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Abstract

A novel method for drawing graphs is proposed introducing a new model
called magnetic-spring model that is an extension of Eades's spring model. Graph
drawing by force-directed placement so far has been investigated mainly for
undirected graphs and an idea of controlling edge orientations has not been
considered. The proposed method can control edge orientations and nicely draw
not only undirected graphs but also other classes of graphs such as trees, directed
graphs and mixed graphs in a simple and unified manner. Moreover, since the
method is conceptually intuitive, it is quite easy to understand, implement and
improve it. A magnetic-spring model is defined imitating the physical system and
a magnetic-spring algorithm is presented. Many layouts and results from statistical
experiments are shown to demonstrate extensive effectiveness of the proposed
method.
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1 Introduction

The problem of graph drawing concerns how to produce nice or
aesthetically-pleasing pictures of graphs on a plane. A lot of methods for drawing
graphs have been proposed so far according to different classes of graphs,
different styles of representation, or different purposes of applications[1]. In
developing methods for drawing undirected graphs, two types of approaches can
be distinguished: force-directed placement [2,3,4] and graph theoretic [5,6,7]. Since
the former approach is based upon the idea of simplified simulations of physical
systems, it is substantially heuristic, but is conceptually intuitive and easier to be
understood and implemented than the latter.

Eades[2] presented an algorithm based upon the spring model for drawing
undirected graphs. In the model, vertices are replaced with steel rings and each
edge with a spring to form a mechanical system, and repulsive and attractive
forces are defined among rings. (See Figure 1a.) Then the rings are placed in some
initial layout and moved iteratively according to the forces so that the system
reaches a minimal energy state. Finally rings are drawn as points or small circles,
and each edge as a straight line segment between a pair of rings connected by the
edge. Kamada[4] proposed more sophisticated formulation and algorithm based on
Eades's model, and Fruchterman & Reingold[3] presented an effective modification
of the model. In these algorithms the formulae of the forces defined among rings
are different from each other and they all do not reflect the natural reality
directly. Aesthetic criteria generally accepted in the force-directed placement
approach have been: uniforming edge lengths (Al), minimizing edge crossings
(A2), revealing symmetry (A3), distributing vertices evenly (A4) and conforming
to the frame (A5).

In this paper we introduce a new aesthetic criterion, conforming edges to

specified orientations (A6), and propose a method based on a new model called




magnetic-spring model. In this model, vertices are replaced with rings and edges
with magnetic springs, and various types of magnetic fields are defined. (See
Figure 1b.) With this model we can not only obtain the placement of vertices
satisfying the above generally accepted aesthetic criteria, but also control the
geometrical orientations of edges (or magnetic springs) by the rotative forces
exerted on the edges. This can bring us novel capabilities in graph drawing by
force-directed placement. Though the force-directed placement approach has
been carried out mainly for drawing undirected graphs, our method is effective for
drawing several types of graphs: trees, directed graphs, undirected graphs and
mixed graphs (graphs with both directed and undirected edges). There already
exist special drawing algorithms for each type of graphs. However, if people could
draw nicely different types of graphs with the simple and unified method proposed
in this paper, this contributes not only to the force-directed placement approach
itself, but also to graph drawing in general.

Figure 2 shows examples of diagrams appeared in the literature that imply
the plausibility of introducing the forces to control edge orientations in graph
drawing:

1. Binary tree (Figure 2a): This is a list structure diagram drawn by a special tree
drawing algorithm[8]. It is desirable to attain strictly that car-edges are drawn
vertically and cdr-edges horizontally. A tree with two types of edges aé a list
structure is called an edge-bipartite tree here.

2. Directed graph (Figure 2b): This diagram expresses causal relationships and
seems to be drawn manually[9]. With the automatic drawing every edge except two
both-way relationships should be drawn upward and the both-way relationships
horizontally.

3. Mixed graph (Figure 2c): This is an issue map in which four types of
relationships are used: one is one-directional and the rest three are bi-directional

[10]. How to control these four types of edges is a quite interesting problem.



Our results of drawing these examples will be shown in the third section. Besides
we make many experiments to test the ability and effectiveness of our method to
produce aesthetically-pleasing pictures.

In the next section our new method based upon a magnetic-spring model is
described. Experimental results and discussions are shown in the third section.
Finally concluding remarks are made with suggestions for future research, where

envisaged are diversifying the idea of "field" and extending "virtual" models.

2 Proposed Method

In developing a new method, we adopt three principles for graph drawing:
(1) vertices connected by an edge should be drawn near each other, (2) vertices
should not be drawn too close to each other, and (3) each edge should be drawn
according to some pre-assigned orientations as much as possible. The first two
principles are just same as those of Eades[2] and Furuchterman & Reingold[3], and

the last one is our new principle.

2.1 Magnetic-Spring Model

A graph G =(V, E) consists of a set V of vertices and a set E of pairs of
vertices. An element of E is called an edge. A graph G =(V, E) is modeled as a
mechanical system of rings and magnetic springs placed in a magnetic field on a
plane. This model does not reflect the natural reality readily or is characterized as

a "virtual" model as well as the spring model.

1. Every vertex in V is replaced with a steel ring. (See Figure 1.)




2. Edges in E are classified into magnetic edges and non-magnetic edges.
Magnetic edges are replaced with magnetic springs to control orientations of the
edges and non-magnetic edges simply with springs. Magnetic springs consist of
one-directional magnetic springs and bi-directional magnetic springs. (See
Figure 3.) Usually directed edges are assigned as magnetic edges and replaced with
one-directional magnetic springs Undirected edges are usually assigned as non-
magnetic edges but sometimes they are assigned as magnetic edges and replaced
with bi-directional magnetic springs . How to assign such the magnetic property

of edges substantially depends on applications.

3. We consider three types of standard magnetic fields : parallel, polar and
concentric; and two types of compound magnetic fields : orthogonal and polar-
concentric. Compound magnetic fields are composed from standard magnetic fields.
(See Figure 4.) When we put b(x,y ) and m(x,y ) the strength of a magnetic field
and the orientation vector that expresses the orientation of the field at any point

(x,y ) respectively, each standard magnetic field B (x,y ) at (x, y ) is given by

B(X:,V)=bm- (1)

In this paper we consider uniform fields for simplicity and so we put b is constant
at any point (x,y ) except the origin(0, 0) and we put m as follows:
(1) parallel field :
m = (0,1) (north), (2)
(-1,0)  (west),
(0, -1) (south) or
(1, 0) (east);
(2) polar field:
m = (x,y)/l(x,y)l, (3)
specially B (0, 0) = 0;



(3) concentric field:
m = (v,-x)/l(x,y)l (clockwise) or (4)
(-y, x)/l(x,y) (anti-clockwise),
specially B (0, 0) = 0.

4. We consider three types of forces ; Fg : attractive or repulsive forces exerted by
the springs between neighbors, Fy: repulsive forces between every pair of non-
neighboring vertices and Fy,: rotative forces exerted on edges by the magnetic
field. (See Figure 3.) The ideas of the first two forces are based on Eades’s model.
The last is calculated as forces exerted on the vertices connected by each magnetic

edge. Strengths of these forces are given by:

Fg = csfs(d) (5)
Fr =-crfr(d) (6)
Fn =cmbdegh (7)

where d is the distance between a pair of vertices, -n<8 <n is the angle (radian)
from the orientation of the field to the orientation of the magnetic edge, and «a, 8,
Cs, Cr,Cm > 0 are parameters for tuning the model. In the case of a bi-directional
magnetic edge, there can exist two angles 8 j(negative) and 8 (positive). We select
for 8 the one of which absolute value is smaller than that of the other. Though
magnetic forces F;; are exerted on each magnetic edge by a magnetic field, we
calculate them as two forces (with a same strength and reverse orientations)
exerted on a pair of vertices connected by the edge. (See Figure 3) In Eades's model,
the first two forces Fy and Fr are given as fs (d) = log(d /k ) and fH{(d) = 1/d 2

respectively, and in Fruchterman & Reingold's model, fs(d)=dZ2/k and fr(d)=k



2/d respectively where k expresses an ideal distance between neighbors. Which

of standard magnetic fields each magnetic edge reacts selectively is pre-assigned.

S. We introduce special rings called anchor rings which never be moved even if
some force is exerted on the rings. We can extend the idea of anchor rings to
anchor bars and anchor frames, but we do not use anchor bars and anchor frames

in this paper.
2.2 Algorithm

Our algorithm is based upon Eades's algorithm in which the mechanical
system is simulated. Before starting calculations we should specify natures of
spring and repulsive forces as F, a type of magnetic field as M and types of edges

in terms of magnetic responses as R.

algorithm MAGNETIC_SPRING (G : graph, F: spring and repulsive forces,
M : magnetic field, R: specifications of magnetic responses);
1. place vertices of G on a circle evenly, of which radius is kIV|/2x,in a
random order;
2. repeat n times
2.1 calculate the force exerted on each vertex by composing three kinds of
forces according to F, M, R;
2.2 move each vertex by § x (force on the vertex);

3. draw the graph on a screen.

Parameter § controls the magnitude of moving steps. Calculations of forces Fy's,
Fr's and Fpy's have O(IE ), O(IV 12) and O(IE |) time complexity respectively. An

initial placement of vertices on a circle can be seen in Figure 6a.



3 Experimental Results

In this section, we present examples of diagrams drawn with our algorithm
in order to show the usefulness of controlling edge orientations and we test the
capabilities of our method by statistical experiments. In the experiments we
randomly gencrate thirty sample graphs, all of which are connected, for various
cases such as:

classes of graphs: rooted trees (RT), acyclic directed graphs (ADG), cyclic directed
graphs (CDG), edge-bipartite rooted trees (EBRT) or acyclic mixed graphs (AMG);
the number of vertices: 20 or 40;
mean degree: 2.5 or 3.0 (nearly 2 in the case of trees).
Then we apply our algorithm to the sample graphs in various magnetic fields
shown in Figure 4 and calculate the following five quantitative criteria:
CROSSING: the number of crossings (which relates to aesthetic criterion A2),
EDGEORIENTATION : the distribution of angles between the orientations of edges
and the given magnetic field (A6),
ERROR EDGE: the number of edges of which orientations do not conform to the
magnetic field (A6),
EDGE LENGTH: the distribution of edge lengths (A1) and
VERTEX DENSITY: the density of vertices distribution (A4) measured as the mean
minimum distance between a vertex and its non-neighbor vertices.
We do not consider aesthetic criterion AS here. In the experiments default values
of parameters are set as a=1.0,=1.0,c5 =2.0,cr=1.0,c;m=1.0and k =1.0. Parameter b
is changed between 0.0 and 16.0 to observe effects due to the strength of a magnetic
field. Parameter § is changed between 0.005 and 0.1 so that the larger b is, the
‘smaller § is, which is to make the length of a moving step equal through

simulations. Therefore the number of steps diverges from 100 to 1600. Examples of



diagrams and experimental results from the magnetic-spring algorithm are shown

in the following subsections.

3.1 Results in parallel field

3.1.1 Rooted trees

Both Eades[11] and Fruchterman & Reingold[3] reported the difficulty of
drawing trees without edge crossings by spring algorithms. Figure 5 shows the
example explaining a potential barrier for this problem (see figure 42, in [3]).
However, we can overcome it and obtain a good layout of the same graph by using
our magnetic-spring algorithm. Figure 6a shows an initial placement of the
graph. If there does not exist any magnetic field, we obtain the layout shown in
Figure 6b where we can not eliminate a crossing, whereas if there exists a strong
parallel field, we obtain the crossing-free layout shown in Figure 6c. Figure 6c¢ is
laid out in a "tree" form, but the diagram is too narrow due to the existence of the
strong field. Therefore, we further continue the calculation in no magnetic field
as the next phase and then we get the symmetrical layout presented in Figure 6d.
Thus this two-phase algorithm is quite effective to obtain good layouts of rooted
trees.

The good performance to reduce the number of crossings in drawing rooted
trees by our algorithm is also confirmed from statistical experiments. Figure 7
shows the experimental results in a parallel field where for rooted trees the
expected number of crossings is very low and every edge conforms to the

orientation of the field when the strength of the field is high.

3.1.2 Acyclic directed graphs
With the magnetic-spring algorithm we can realize easily downward (or
upward) layouts of acyclic directed graphs. Figure 8 shows variations of layouts of

an acyclic directed graph when the strength of the magnetic field is changed.



Figure 8a corresponds to the case of no magnetic field and Figure 8f the strongest.
We can see from Figure 7 that for acyclic directed graphs there is no error edge

when the magnetic force is strong.

3.1.3 Cyclic directed graphs

What is most interesting in drawing cyclic directed graphs in a parallel field
is whether the number of "feedback" edges is close to minimal or not. Figure 9
displays a good example from our algorithm. In Figure 9f only one edge (0 — 4) is
pointing upward whereas all other edges downward. This means that the minimum
feedback edge set problem is solved. Of course, this can not be confirmed by
statistical experiments in general. However, the number of feedback edges (or
error edges) is low (about 10% of |E 1) in the strength of the parallel field as seen in

Figure 7.
3.2 Results in orthogonal field

3.2.1 Edge-bipartite rooted trees

Figure 10 shows variations of layouts of an edge-bipartite rooted tree that
represent h-v drawings[8] of a list structure (see Figure 2a). An edge-bipartite
rooted tree is placed in an orthogonal field and its layouts are calculated changing
the strength of the field. Though there is no crossing in Figure 10, we can not
always eliminate crossings even if we use the two-phase algorithm. Figure 11
shows several examples of layouts of larger rooted trees where the orientations of
edges conform well to the field but there remain several crossings. Results of

statistical experiments are shown in Figure 12 in each case.

3.2.2 Acyclic mixed graphs
The directed graph presented in Figure 2b is drawn by our magnetic-spring

algorithm where three isolated vertices are omitted. Though directed edges of the




graph usually are replaced with one-directional magnetic springs, both-way
relationships (&) are replaced with bi-directional magnetic springs in this case. It
is aimed that the former is laid out upward and the latter horizontally in the
orthogonal field. Figure 13 shows variations of layouts of the graph calculated in
different strengths of the field.

In the acyclic mixed graph presented in Figure 2c¢, one-directional
relationships are replaced with one-directional magnetic springs and three types
of bi-directional relationships all are replaced with bi-directional magnetic
springs. Then our algorithm is applied to the graph so that the former
relationships are drawn downward and the latter horizontally as much as possible.
Figure 14 shows variations of diagrams of the acyclic mixed graph where we can
distinguish one-directional relationships from bi-directional relationships more
easily in the case of the strong field than in the case of no field. Results of

statistical experiments are shown in Figure 12.

3.3 Results in polar field

Reggiani and Marchetti(1988)[12] founded that if a vertex-bipartite graph
was drawn as a hierarchy with two horizontal levels then its diagram could not
avoid many crossings (see Figure 15a), whereas if it was drawn as a hierarchy with
two concentric discs then its diagram could avoid crossings completely (see Figure
15b). In order to check this ability of our algorithm, we place the same graph in
the polar field and apply our algorithm to it where an anchor vertex connecting to
vertices with numeric labels is placed at the origin, but the anchor is not displayed.
Figure 15c is a resulted diagram where the orientation of every edge conforms to
the orientation of the field, but three crossings can not be eliminated. Cases for no
field and a parallel field also are displayed in Figures 15d and 15e respectively. In

Figure 15d the number of crossings is very low, but orientations of edges have no
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regularity. In Figure 15e the downward drawing is attained, but several crossings

remain.
3.4 Results in concentric field

Figure 16 shows variations of layouts of a cyclic directed graph (tetragonal
and pentagonal pillars) obtained from our algorithm when the strength of a
concentric field is changed. Figures 16a and 16d correspond to the cases of no field
and Figures 16c and 16f the strongest. When we increase the field strength, we can
obtain symmetrical layouts where the conformity to the orientation of the field is
attained, which bring us the easiness for grasping cycles. We check whether this
advantage of our algorithm arises even for more general cases. Figure 17 shows
variations of layouts of a more general cyclic directed graph (same graph as Figure
9) where we can recognize cycles easily when the field becomes strong. Results of

statistical experiments are shown in Figure 18.

4. Concluding remarks

We have proposed a novel method for drawing graphs based upon magnetic-
spring model that is an extension of Eades's spring model. Graph drawing by force-
directed placement so far has been investigated mainly for drawing undirected
graphs and has not considered a control of edge orientations. Our method realizes
to control edge orientations and therefore can enlarge classes of diagramming
objects into not only undirected graphs but also trees, directed graphs and mixed
graphs. This means that with the magnetic-spring algorithm we can draw
extensive classes of graphs nicely in a simple and unified manner. Moreover,
since this method is conceptually intuitive, it is quite easy to understand,

implement and improve the method, and adjust parameters.
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To define the magnetic-spring model we have newly introduced magnetic-
springs, magnetic fields and magnetic forces imitating physical systems, but they
all are "virtual" or do not have to reflect the natural reality accurately. Two types
of magnetic springs (one-directional and bi-directional) and several types of
magnetic fields (parallel, polar, concentric, orthogonal and polar-concentric)
have been considered.

We have demonstrated the performance of our method showing a lot of
layout examples and making statistical experiments. In investigating the
performance, our interests has existed in the following problems:

(1) Can rooted trees be drawn without crossings or with few crossings? (See
subsection 3.1.1.)

(2) Can Downward (or upward) drawing of acyclic directed graphs be easily
realized? (See subsection 3.1.2.)

(3) How about relationships between our method and the feedback edge set problem
in the case of drawing cyclic directed graphs? (See subsection 3.1.3.)

(4) Is our method effective for h-v drawing[8] of rooted binary trees? (See
subsection 3.2.1.)

(5) Can acyclic mixed graphs be drawn in a way that we can easily grasp a global
structure constituted with different kinds of edges and distinguish them readily?

(6) To which kind of problems is a polar field applicable? (See subsection 3.3.)

(7) Can cyclic directed graphs be drawn in a way that it is easy to grasp the global
flow of the graphs and the existence of cycles? (See subsection 3.4.)

Since the magnetic-spring method is substantially heuristic, we have not
been able to give exact answers to the above-stated problems. However, the results
of preliminary experiments presented in section 3 tell us extensive effectiveness
of the magnetic-spring method, especially in problems (1), (2), (4), (5) and (7).

For future research it is envisaged to analyze more precisely trade-off

relationships among aesthetic criteria, to diversify the idea of "field", to extend
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"virtual" models and to sophisticate formulations and algorithms in both

theoretical and practical senses.
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(b)

Figure 1. Spring model(a) and magnetic-spring model(b).
ASF: attractive spring force, RSF: repulsive spring force,
RF: repulsive force and MF: magnetic force.
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(a) (b)

Figure 3. One-directional springs (a) and bi-directional springs (b), and
magnetic forces.
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Figure 4. Standard and compound mangetic fields:
(a) parallel(south), (b) polar, (c) concentric (anti-clockwise),
(d) orthogonal and (e) polar-concentric.
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Figure 5. Example of a potential barrier in drawing trees [3].
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(©) d

Figure 6. A good result from magnetic-spring algorithm.
(a) initial placement, (b) layout in no field, (c) layout in the strong field and
(d) layout after two phases.
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Figure 7. Results of statistical experiments in the parallel field.
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(c) (@)

Figure 11. Examples of layouts of larger edge-bipartite rooted trees (vertices: 40)
in the orthogonal field.
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Figure 18. Results of statistical experiments in the concentric field.
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