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Operations Research Analogy

Consider mathematical programming:
e LP, MIP, QP (...) models of many interesting problems
@ Many theoretical tools for analyzing these models

@ General, computational solvers complement the theory
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Operations Research Analogy

Consider mathematical programming:
e LP, MIP, QP (...) models of many interesting problems
@ Many theoretical tools for analyzing these models

@ General, computational solvers complement the theory

Now consider game theory, especially in the context of our focus
today on sponsored search auctions:

@ Expressive models
@ Rich theoretical tools

@ Few computational techniques
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What if we could analyze auctions

Advantages:
@ General valuation distribution

e beyond e.g., strong monotonicity assumptions about value per
click across slots
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What if we could analyze auctions

Advantages:
@ General valuation distribution
e beyond e.g., strong monotonicity assumptions about value per
click across slots

@ General equilibrium concept

e beyond e.g., locally envy-free; PSNE
@ Can handle reserve prices
e Can answer quantitative questions

e e.g., what fraction of optimal social welfare?
e e.g., which auction design achieves higher revenue?

(Potential) drawbacks:
@ Results tied to specific valuation distributions

@ Discrete (rounding and tie-breaking)
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Position Auctions

Types of position auctions

@ GFP: Yahoo! and Overture 1997-2002
@ uGSP: Yahoo! 2002-2007
@ wGSP: Google, MSN Live, Yahoo! 2007—present
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Position Auctions

Types of position auctions

@ GFP: Yahoo! and Overture 1997-2002
@ uGSP: Yahoo! 2002-2007
@ wGSP: Google, MSN Live, Yahoo! 2007—present

Is wGSP better than GFP and uGSP? \

@ Better by what metric?

e revenue
o efficiency

What valuation model(s) should we consider?
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Position Auctions

Edelman, Ostrovsky & Schwarz (2007)
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Position Auctions

Varian (2007)
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Position Auctions

Blumrosen, Hartline & Nong (2008)

09

0.8

0.7

0.6

0.5

0.4

03

0.2

0.1

Position 1

Position 2

Position 3

Position 4

==+1's Clicks / Impression
+=++ 1's Conversions / Click
~——1's Value / Impression
~=-2's Clicks / Impression
<=+ 2's Conversions / Click

~——2's Value / Impression

Position 5

@ Proportional, per-bidder click-through rates

@ Proportional, per-bidder conversion rates

@ Fewer clicks, higher conversion rate in lower slots
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Position Auctions

Benisch, Sadeh & Sandholm (2008)
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@ One click-through rate for everyone
o Conversion rates are single-peaked, not proportional
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© Action Graph Game Representation
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AGGs

Analyzing Position Auctions as Games

@ Most existing literature analyzes position auctions as
unrepeated, perfect-information interactions

e unrepeated: probability one user will click on an ad is
independent of the probability for the next user
e perfect info: bidders can probe each others’ values
@ Given a valuation model for each advertiser and a fixed
number of bid increments, we have a big normal-form game.
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e unrepeated: probability one user will click on an ad is
independent of the probability for the next user
e perfect info: bidders can probe each others’ values
@ Given a valuation model for each advertiser and a fixed
number of bid increments, we have a big normal-form game.

@ Problem: it's a really big normal-form game:
e e.g., 10 bidders, 8 slots, bids in {0,1,...,40}: ~700,000TB
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AGGs

Action Graph Games [Bhat, L-B, 2004; Jiang, L-B, 2006]

@ A compact representation for perfect-information,
simultaneous-move games
o Like Bayes nets or graphical games: big table — directed
graph and small tables
o Nodes correspond to actions. Table gives utility for playing a
given action based on number of agents playing each
neighboring action.
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AGGs

Action Graph Games [Bhat, L-B, 2004; Jiang, L-B, 2006]

@ A compact representation for perfect-information,
simultaneous-move games
o Like Bayes nets or graphical games: big table — directed
graph and small tables
o Nodes correspond to actions. Table gives utility for playing a
given action based on number of agents playing each
neighboring action.
@ Representational savings:
e Exponentially smaller
o Even smaller using function nodes (e.g. sum, max)
e Computational savings:
o Exponential speedup in expected utility calculations
o Implies exponential speedup in

e simpdiv [Scarf, 1967];
@ gnm [Govindan, Wilson, 2005]
@ both are implemented in Gambit [McKevley et al, 2006]

Kevin Leyton-Brown, joint work with David R.M. Thompson

Computational Analysis of Position Auctions



AGGs

Representing Position Auctions as AGGs
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Representing Position Auctions as AGGs

@ n bidders, m bid increments
e mm actions

@ Position depends on number of higher/equal bids
e add 2 sum nodes per action

@ GSP price depends on next highest bid
e add 1 max node per action

@ utility tables for each action:

o GFP: O(n?) (# possible tuples from sum nodes)
o WGSP: O(n®m) (also includes values of max node, which
depends on both per-bidder weight and amount)

o Overall: AGGs are O(n*m?), vs NFGs O(nm")
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AGGs

Representing Position Auctions as AGGs

@ n bidders, m bid increments
e mm actions
@ Position depends on number of higher/equal bids
e add 2 sum nodes per action
GSP price depends on next highest bid
e add 1 max node per action

utility tables for each action:
o GFP: O(n?) (# possible tuples from sum nodes)
o WGSP: O(n®m) (also includes values of max node, which
depends on both per-bidder weight and amount)
Overall: AGGs are O(n*m?), vs NFGs O(nm™)
10 bidders, 8 slots, bids in {0,1,...,40}
e NFGs: ~700,000TB, vs. AGGs: <80MB
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Experimental Setup

Specifying details

Game size: 10 bidders, 8 slots, values in [0,40]*
Game instances: 100 draws from each model

e assuming a uniform distribution on all free model parameters
e normalizing the highest value to be equal to the highest bid
amount, so that all increments are potentially useful

Discretization: ties broken randomly, prices rounded up, 1
increment reserve price

Multiple runs: 10 runs each of simpdiv and gnm, randomized
starting points

1\We also considered three other sizes in our paper.
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Experimental Setup

Equilibrium selection

We need to decide which equilibria to report.
e Why?
o Our solvers return arbitrary equilibria; many exist.
o GSP best response set is interval (sets price for bidder above)
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Experimental Setup

Equilibrium selection

We need to decide which equilibria to report.
o Why?
o Our solvers return arbitrary equilibria; many exist.
o GSP best response set is interval (sets price for bidder above)
e How?
e Remove bids above value (always dominated)

@ Thus we restrict to conservative Nash equilibria
[Paes Leme and Tardos, 2009]

o Multiple runs
e SLS through equilibrium space

@ maximize/minimize revenue/welfare
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Experimental Setup

Statistical methods

@ Goal: Quantitative, comparisons across mechanisms
o Is A better than B?
@ Problem: Possibly insignificant conclusions.

@ Solution: A conservative, nonparametric statistical test, with
multiple testing correction.

e ** denotes significance at or above p = 0.01
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Results

Efficiency: what is known theoretically?

Theorem (Edelman, Ostrovsky & Schwarz, 2007; Varian, 2007)

In EOS and V models, wGSP is efficient in every envy-free Nash
equilibrium.?

2Caveat: these results apply to continuous case without reserve price:
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Results

Efficiency: what is known theoretically?

Theorem (Edelman, Ostrovsky & Schwarz, 2007; Varian, 2007)

In EOS and V models, wGSP is efficient in every envy-free Nash
equilibrium.?

A\

Theorem (Paes Leme & Tardos, 2009)

In EOS and V models, wGSP is 1.62-efficient in every conservative
Nash equilibrium.?

A

Theorem (Blumrosen, Hartline & Nong, 2008)

There are cases in the BHN model where wGSP is not efficient in
any pure-strategy Nash equilibrium.

A

Theorem (Benisch, Sadeh & Sandholm, 2008)

There are cases in the BSS model where wGSP is not efficient in
any pure-strategy Bayes-Nash equilibrium.?

A

2Caveat: these results apply to continuous case without reserve price:
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Results

Efficiency: Experimental Questions

When we go beyond restricted equilibrium families (e.g.,
envy-free), what happens?

How common are efficiency failures, and how severe are they? \
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Results

Results: Efficiency

VCG
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@ Broad conclusion: {uGSP,GFP} <** wGSP <** VCG
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Results

Revenue: Theoretical Predictions and Questions

Theorem (Edelman, Ostrovsky & Schwarz, 2007; Varian, 2007)

In EOS and V models, wGSP generates more revenue than VCG in
every ‘envy-free” Nash equilibrium.
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Results

Revenue: Theoretical Predictions and Questions

Theorem (Edelman, Ostrovsky & Schwarz, 2007; Varian, 2007)

In EOS and V models, wGSP generates more revenue than VCG in
every “envy-free” Nash equilibrium.

When we go beyond envy-free equilibria, does this result still hold?

_
_

How do different auction designs compare in terms of revenue?
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Results

EOS: revenue range
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EOS: Without envy-free restriction but with restriction to
conservative equilibria:
o expected worst wGSP revenue <** expected VCG revenue
@ expected best wGSP revenue <** expected VCG revenue
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Results

V: revenue range
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V: Without envy-free restriction but with restriction to
conservative equilibria:
o expected worst wGSP revenue <** expected VCG revenue
@ expected best wGSP revenue >** expected VCG revenue
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Results

best-case revenue
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No significant revenue difference between the mechanisms.
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V: best-case revenue
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No significant revenue difference between the mechanisms.
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Results

BHN: revenue comparison
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Expected wGSP revenue >** expected GFP/uGSP revenue

@ not significant at all problem sizes we studied
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Results

BSS: revenue comparison
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Expected GFP revenue >** expected uGSP/wGSP revenue

@ not significant at all problem sizes we studied
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Conclusion

Conclusion

@ This approach is possible and yields real economic insights!

e Efficiency: wGSP is more efficient (even in difficult models)
and very robust to equilibrium selection.

@ Revenue: Ranking is unclear. Equilibrium selection and
instance details have large impact.

@ Code and data are available at:
http://www.cs.ubc.ca/research/position_auctions/

This work was supported by Microsoft’s Beyond Search program.
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Conclusion

Future work

@ Learning distributions from real-world data
o Generalize representation to other models (e.g. cascade)

@ Better game solving techniques (e.g. provable bounds on
revenue and welfare)
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