works on link predic-
tion, Adamic/Adar works better than the previous two metrics.

3.1.2 Path based Features.

Shortest Path Distance. The fact that the friends of a friend can become
a friend suggests that the path distance between two nodes in a social network

A Survey of Link Prediction in Social Networks 247

can influence the formation of a link between them. The shorter the distance,
the higher the chance that it could happen. But, also note that, due to the small
world [59] phenomenon, mostly every pair of nodes is separated by a small
number of vertices. So, this feature sometimes does not work that well. Hasan
et. al. [22] found this feature to have an average rank of 4 among 9 features
that they used in their work on link prediction in a biological co-authorship
network. Similar finding of poor performance by this feature was also reported
in [36].

Katz. Leo Katz proposed this metric in [31]. It is a variant of shortest
path distance, but generally works better for link prediction. It directly sums
over all the paths that exist between a pair of vertices x and y. But, to penalize
the contribution of longer paths in the similarity computation it exponentially
damps the contribution of a path by a factor of [, where [is the path length.
The exact equation to compute the Katz value is as below:

katz(z,y) = Z gt |paths§cl’>y| 9.4)
=1

where |pathsg<cl,>y\ is the set of all paths of length [from x to y. Katz generally
works much better than the shortest path since it is based on the ensemble of
all paths between the nodes = and y. The parameter 3(< 1) can be used to
regularize this feature. A small value of 5 considers only the shorter paths
for which this feature very much behaves like features that are based on the
node neighborhood. One problem with this feature is that it is computationally
expensive. It can be shown that the Katz score between all the pairs of ver-
tices can be computed by finding (I — SA)~! — I, where A is the adjacency
matrix and [is an identity matrix of proper size. This task has roughly cubic
complexity which could be infeasible for large social networks.

Hitting Time. The concept of hitting time comes from random walks on
a graph. For two vertices, x and y in a graph, the hitting time, /1, , defines
the expected number of steps required for a random walk starting at x to reach
y. Shorter hitting time denotes that the nodes are similar to each other, so
they have a higher chance of linking in the future. Since this metric is not
symmetric, for undirected graphs the commute time, C, y, = H, , + H, ;, can
be used. The benefit of this metric is that it is easy to compute by performing
some trial random walks. On the downside, its value can have high variance;
hence, prediction by this feature can be poor [36]. For instance, the hitting time
between x and y can be affected by a vertex z, which is far away from z and
y; for instance, if z has high stationary probability, then it could be hard for
a random walk to escape from the neighborhood of z. To protect against this
problem we can use random walks with restart, where we periodically reset the

248 SOCIAL NETWORK DATA ANALYTICS

random walk by returning to x with a fixed probability « in each step. Due to
the scale free nature of a social network some of the vertices may have very
high stationary probability (7) in a random walk; to safeguard against it, the
hitting time can be normalized by multiplying it with the stationary probability
of the respective node, as shown below:

normalized-hitting-time(z,y) = H, , . 7, + Hy , . 7 9.5)

Rooted Pagerank. Chung and Zhao [13] showed that the Pagerank [11]
measures that is used for web-page ranking has inherent relationship with the
hitting time. So, pagerank value can also be used as a feature for link predic-
tion. However, since pagerank is an attribute of a single vertex, it requires to
be modified so that it can represent a similarity between a pair of vertices x
and y. The original definition of pagerank denotes the importance of a vertex
under two assumptions: for some fixed probability «, a surfer at a web-page
jumps to a random web-page with probability « and follows a linked hyperlink
with probability 1 — «. Under this random walk, the importance of an web-
page v is the expected sum of the importance of all the web-pages u that link
to v. In random walk terminology, one can replace the term importance by
the term stationary distribution. For link prediction, the random walk assump-
tion of the original pagerank can be altered as below: similarity score between
two vertices « and y can be measured as the stationary probability of y in a
random walk that returns to = with probability 1 — & in each step, moving to
a random neighbor with probability 5. This metric is assymetric and can be
made symmetric by summing with the counterpart where the role of z and y
are reversed. In [36], it is named as roofed pagerank. The rooted pagerank
between all node pairs (represented as R P R) can be derived as follows. Let D
be a diagonal degree matrix with D[i,i| = j Ali, j]. Let, N = D71 A be the
adjacency matrix with row sums normalized to 1. Then,

RPR = (1— 8)(I - BN)~!

3.1.3 Features based on Vertex and Edge Attributes. Vertex and

edge attributes play an important role for link prediction. Note that, in a social
network the links are directly motivated by the utility of the individual rep-
resenting the nodes and the utility is a function of vertex and edge attributes.
Many studies [22, 15] showed that vertex or edge attributes as proximity fea-
tures can significantly increase the performance of link prediction tasks. For
example, Hasan et. al. [22] showed that for link prediction in a co-authorship
social network, attributes such as the degree of overlap among the research key-
words used by a pair of authors is the top ranked attribute for some datasets.
Here the vertex attribute is the research keyword set and the assumption is that
a pair of authors are close (in the sense of a social network) to each other, if

A Survey of Link Prediction in Social Networks 249

their research work evolves around a larger set of common keywords. Simi-
larly, the Katz metric computed the similarity between two web-pages by the
degree to which they have a larger set of common words where the words in
the web-page are the vertex attributes. The advantage of such a feature set is
that it is generally cheap to compute. On the down-side, the features are very
tightly tied with the domain, so, it requires good domain knowledge to identify
them. Below, we will provide a generic approach to show how these features
can be incorporated in a link prediction task.

Vertex Feature Aggregation. Once we identify an attribute a of a node
in a social network, we need to devise some meaningful aggregation function,
f. To compute the similarity value between the vertices « and y, f accepts the
corresponding attribute values of these vertices to produce a similarity score.
The choice of function entirely depends on the type of the attribute. In the
followings we show two examples where we aggregated some local metric of
a vertex.

m Preferential Attachment Score: The concept of preferential attachment [§]
is akin to the well known rich gets richer model. In short, it proposes
that a vertex connect to other vertices in the network based on the prob-
ability of their degree. So, if we consider the neighborhood size as fea-
ture value, then multiplication can be an aggregation function, which is
named as preferential attachment score:

preferential attachment score(z, y) = I'(x) . T'(y) (9.6)

Actually, the summation function can also be used to aggregate the fea-
ture values. In Hasan et. al. [22], the authors show that the summation
of the neighbor-count of a pair of vertices is a very good attribute, which
stands out as the second ranked feature in the link prediction task in a
co-authorship network.

m Clustering Coefficient Score: Clustering coefficient of a vertex v is de-
fined as below.

3 X # triangles adjacent to u

lusteri f.(v) =
clustering coef.(v) # possible triples adjacent to u

(9.7)

To compute a score for link prediction between the vertex x and y, one
can sum or multiply the clustering coefficient score of = and y.

Kernel Feature Conjunction. In many domains, there could be numerous
vertex attributes or the attributes could be complex or attribute values between
a pair of instances may have no apparent match between them, hence direct

250 SOCIAL NETWORK DATA ANALYTICS

application of aggregation function to each such attributes could be either cum-
bersome or misleading. In such a scenario, one can use pairwise kernel based
feature conjunction [43, 9]. The basic idea is to obtain a kernel function that
computes the similarity between two pairs of instances from the feature space
which is expanded through Cartesian product. More details on this approach
will be given below in Section 3.2.

Extended Graph Formulation. For a categorical vertex attribute, we can
make an extended graph where the social network is extended by additional
vertices where each additional vertex represents a specific attribute. The ad-
ditional vertices can have a link among themselves based on co-existence of
other similarity properties. Moreover, an original vertex can also be connected
to an attribute vertex if that vertex shares that attribute value. This process can
be repeated for any number of vertex attributes. Now, all the graph topological
metrics can be deployed in the extended graph to compute a similarity score
which considers both attributes and graph topology. For example, for link
prediction in a co-authorship network, Hasan et. al. [22] considered an author-
keyword extended graph where an additional vertex is added for each keyword.
Each keyword node is connected to an author node, if that keyword is used by
the authors in any of his papers. Moreover, two keywords that appear together
in any paper are also connected by an edge. In this way, if two vertices do
not have any matching values for an attribute, they can still be similar through
the similarity link among the attributes values. Say, an author x is connected
to a keyword node, named machine learning and the author y is connected to
another keyword node, named information retrieval and if machine learning
and information retrieval are connected to each other in this extended graph,
attribute based similarity between node x and y can be inferred through the
extended graph.

Generic SimRank. In the above extended graph, we use the concept that
“two objects are similar if they are similar to two similar objects”. Jeh and
Widom [27] suggested a generic metric called SimRank which captures this
notion recursively. The simRank score is the fixed point of the following re-
cursive equation.

ifr=y

otherwise

1
simRank(x,y) = { > el (x) Zbel“(y) simRank(a,b)
v T(@)] - [T()]

Note that, if we apply simRank in the extended graph, the similarity score
considers both the graph topological and attribute based similarity.

A Survey of Link Prediction in Social Networks 251

3.2 Classification Models

There exist a plethora of classification models for supervised learning, such
as decision trees, naive Bayes, neural networks, SVMs, k nearest neighbors,
and ensemble methods like bagging and boosting. Also regression models like
logistic regression can also be used for this task [38]. Although their perfor-
mances are comparable, some usually work better than others for a specific
data set or domain. In [22], the authors found that for a co-authorship so-
cial network, bagging and support vector machines have marginal competitive
edge. However, learning a model for a link prediction task has some specific
challenges that may make some models more attractive than others.

In this section we first discuss the specific challenges when modeling link
prediction as a classification task. We then discuss supervised learning models
that are custom-made to cope with some of these challenges.

1000000
100000
10000
i
e 1000
= — actual collabs.
o 100 .
5 possible collabs.
2 10
o
0.1
0.01
S o L @ O L& & D £ B
= O) 2y 5 L8] (s] () (s (8]
SRR SR A A R

Figure 9.1. Logarithmic plot of actual and possible collaborations between DBLP authors,
1995-2004 [49].

Challenges for Link Prediction as Classification. The first challenge in
supervised link prediction is extreme class skewness. The number of possible
links is quadratic in the number of vertices in a social network, however the
number of actual links (the edges in the graph) added to the graph is only
a tiny fraction of this number. This results in large class skewness, causing
training and inference to become difficult tasks. Hasan et. al. [22] reported very
good performance of link prediction on DBLP and BIOBASE datasets, but they
ignored the class distribution and reported cross validation performance from a
dataset where the population is balanced. It is fair to say that the performance

252 SOCIAL NETWORK DATA ANALYTICS

would drop (sometimes significantly) if the original class distribution were
used. Rattigan an Jensen [49] studied this problem closely. As illustrated in
Figure 9.1, they showed that in the DBLP dataset, in the year 2000, the ratio
of actual and possible link is as low as 2 x 107°. So, in a uniformly sampled
dataset with one million training instances, we can expect only 20 positive
instances. Even worse, the ratio between the number of positive links and the
number of possible links also slowly decreases over time, since the negative
links grow quadratically whereas positive links grow only linearly with a new
node. As reported in [49], for a period of 10 years, from 1995 to 2004 the
number of authors in DBLP increased from 22 thousand to 286 thousand, thus
the possible collaborations increased by a factor of 169, whereas the actual
collaborations increased by only a factor of 21.

Figure 9.2. Schematic of the effect of large class skew on a model’s ability to discriminate
between classes. In first case (top), the two distributions are easily distinguished. In the sec-
ond case (bottom), large class skew makes the discrimination really difficult. Image taken
from [49].

The problem of class skew in supervised learning is well known in machine
learning. The poor performance of a learning algorithm in this case results
from both the variance in the models estimates and the imbalance in the class
distribution. Even if a low proportion of negative instances have the predictor
value similar to the positive instances, the model will end up with a large raw
number of false positives. We borrowed the following schematic explanation
(see Figure 9.2) from [49]. For a hypothetical dataset, let us consider a pre-
dictor s measured on the instance pairs. Also assume that the values of s are
drawn from a normal distribution with different means for positive (linked) and

A Survey of Link Prediction in Social Networks 253

negative (not-linked) object pairs. In presence of large class skew, the entirety
of the positive class distribution is “swallowed” by the tail of the negative class,
as shown in Figure 9.2.

To cope with class skew, existing research suggests several different ap-
proaches, such as altering the training sample by up-sampling or down-sampling [12],
altering the learning method by making the process active [16] or cost-sensitive [28],
and also more generally by treating the classifier score with different thresh-
olds [48]. For kernel based classification, there exist some specific meth-
ods [63, 57] to cope with this problem. In general, learning from imbalanced
datasets is a very important research consideration and we like to refer the
reader to [60], which has a good discussion of various techniques to solve this.

The second challenge in supervised link prediction is model calibration [42],
which is somewhat related to the class imbalance problem. However, model
calibration is worth mentioning in its own merit because in the application do-
main of link prediction, calibrating the model is sometimes much more crucial
than finding the right algorithm to build the classification model. Model cali-
bration is the process to find the function that transforms the output score value
of the model to a label. By varying (or biasing) the function we can control
the ratio of false positive error and false negative error. In many application
domains of link prediction, such as for detecting social network links in a ter-
rorist network, the cost of missing a true link could be a catastrophic. One the
other hand, in online social networks, recommending (predicting) a wrong link
could be considered a more serious mistake than missing a true link. Based on
these, the system designer needs to calibrate the model carefully. For some
classifiers, calibration is very easy as the model predicts a score which can be
thresholded to convert to a +1/-1 decision. For others, it may requires some
alteration in the output of the model.

Another problem of link prediction is the training cost in terms of time
complexity. Most of the social networks are large and also due to the class
imbalances, a model’s training dataset needs to consists of a large number of
samples so that the rare cases [60] of the positive class are represented in the
model. In such a scenario, classification cost may also become a considera-
tion while choosing the model. For instance, running an SVM with millions of
training instances could be quite costly in terms of time and resources, whereas
Bayesian classification is comparably much cheaper.

Another important model consideration is the availability of dynamic updat-
ing options for the model. This is important for social networks because they
are changing constantly and a trade off between completely rebuilding and up-
dating the model may be worth considering. Recently, some models have been
proposed that consider dynamic updates explicitly.

Above we also discussed how vertex attributes can be used for the task of
link prediction. In supervised classification of link prediction, this is some-

254 SOCIAL NETWORK DATA ANALYTICS

times tricky because an instance in the training data represents a pair of ver-
tices, rather than a single vertex. If the proposed model provides some options
to map vertex attributes to pair attributes smoothly, that also makes the model
an excellent choice for the link prediction task. Below we discuss a couple of
supervised models that address some of the above limitations more explicitly.

3.2.1 Chance-Constrained with Second-Order Cone Programming.
To explicitly handle imbalanced datasets, Doppa et. al. [15] proposed a sec-
ond order cone programming (SOCP) formulation for the link prediction task.
SOCP can be solved efficiently with methods for semi-definite programs, such
as interior point methods. The complexity of SOCP is moderately higher than
linear programs but they can be solved using general purpose SOCP solvers.
The authors discussed two algorithms, named CBSOCP (Cluster-based SOCP
formulation) and LBSOCP (Specified lower-bound SOCP).

In CBSOCEP, the class conditional densities of positive and negative points
are modeled as mixture models with component distribution having spherical
covariances. If k; and ko denotes the number of components in the mixtures
models for the positive and negative class, CBSOCEP first finds k; positive clus-
ters and ky negative clusters by estimating the second order moment (1,) of
all the clusters. Given these positive and negative clusters, it obtains a discrim-
inating hyperplane (w” = — b = 0), like in SVM, that separates the positive and
negative clusters. The following two chance-constraints are used.

PrwTX; —b>1)>n :Vie {1...ki}
Pr(wTXj—bS—1)27)2:Vj€{1...k2}

Here X; and X; are random variables corresponding to the components of
the mixture models for positive and negative classes, and 71 and 7y are the
lower bound of the classification accuracy of these two classes. The chance-
constraints can be replaced by deterministic constraints by using multinomial
Chevyshev inequality (also known as Chevishev-Cantelli inequality) as below:

. k
mingpe, iy &

s.t. yi(wlp —b) >1— &+ koW, Vi=1,...k
yi(wlps —b) > 1 =& + koo W, Vji=1,... .k
& >0 Vi=1,...,k1 + ko
W = [lw|2
where, k = k1 + ko, k; = lﬁim and W is a user-defined parameter which

lower bounds the margin between the two classes. By solving the above SOCP
problem, we get the optimum values of w and b, and a new data point x can be
classified as sign(w? z — b).

LBSOCP imposes lower bounds on the desired accuracy in each class, thus
controlling the false positive and false-negative rates. It considers the following

A Survey of Link Prediction in Social Networks 255

formulation:

MMy b %||w||2
s.t. Pr(XeHs) <1—m
Pr X eHi) <1—1np
X1~ (p1,%1), Xo ~ (2, 2)

where H; and Hs denote the positive and negative half-spaces, respectively.
The chance constraints specify that the probability that false-negative and false-
positive rate should not exceed 1 — 1y and 1 — 79, respectively. Like before,
using Chevyshev inequality, this can be formulated using a SOCP problem as
below:
ming ¢ ¢
s.t. t > ||wl||2
wlpy —b> 1+ k1]|CLwl2
b—wlpy > 1+ ka||CLw|ls

where, k; = ljirz" and C and (5 are square matrices such that > =
T

C’lClT and Xy = 0202T . Note that such matrices exist since >; and Y5 are
positive semi-definite. After solving this above problem, the optimal value of
w and b can be obtained which can be used to classify new data point = as
sign(wl'z — b).

The strength of above two SOCP formulations is that they allow an explicit
mechanism to control the false positive and false negative in link prediction.
So, they are well suited for the case of imbalanced classification. Also they
are scalable. Authors in [15] show that they perform significantly better than a
traditional SVM classifier.

3.2.2 Pairwise Kernel Approach. In Section 3.1, we discussed the
pairwise kernel technique for automatically converting the vertex attributes to
pair attributes; this technique has been used to build kernel based classifiers for
link prediction [30]. The main objective is to build a pair-wise classifier [43,
30]. Standard binary classification problem aims to learn a function f : V —
{+1,—1}, where V indicates the set of all possible instances. On the other
hand, in the (binary) pairwise classification, the goal is to learn a function
f:VvW xv@ 5 (41 -1}, where VD and V®) are two sets of possible
instances. There also exists a matrix F of size [V(1)| x [V (2| whose elements
are +1 (link exist) and -1 (link does not exist). For link prediction task, /1) =
V() =V the vertex set of the social network G(V, F) and the matrix F is just
the adjacency matrix of the graph G. For pairwise classification using kernels,
we also have two positive semi-definite kernel matrices, K and K@ for
V) and V) respectively. For link prediction task, K') = K®) = K. K

256 SOCIAL NETWORK DATA ANALYTICS

is a kernel matrix of size |V'| x |V, in which each entry denotes the similarity
between the corresponding pair of nodes in the social network. To compute K,
any function that maps a pair of nodes to a real number can be used as long as
K remains semi-definite.

Generally, the assumption that drives pair-wise classification is that the sim-
ilarity score between a pair of instances (an instance itself is a pair) is higher if
the first elements from both the instances are similar and also the second ele-
ments from both the pairs are similar. So, if v, (1) e y@ @ @ ¢ y@)

Z1’71 ’12’]2
1)

and (v (1) (2)) and (v (1) (2)) are similar, we expect v; * and le) are similar

11 ’ z) 7
and vg) and vg) are similar. To model this expectatlon in the kernel frame-
work, [43] proposed to consider the pairwise similarity to be the product of

two instance-wise similarities, 1.e.,

o (08 o). 0} o) = KLy (K
Since the product of Mercer kernels is also a Mercer kernel [51], the above sim-
ilarity measure is also a Mercer kernel if the element-wise kernels are Mercer
kernels. Using the above formulation, the kernel for the pair-wise classifier is
just the Kronecker product of the instance kernel matrices: Ky, = KN @K®),
This pairwise kernel matrix can be interpreted as a weighted adjacency matrix
of the Kronecker product graph [26] of the two graphs whose weighted ad-
jacency matrices are the instance-wise kernel matrices. [30] named it as Kro-
necker Kernel and proposed an alternative that is based on Cartesian product
graph, hence named Cartesian kernel. The difference between them is just the
way how these two product graphs are formed. In case of Kronecker product,
if (v (1) (2)) and (v; (1) (2)) are node pairs in the product graph, there exist a

11 ’ 12 g1’ j2
link between the pair v() () and also a link between the pair vg)

e
J2
two pairs in the product graph exists if and only if v () =

()andvj()

and vy and

. On the other hand, for the case of Cartesian product a link between these
() in the first graph
and there is a link between v in the second graph or a link exists

between v(Jand v() in the first graph and v () = = v,) ;
Based on th1s Carte51an kernel is defined as below

in the second graph.
b (0], 02), (08, 082)) = 8(ia = 1)K V)i, 5, + 81 = j1) K@i, 5

For link prediction on undirected graphs, both the instance matrices are the
same and also the element pairs in an instance are exchangeable. The Kro-
necker kernel can be made symmetric as below:

k%YM((Uil) UiQ)v (UqujQ)) = [K]i1,j1 [K]iz,jQ + [K]h,jz [K]iz,ﬁ

A Survey of Link Prediction in Social Networks 257

And for Cartesian kernel it is as shown below:

k%YM((inviz)a (Ujlvvjz)) = 0(ia = j2)[K]i1,j1 +6(i1 = jl)[K]iz,jz
+6(i2 = j1)[Kliy jo +0(i1 = j2)[Kliz 5y

The advantage of Cartesian kernel over the Kronecker kernel is that it has many
more zero entries (an entry is zero if the two pairs do not share at least one
instance). So, the training time is much faster. [30] showed via experiments
that its performance is comparable with respect to the Kronecker kernel.

4. Bayesian Probabilistic Models

In this section, we will discuss supervised models that use Bayesian con-
cepts. The main idea here is to obtain a posterior probability that denotes the
chance of co-occurrence of the vertex pairs we are interested in. An advantage
of such model is that the score itself can be used as a feature in classifica-
tion, as we discussed in section 3.2. Contenders in this category are the al-
gorithms proposed by Wang, Satuluri and Parthasarathy [58] and by Kashima
and Abe [29]. The former uses a MRF based local probabilistic model and
the later uses a parameterized probabilistic model. [58] also takes the output
from the probabilistic method and uses it as a feature in a subsequent steps that
employs several other features (Katz, vertex attribute similarity) to predict a
binary value.

4.1 Link Prediction by Local Probabilistic Models

Wang et. al. [58] proposed a local probabilistic model for link prediction that
uses Markov Random Field (MRF), an undirected graphical model. To predict
the link between a pair of nodes x and y, it introduces the concept of central
neighborhood set, which consists of other nodes that appear in the local neigh-
borhood of x or y. Let {w,z,y, z} be one such set, then the main objective
of this model is to compute the joint probability P({w,z,y, z}), which repre-
sents the probability of co-occurrence of the objects in this set. This probabil-
ity can be marginalized (in this example, over all possible w and z) to find the
co-occurrence probability between = and y. There can be many such central
neighborhood sets (of varying size) for the pair « and y, which makes learning
the marginal probability (p(x,y)) tricky. The authors exploited MRFs to solve
the learning problem; their approach has three steps, as described below.

The first step is to find a collection of central neighborhood sets. Given two
nodes x and y, their central neighborhood sets can be found in many ways.
The most natural way is to find a shortest path between = and y and then all
the nodes along this path can belong to one central neighborhood set. If there
exist many shortest paths of the same length, all of them can be included in
the collection. Finding shortest path of arbitrary length can be costly for very

258 SOCIAL NETWORK DATA ANALYTICS

large graphs. So in [58] the authors only considered shortest paths up to length
4. Let us assume that the set () contains all the objects that are present in any
of the central neighborhood set.

The second step is to obtain the training data for the MRF model, which is
taken from the event log of the social network. Typically a social network is
formed by a chronological set of events where two or more actors in the net-
work participate. In case of co-authorship network, co-authoring an article by
two or more persons in the network is an event. Given an event-list, [58] forms
a transaction dataset, where each transaction includes the set of actors partic-
ipates in that event. On this dataset, they perform a variation of itemset min-
ing, named non-derivable itemset mining, which outputs all the non-redundant
itemsets (along with their frequencies) in the transaction data. This collection
is further refined to include only those itemsets that contain only the objects
belonging to the set (). Assume this collection is the set 1.

In the final step, an MRF model (say, M) is trained from the training data.
This training process is translated to a maximum entropy optimization problem
which is solved by iterative scaling algorithm. If By (Q) is the probability
distribution over the power set of @, we have }° . o) Prm(q) = 1, where
©(Q) denotes the power-set of (). Each itemset along with its associated count
in the set V imposes a constraint on this distribution by specifying a value for
that specific subset (of @)). Together, all these counts restrict the distribution
to a feasible set of probability distributions, say P. Since, the itemset counts
come from empirical data, P is non-empty. But, the set of constraints coming
through Vg typically under-constrains the target distribution, for which we
adopt the maximum entropy principle so that a unique (and unbiased) estimate
of Pps(Q) can be obtained from the feasible distribution set P. Thus, we are
trying to solve the following optimization problem,

Py (Q) = argmax H(p)
peP
where, H(p) = — >, p(x) logp(z). The optimization problem is feasible
and a unique target distribution exists only if the constraints are consistent (in
this case, the frequency constraints are consistent since they are taken from the
itemset support value). The solution has the following product form:

I(constraint Vj satisfies)
Pr(Q) = po H 1
Jj:V;€Vq

Here, p; : j € {1...|Vg]|} are parameters associated with each constraint,
I is an indicator function which ensures that a constraint is considered in
the model only if it is satisfied and ug is a normalizing constant to ensure
qu@(Q) Purr(g) = 1. The value of the parameters can be obtained by an
iterative scaling algorithm; for details, see [44].

A Survey of Link Prediction in Social Networks 259

Once the model Py (Q) is built, one can use inference to estimate the joint
probability between the vertex x and y. The advantage of a local mode is
that the number of variables in the set 1}y is small, so exact inference is feasi-
ble. [58] used the Junction Tree algorithm as an inference mechanism.

4.2 Network Evolution based Probabilistic Model

Kashima et. al. [29] proposed an interesting probabilistic model of network
evolution which can be used for link prediction. The connection between these
two problems is emphasized in [36] that we quote here: “a network model
is useful to the extent that it can support meaningful inference from observed
network data”. Motivated from this statement, the authors in [29] showed that
by having tunable parameters in an evolution model naturally gives rise to a
learning algorithm for link prediction. First we discuss the network evolution
model and later show how they use the model to perform link prediction.

The proposed evolution model considers only the topological (structural)
properties of the network. For a graph G(V, ¢), where V is the set of nodes and
¢ : V xV —[0,1] is an edge label function, ¢(z,y) denotes the probability
that an edge exists between node = and y in G. In particular, ¢(z,y) = 1
denotes that an edge exists and ¢(x,y) = 0 denotes that an edge does not
exist. ¢(*) denotes the edge label function at time ¢, which changes over time;
further, the model is Markovian, i.e., ¢t1) depends only on ¢*). In this
model V remains fixed. The model evolves over the time as below: An edge
label is copied from node ! to node m randomly with probability w,,. First,
the model decides on [and m, then chooses an edge label uniformly from one
of I’s |[V| — 1 edge labels (excluding ¢(I,m)) to copy as m’s edge label. The
model satisfies the following probability constraints.

Zwlm =1, wyp > 0,wy =0

Im

The above idea closely resembles the transitivity property of social network —
a friend of a friend becomes a friend. Through the edge label copying process,
[can become friend of one of m’s friend. The learning task in the above model
is to compute the weights w;; and the edge labels #D given the edge label
#® from training dataset.

There are two possible ways for ¢(*) (1, 7) to assume a particular edge label.
The first is that node k copied one of its edge label to either node ¢ or to node
j. The other is that, copying happened elsewhere and ¢tV (i,5) = ¢®.
Following this, we have:

260 SOCIAL NETWORK DATA ANALYTICS

e e w1 (=1
ki,
i k;J st s, 5) 1 (6709 = 1) 9.8)

L |V|%1 Z (wij + wii) | 9,)
ki,

Note that, for the case when the copy happens if k copies its label to node %,
then & should already have an edge with j and if &k copies its label to node
j, it should already have an edge with ¢. This requirement is manifested by
the indicator function I, which assumes a value 0 if the condition inside the
parenthesis is not satisfied. By iterative application of this equation on the
edge labels, the network structure evolves over time.

For the task of link prediction, the model considers that the current network
is in an stationary state, i.e., ¢ (k,i) = ¢tV (k i) = ¢ (k,i); by plug-
ging this assumption in Equation 9.8, we obtain the following equation

_ Dk (Wi (k,9) + wig > (k, 7))

) (9.9)
> krig (Whj + W)
The log-likelihood for the edge label ¢(i, j) can be written as
L 400) (4 1) g ki (W8 (ki) twiid (™) (k.5)
L’L] ¢ (Z7j) Og Zk;éi,j (’w(ijrw]El)) -)
1— (i M1 1 Dzig (Wiy 8% (k1) Fwes '™ (k.5)
(¢ (Za.])) og < Zk;éi,j (wkj-‘rw]”)
(9.10)
Total log-likelihood for the known edge labels is defined as:
LW)= > L (9.11)

(i,4)€ B
Now, the parameter estimation process is mapped to the following constrained
optimization problem:
Maximizew7¢(oo)(i7j) for (i,7)€ Etein L(W)
S. t.

6 (i, j) = 2
Z (Wij + Wii)
ki,

Etrain’ andZwlm = 1, Wim, >0

Iym

V(i J) €

A Survey of Link Prediction in Social Networks 261

The above optimization problem can be solved by an Expectation Maxi-
mization type transductive learning; for details, see [29].

The benefit of this model is that it is very generic and can be applied to any
social network. Further, the EM based learning yields an efficient algorithm.
However, the performance of the algorithm entirely depends on the degree to
which the network agree to the proposed graph evolution model.

4.3 Hierarchical Probabilistic Model

Clauset et. al. [14] proposed a probabilistic model which considers the hi-
erarchical organization in the network, where vertices divide into groups that
further subdivide into groups of groups and so forth over multiple scales. The
model infers hierarchical structure from network data and can be used for pre-
diction of missing links. It is proposed as a probabilistic model for hierarchical
random graphs. The learning task is to use the observed network data to fit the
most likely hierarchical structure through statistical inference — a combination
of the maximum likelihood approach and a Monte Carlo sampling algorithm.

Let G be a graph with n vertices. A dendogram D is a binary tree with n
leaves corresponding to the vertices of G. Each of the n— 1 internal nodes of D
corresponds to the group of vertices that are descended from it. A probability
pr 18 associated with each internal node r. Then, given two vertices ,j of G,
the probability p;; that they are connected by an edge is p;; = p, where r is the
lowest common ancestor in D. The combination, (D, {p.}) of the dendogram
and the set of probabilities then defines a hierarchical random graph.

The learning task is to find the hierarchical random graph or graphs that best
fits the observed real world network data. Assuming all hierarchical graphs are
a priori equally likely, the probability that a given model, (D, {p.}) is the
correct explanation of the data is, by Bayes theorem, proportional to the poste-
rior probability or likelihood, £ with which the model generates the observed
network. The goal is to maximize L.

Let E,. be the number of edges in G whose endpoints have r as their lowest
common ancestor in D, and let L, and R,, respectively, be the numbers of
leaves in the left and right subtrees rooted at r. Then, the likelihood of the

hierarchical random graph is £(D, {p.}) H pEr(1 — p,)rftr=Er with
reD

the convention that 0° = 1. If we fix the dendogram D, it is easy to find the

probabilities {p, } that maximize £(D, {p,}), which is:

(9.12)

262 SOCIAL NETWORK DATA ANALYTICS

the fraction of the potential edges between the two subtrees of r that actually
appear in the graph G. The logarithm of the likelihood is:

log £(D) = — Y L.R.h(p,) (9.13)
reD
where, h(p) = —plog p— (1 —p) log(1—p). Note that each term — L, R,.h(p,)
is maximized when P, is close to 0 or close to 1. In other words, high-
likelihood dendograms are those that partition the vertices into groups between
which connections are either very common or very rare.

The choice among the dendograms are made by a Markov chain Monte
Carlo sampling method with probabilities proportional to their likelihood. To
create the Markov chain, the method first creates a set of transitions between
possible dendograms through rearrangement. For rearrangement, the method
chooses an internal node of a dendogram and then chooses uniformly among
various configuration of the subtree at that node; for details, see [14]. Once
the transition criteria is known the sampling process initiates a random walk.
A new rearrangement is accepted according to the Metropolis-Hastings sam-
pling rule, i.e., for a transition from a dendogram D to another rearranged
dendogram I, the transition is accepted if Alog £ = log £L(D') — log L(D)
is nonnegative, otherwise it is accepted with a probability £(D)/L(D). Au-
thors proved that the random walk is ergodic and at stationary distribution the
dendogram are sampled according to their probability of likelihood.

For the task of link prediction, a set of sample dendograms are obtained at
regular intervals once the MCMC random walk reaches an equilibrium. Then,
for the pair of vertices « and y for which no connection exists, the model com-
putes a mean probability p,, that they are connected by averaging over the
corresponding probability p,, in each of the sampled dendograms. For a bi-
nary decision, a model calibration can be made through a calibration dataset.
The unique nature of the hierarchical random graph model is that it allows an
hierarchy in the model. Also, it allows to sample over the set of hierarchical
structures to obtain a consensus probability. On the downside, it may not be
that accurate unless MCMC converges to the stationary distribution in a rea-
sonable number of steps. Also for large graphs the entire process could be very
costly.

5. Probabilistic Relational Models

In earlier sections, we discussed that the vertex attributes play a significant
role in link prediction task. We also showed how different link prediction
methods try to incorporate the vertex attributes in the prediction model to ob-
tain better performance. However, in most of the cases, these approaches are
not generic, and thus, are not applicable in all possible scenarios. Probabilis-
tic Relational model (PRM) is a concrete modeling tool that provides a sys-

A Survey of Link Prediction in Social Networks 263

tematic way to incorporate both vertex and edge attributes to model the joint
probability distribution of a set of entities and the links that associate them.
The benefit of a PRM is that it considers the object-relational nature of struc-
tured data by capturing probabilistic interactions between entities and the links
themselves. So, it is better than a flat model which discards such relational in-
formation. There are two pioneering approach of PRM, one based on Bayesian
networks, which consider the relation links to be directed [21], and the other
based on relational Markov networks, which consider the relation links to be
undirected [53]. Though both are suitable for link prediction task, for most
networks an undirected model seems to be more appropriate due to its flexibil-
ity.

As an example consider the link prediction problem in a co-authorship net-
work. The only entities that other (non-relational) models consider is the per-
son. However, in PRM we can mix heterogeneous entities in the model. So
it is entirely possible to include other relevant objects in this model, such as
article, conferenceVenue, and institution. Similar to a database schema, each
of these objects can have attributes. For example, a person may have attributes
like name, affiliationinstitute, status (whether (s)he is a student, an employee
or a professor); an article may have publicationYear, conferenceVenue; an in-
stitute may have location, and a conference venue may have attributes like
ResearchKeywords and so on. Then there can be relational links between these
entities. Two person can be related by an advisor/advisee relationship. A per-
son can be related to a paper by an author relationship. A paper can be related
to a conference venue by publish relationship. In this way, the model can in-
clude a complete relational schema similar to an object relational database.

PRM was originally designed for the attribute prediction problem in rela-
tional data. For link prediction task, it was extended [21, 53] so that the links
are first-class citizens in the model, so additional objects, named /ink objects
are added in the relational schema. Any link object, [, is associated with a tu-
ple of entity objects (o1, . .. o) that participate in the relation (for most of the
cases, links will be between a tuple of two entity objects). Following the ex-
ample in the previous paragraph, one of the link object can be advisor/advisee
object that relates two persons. The model also allows the link objects to have
attributes. Now, consider a object named potentialLink that relates two per-
sons. It has a binary attribute named exist which is frue if there exists a link
between the associated objects, and false otherwise. The link prediction task
now reduces to the problem of predicting the existence attribute of these link
objects.

In the training step of the model, a single probabilistic model is defined over
the entire link graph, including both object labels and links between the objects.
The model parameters are trained discriminatively, to maximize the probability
of the (object) and the link labels given the known attributes. The learned

264 SOCIAL NETWORK DATA ANALYTICS

model is then applied using probabilistic inference, to predict and classify links
using observed attributes and links.

5.1 Relational Bayesian Network

Relational Bayesian Network (RBN) is the relational counterpart of a Bayesian
network (BN). Hence, the model graph of RBN G¥, = (Viy, Ey) is a di-
rected acyclic graph with a set of conditional probability distribution (CPD) to
represent a joint distribution over the attributes of the item types. Each CPD
corresponding to an attribute X represents P(X|pa(X)), where pa(X) are
the parents of X in the network. In RBN, like BN, the joint probability dis-
tribution can be factorized according to the dependencies in the acyclic graph
structure. RBN has closed-form parameter estimation techniques, which make
the learning of the model parameters very efficient. The learning process is
almost identical to BN. As for inference, RBN adopts belief propagation [21],
which could perform poorly in many cases.

5.2 Relational Markov Network

Relational Markov Network (RMN) is the relational counterpart of undi-
rected graphical models or Markov Networks [45]. Let V' denotes a set of
discrete random variables, and v is an instantiation of the variables in V. A
Markov network for V' defines a joint distribution over V' through an undi-
rected dependency network and a set of parameters. For a graph G, if C(G) is
the set of cliques (not necessarily maximal), the Markov network defines the
distribution p(v) = % [] cec(@) Pe(ve), where Z is the standard normalizing
factor, v, is the vertex set of the clique ¢, and ¢, is a clique potential function.
RMN specifies the cliques using the notion of a relational clique template,
which specifies tuples of variables in the instantiation using a relational query
language.

Given a particular instantiation Z of the schema, the RMN M produces
an unrolled Markov network over the attributes of entities in Z (see [55] for
details). The cliques in the unrolled network are determined by the clique
template C. There exists one clique for each ¢ € C'(Z), and all of these cliques
are associated with the same clique potential ¢. Tasker et. al. [54] show how
the parameters of a RMN over a fixed set of cliques can be learned from data.
In a large network with a lot of relational attributes, the network is typically
large, so exact inference is typically infeasible. So, like RBN, RMN also uses
belief propagation for inference.

Besides the above two, their exists several other relational models that can
be used for link prediction. These are Bayesian relational models such as
DAPER (Directed Acyclic Probabilistic Entity Relationship) [24], relational
dependency network [23], parametric hierarchical Bayesian relational model [62],

A Survey of Link Prediction in Social Networks 265

non-parametric hierarchical Bayesian relational model [61] and stochastic re-
lational model [64]. For details on these, we encourage the readers to read the
respective references.

6. Linear Algebraic Methods

Kunegis et. al. [33] proposed a very general method that generalizes several
graph kernels and dimensionality reduction methods to solve the link predic-
tion problem. This method is unique in the sense that it is the only method that
proposes to learn a function I’ which works directly on the graph adjacency or
the graph Laplacian matrix.

Let A and B be two adjacency matrices of the training and test set for the
link prediction. We assume that they have the same vertex set. Now, consider a
spectral transformation function F' that maps A to B with minimal error given
by the solution to the following optimization problem:

mingp || F(A) - B|r (9.14)
st. FeSs
where || . ||F denotes the Frobenius norm. Here, the constrain ensures that

the function F' belongs to the family of spectral transformation functions (S).
Given a symmetric matrix A = UAU7, for such an F, we have F(A) =
UF(A)UT, where F(A) applies the corresponding function on reals to each
eigenvalue separately. Note that the above formulation of link prediction is
a form of transductive learning as the entire test data is available to learn the
model parameters.

The optimization problem in (9.14) can be solved by computing the eigen-
value decomposition A = UAU? and using the fact that the Frobenius norm
is invariant under multiplication by an orthogonal matrix

| F'(A) — Bl|r
= [|[UF(A)U" - B|r
= | F(A) - U"BU||p (9.15)

Since, the oft-diagonal entries in the expression (9.15) are not dependent on
the function F, the desired optimization function on the matrix can be trans-
formed into an optimization function on real numbers as below:

min; Y (f(As) - UTBU,)? (9.16)

So, the link prediction problem thus reduces to a one-dimensional least square
curve fitting problem.

266 SOCIAL NETWORK DATA ANALYTICS

Now, the above general method can be used to fit many possible spectral
transformation functions. In particular, we are looking for a function F' that
accepts a matrix and return another matrix which is suitable for link prediction,
i.e., the entries in the returned matrix should encode the similarity between the
corresponding vertex pairs. There are many graph kernels which can be used
for the function F'.

Exponential Kernel. For an adjacency matrix of an unweighted graph, A,
the powers, A™ denotes the number of paths of length n connecting all node
pairs. On the basis that the nodes connected by many paths should be consider
nearer to each other than nodes connected by few paths, a function F' for link
prediction can be as below:

d
Fp(A)=>_ ;A (9.17)
=0

The constant «; should be decreasing as « grows larger to penalize longer
paths. Now an exponential kernel can be expressed as below which models the
above path counting.

exp(aA) = %Ai (9.18)
i=0

Von-Neumann Kernel. It is defined similar to the exponential kernel
o . .
(I—aA)' =) oA (9.19)
i=0

it also models a path counting kernel.

Laplacian kernels. The generic idea proposed in this method is not con-
fined to use functions on adjacency matrix. In fact, one is also allowed to use
functions that apply on the Laplacian matrix, I which is defined as L. = D—A,
where D is the diagonal degree matrix. The normalized Laplacian matrix, £
is defined as £ = I — D~ '/2LD~'/2. While using Laplacian matrices, the en-
tire formulation proposed in this method remains the same except that instead
of an adjacency matrix we use a Laplacian matrix. Many graph kernels are
defined on the Laplacian matrix. For example, by taking the Moore-Penrose
pseudo-inverse of the Laplacian we can obtain the commute time kernel:

Foom(L) = LT
Foom(L) = LT

A Survey of Link Prediction in Social Networks 267

by applying regualrization, we can obtain regularized commute time kernels:
Feomr(L) = (I+ OéL)f1
Feomr(L) = I+aL)™!

We can also obtain heat diffusion kernels as below:

fupar(L) = exp(—al)
fuear(L) = exp(—aLl)

| Link Prediction Function | Real Function
Fp(A) = Y1 aiA’ flw) =2, i’
Fexp(A) = exp(aA) flx) =e*”
Fypu(A) = ((I) —aA)™" | f(2) = =5
Feom(L) =L7T f(z) =2'—1) when z > 0, f(z) = 0, otherwise
Feomn(L) = () +aL)™" | 7(z) = 1
Fupar(L) = (exp)(—aL) | f(z)=e"""

Table 9.1. One dimensional link prediction functions

For some of the above functions, the corresponding one dimensional func-
tion on reals is shown in Table 9.1.

The advantage of this method is its genericity and simplicity. The number
of parameters to learn in this model is much less compared to many other mod-
els that we discussed. On the downside, this model cannot incorporate vertex
based attributes. Morevoer, The computational cost of this method mostly de-
pends on the cost of eigen-decomposition of A, which could be costly for large
matrices. However, efficient methods for this task are available [19].

7. Recent development and Future Works

In recent years, the works on link prediction has evolved over various as-
pects. One of the main aspects among these is to consider the time in the
model, which can be named as time-aware link prediciton [56, 5]. Some of
the algorithms that we discussed in this survey can be extended to consider the
temporal attribute of a link. For example, algorithms that perform supervised
learning by using a set of features can directly consider the temporal properties
in the feature value calculation. For instance, while computing Jaccard coeffi-
cient between two nodes, one can redefine the similariy metric so that recent
association is weighted more than the past associations. But, the approach is
somewhat ad-hoc because the desired (or optimal) temporal weighting mecha-
nism is not available and for different metrics different weighting may apply. In
case of relational model, we can always include time in the relational schema
just as an edge attribute. However, in the context of link prediction, the model

268 SOCIAL NETWORK DATA ANALYTICS

needs to accord special treatment for the time attribute, so that progression of
the time can be captured in the model properly instead of just matching the
time values. Tylenda et. al. [56] showed that considering the time stamp of the
previous interactions significantly improves the accuracy of the link prediction
model. Ahmed et. al. [5] proposed an scalable solution to a slightly different
problem from link prediction, where they find how links in the network vary
over time. They use a temporally smoothed /;-regularized logistic regression
formalism to solve this problem. Techniques like these can be borrowed to
perform time-aware link prediction in a more principled manner.

Another important concern is the scalability of the proposed solutions for
link prediction. Social networks are large and many of the proposed solutions,
specifically, the probabilistic methods that consider the entire graph in one
model is too large for most of the inference mechanisms to handle. Technique
such as kernel based methods are also not scalable, because it is practically
impossible to obtain a kernel matrix for such a large graph data. Note that a
kernel matrix in this case is not of size |V/| x |V, but of size |V?| x |[V2|.
For most of the real-life social networks, |V| is in the range of several millions
to even billions, for which this approach is just not feasible. Even for the
methods that perform feature based classification, computation of some of the
features are very costly. Specially features such as Katz and rooted pagerank
may require significant time to compute their values for a large number of
vertex pairs. So, an approximate solution for these features can be a good
research topic (see for example [52]).

Game theoretic concepts are very prominent in modeling various social
problems, however these have surprisingly been ignored in the link prediction
task. The closest work is the local connection game proposed by Fabrikant et.
al.[17]. In this game the edges have constant cost and the players try to min-
imize their cost plus the sum of distances to all other pairs. However, such a
local connection model may not be practical in the social network domain be-
cause the utility function partly considers a global objective which minimizes
the distances to all pairs. So, it may not yield good result for the link predic-
tion task. An interesting alteration to this model that considers the utility of a
person in the network from more subjective viewpoint is worth considering.

Acknowledgments

This work was supported in part by NSF Grants EMT-0829835 and EIA-
0103708, and NIH Grant IROIEB0080161-01A1.

References

[1] Acar, Evrim, and Dunlavy, Daniel M., Kolda, Tamara G. (2009). Link Pre-
diction on Evolving Data Using Matrix and Tensor Factorizations. In Pro-

A Survey of Link Prediction in Social Networks 269

ceedings of the Workshop on Large Scale Data Mining Theory and Appli-
cations. ICDM Workshops:262-269

[2] Adamic, Lada A. and Adar, Eytan. (2003). Friends and neighbors on the
web. Social Networks, 25(3):211-230.

[3] Adafre, Sisay F., and Rijke, Maarten de. (2005). Discovering missing
links in Wikipedia. LINK-KDD ’05: Proceedings of the Third International
Workshop on Link Discovery.

[4] Ahmed, Elmagarmid, and Ipeirotis, Panagiotis G., and Verykios, Vassilios.
(2007) Duplicate Record Detection: A Survey. In IEEE Transactions on
Knowledge and Data Engineering 19 (1):18AS16

[5] Ahmed, Amr, and Xing, Eric P. (2009). Recovering time-varying network
of dependencies in Social and biological studies. PNAS 106(29):11878-
11883.

[6] Airodi, Edoardo M., and Blei, David M., and Xing, Eric P., and Fienberg,
Stephen E. (2006). Mixed Membership stochastic block models for rela-
tional data, with applications to protein-protein interactions. Proceedings
of Ineterational Biometric Society-ENAR Annual Meetings.

[7] Barabasi, Albert-Laszlo, and Albert, Reka. (1999) Emergence of Scaling
in Random Networks, Science, 286(5439):509.

[8] Barabasi, Albert-Laszlo, and Jeong, H., and Neda, Z. and Ravasz, E.
(2002) Evolution of the social network of scientific collaboration. Physics
A, 311(3-4):590-614.

[9] Basilico, J., and Hofmann, T. (2004) Unifying Collaborative and Content-
based filtering. In Proceedings of European Conference on Machine
Learning.

[10] Bilgic, Mustafa, and Namata, Galileo M., and Getoor, Lise. (2007). Com-
bining collective classification and link prediction. In Proceedings of the
Workshop on Mining Graphs and Complex Structures at ICDM Confer-
ence.

[11] Brin, Sergey, and Page, Lawrence. (1998). The anatomy of a large-scale
hypertextual Web search engine. Computer Networks and ISDN Systems,
30(1-7):107-117.

[12] Chawla, Nitesh V, and Bowyer, Kevin W., and Hall, Lawrence O., and

W. Kegelmeyer, Philip. (2002) SMOTE: synthetic minority over-sampling
technique. Journal of Artificial Intelligence Research, 16(1):321-357.

[13] Chung, Fan, and Zhao, Wenbo, (2010). PageRank and random walks on
graphs. Proceedings of the "Fete of Combinatorics" conference in honor
of Lovasz.

270 SOCIAL NETWORK DATA ANALYTICS

[14] Clause, Aaron, and Moore, Christopher, and Newman, M. E. J. (2008).
Hierarchical structure and the prediction of missing links in network. Na-
ture 453:98-101.

[15] Doppa, Janardhan R., and Yu, Jun, and Tadepalli, Prasad, and Getoor,
Lise. (2009). Chance-Constrained Programs for Link Prediction. In Pro-
ceedings of Workshop on Analyzing Networks and Learning with Graphs
at NIPS Conference.

[16] Erketin, Syeda, and Huang, Jian, and Giles, Lee. (2007). Active learn-
ing for Class imbalance problem. In Proceedings of the 30th ACM SIGIR
Conference.

[17] Fabrikant, Alex, and Luthra, Ankur, and Maneva, Elitza, and Papadim-
itriou, Christos H., and Shenker, Scott. (2003). On a Network Creation
Game. In Proc. of the twenty-second annual symposium on principles of
distributed computing, pp:347-351.

[18] Freschi, Valerio. (2009). 4 Graph-based Semi-Supervised Algorithm for
Protein Function Prediction from Interaction Maps. In Learning and Intel-
ligent Optimization, Lecture Notes in Computer Science, 5851:249-258

[19] Frieze, A, and Kannan, R., and Vempala, S. (1998) Fast monte-carlo
algorithms for finding low-rank approximations. in Journal of the ACM
(JACM), 51(6):10253AS1041.

[20] Fu, Wenjie, and Song, Le, and Xing, Eric P. (2009) . In Proc. of the 26th
International Conference on Machine Learning.

[21] Getoor, Lise, and Friedman, Nir, and Koller, Dephne, and Taskar, Ben-
jamin. (2002) Learning Probabilistic Models of Link structure. Journal of
Machine Learning Research, 3:679-707.

[22] Hasan, Mohammad A., and Chaoji, Vineet, and Salem, Saeed and Zaki,
Mohammed. (2006) Link Prediction using Supervised Learning. In Pro-
ceedings of SDM Workshop of Link Analysis, Counterterrorism and Se-
curity.

[23] Heckerman, David, and Chickering, David M., and Meek, Christopher,
and Rounthwaite, Robert, and Kadie, Carl M. (2000) Dependency Net-
works for inference, collaborative filtering, and data visualization. Journal
of Machine Learning Research, 1:49-75.

[24] Heckerman, David, and Meek, Christopher, and Koller, Daphne. (2004)
Probabilistic models for relational data. Technical Report, Microsoft.
[25] Huang, Zan, and Li, Xin, and Chen Hsinchun. (2005) Link Prediction
approach to collaborative filtering. Proceedings of the fifth ACM/IEEE

Joint Conference on Digital Libraries.

[26] Imrich, W., Klavzar, S. (2000). Product Graphs: Structure and Recogni-

tion. Wiley.

A Survey of Link Prediction in Social Networks 271

[27] Jeh, Glen, and Widom, Jennifer. (2002) SimRank: A measure of
structural-context similarity. In Proceedings of ACM SIGKDD Interna-
tional Conference of Knowledge Discovery and Data Mining.

[28] Karakoulas, Grigoris, and Shawe-Taylor, John. (1999). Optimizing clas-
sifiers for imbalanced training sets. Proceedings of NIPS, 253-259.

[29] Kashima, Hisashi, and Abe, Naoke. (2006) A Parameterized Probabilistic
Model of Network Evolution for Supervised Link Prediction. ICDM ’06:
Proceedings of the Sixth IEEE International Conference on Data Mining.
340-349.

[30] Kashima, Hisashi, and Oyama, Satoshi, and Yamanishi, Yoshihiro, and
Tsuda, Koji. (2009). On Pairwise Kernels: An Efficient Alternative and
Generalization Analysis, Proceedings of the 13th Pacific-Asia Conference
on Advances in Knowledge Discovery and Data Mining, pp.1030-1037.

[31] Katz, Leo. (1953) 4 new status index derived from sociometric analysis.
Psychometrika, 18(1):39-43.

[32] Kleinberg, Jon M. (2000). Navigation in a small world. Nature 406,
(845).

[33] Kunegis, Jerome, and Lommatzsch, Andreas. (2009) Learning Spectral
Graph Transformations for Link Prediction. In Proceedings of the Interna-
tional Conference on Machine Learning, pp 561-568.

[34] Leskovec, Jure, and Kleinberg, Jon M, and Faloutsos, Christos. (2005).
Graphs over time.densification laws, shrinking diameters and possible ex-
planations. KDD ’05: Proceedings of the Eleventh ACM SIGKDD Inter-
national Conference on Knowledge Discovery in Data Mining.

[35] Li, Xin, Chen Hsinchun. (2009). Recommendation as link prediction: a
graph kernel-based machine learning approach. Proceedings of the ninth
ACM/IEEE Joint Conference on Digital Libraries.

[36] Liben-Nowell, David, and Kleinberg, Jon. (2007). The Link Prediction
Problem for Social Networks. Journal of the American Society for Infor-
mation Science and Technology, 58(7):1019-1031.

[37] Liu, Yan and Kou, Zhenzhen. (2007). Predicting who rated what in large-
scale datasets. SIGKDD Exploration Newsletter, 9 (2).

[38] Madadhai, J., and Hutchins, J., and Smyth, P. (2005). Prediction and
Ranking algorithms for event-based Network Data. SIGKDD Explorations
Newsletter, 7(2):23-30.

[39] Malin, Bradley, and Airoldi, Edoardo, and Carley, Kathlee M. (2005). 4
Network Analysis Model for Disambiguation of Names in Lists. In Journal
of Computational and Mathematical Organization Theory, 11(2):119-139.

[40] Nallapati, Ramesh, and Ahmed, Amr, and Xing, Eric P., and Cohen,
William W. (2008). Joint Latent Topic Models for Text and Citations. In

272 SOCIAL NETWORK DATA ANALYTICS

Proc. of The Fourteen ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining.

[41] Newman, M. E. J. (2001). Clustering and Preferential attachment in
growing networks. PHysical Review Letters E, 64(025102).

[42] Niculescu-Mizil, and Alexandru, and Caruana, Rich. (2005). Predicting
Good Probabilities with Supervised Learning. International Conference on
Machine Learning.

[43] Oyama, Satoshi, and Manning, Christopher D., (2004). Using feature
conjunctions across examples for learning pairwise classifiers, In The
Proc. of European Conference on Machine Learning, pp. 323-333.

[44] Pavlov, Dmitry, and Mannila, Heikki, and Smyth, Phadraic. (2009) Be-
yond Independence: Probabilistic Models for Query Approximation on Bi-
nary Transaction Data. University of California, Irvine Technical Report
UCI-ICS-TR-01-09.

[45] Pearl, Judea. (1988). Probabilistic Reasoning in Intelligent Systems. Mor-
gan Kaufmann, San Fransisco.

[46] Popescul, Alexandrin and Ungar, Lyle H. (2003). Statistical Relational
Learning for Link Prediction. In Proceedings of Workshop on Learning
Statistical Models from Relational Data at IJCAI Conference.

[47] Popescul, Alexandrin and Ungar, Lyle H. (2003). Structural Logistic
Regression for Link Analysis. In Proceedings of Workshop on Multi-
Relational Data Mining at KDD Conference.

[48] Provost, Foster, and Fawcell, Tom. (2001). Robust Classification for Im-
precise Environments. Machine Learning, 42(3):203-231.

[49] Rattigan, Matthew J., and Jensen, David. (2005). The case for anomalous
link discovery. SIGKDD Explorations Newsletter, 7 (2):41-47.

[50] Sarukkai, Ramesh R. (2000). Link Prediction and Path Analysis using
Markov Chain. WWW °00: Proceedings of the Ninth World Wide Web
Conference, 377-386.

[51] Shawe-taylor, J., and Cristianini, Nelo. (2004). Kernel Methods for Pat-
tern Analysis. Cambridge University Press, NY.

[52] Song, Han H., and Cho Tae W., and Dave, Vacha, and Zhang, Yin, and
Qiu, Lili. (2009). Scalable proximity Estimation and Link Prediction in
Online Social Networks, IMC ’09: In Proceedings of the Internet Mea-
surement Conference.

[53] Tasker, Benjamin, and Wong, Ming F., and Abbeel, Pieter, and Koller,
Daphne. (2003). Link Prediction in Relational Data. NIPS ’03: In Pro-
ceedings of Neural Information Processing Systems.

A Survey of Link Prediction in Social Networks 273

[54] Tasker, Benjamin, and Abbeel, Pieter, and Koller, Daphne. (2002). Dis-
criminative Probabilistic Models for Relational Data. In Proceedings of
Uncertainty in Artificial Intelligence Conference.

[55] Taskar, Benjamin, and Abbeel, Pieter, and Wong, M.-F, and Koller,
Daphne (2007). Relational Markov Networks. In L. Getoor and B. Taskar,
editors, Introduction to Statistical Relational Learning.

[56] Tylenda, Tomasz, and Angelova, Ralitsa, and Bahadur, Srikanta. (2009).
Towards time-aware link prediction in evolving social network. SNA-KDD
’09: Proceedings of the third Workshop on Social Network Mining and
Analysis.

[57] Campbell, Veropoulos, and Campbell, C.K., and Cristianini, N., Control-
ling the sensitivity of support vector machines. In: Dean, T. (Ed.), JCAL:
Proceedings of International Joint Conference on Artificial Intelligence.
pp. 55-60.

[58] Wang, Chao, and Satuluri, Venu, and Parthasarathy, Srinivasan. (2007).
Local Probabilistic Models for Link Prediction. ICDM *07: In Proceedings
of International Conference on Data Mining.

[59] Watts, D, and Stogatz, S. (1998). Small world. Nature, 393:440-442.

[60] Weiss, Gary M. (2004) Mining with rarity: a unifying framework, In
SIGKDD Explorations Newsletter, 6(1):7-19.

[61] Xu, Zhao, and Tresp, Volker, and Yu, Shipeng, and Yu, Kai. (2005). Non-
parametric Relational Learning for Social Network Analysis. SNA-KDD

’08: In Proceedings of the Second Workshop on Social Network Mining
and Analysis.

[62] Xu, Zhao, and Tresp, Volker, and Yu, Kai and Kriegel, Hans-Peter.
(2005). Dirichlet Enhanced Relational Learning. In Proceedings of Inter-
national Conference on Machine Learning, pp 1004-1011.

[63] Yang, Chan-Yun, and Yang, Jr-Syu, and Wang Jian-Jun. (2009). Margin
Calibration in SVM class-imbalanced learning, Neurocomputing, 73(1-
3):397-411.

[64] Yu,Kai, and Chu, Wei, and Yu, Shipeng, and Tresp, Volker, and Xu, Zhao.
(2006). Stochastic relational models for discriminative link prediction. In
Proceedings of NIPS, pp-1553-1560

[65] Zhu, Jianhan, and Hong, Jun, and Hughes G. (2002). Using Markov mod-
els for web site link prediction. HY PERTEXT ’02: Proceedings of the Thir-
teenth ACM Conference on Hypertext and Hypermedia.

