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Operations Research Analogy

Consider mathematical programming:

LP, MIP, QP (...) models of many interesting problems

Many theoretical tools for analyzing these models

General, computational solvers complement the theory

Now consider game theory, especially in the context of our focus
today on sponsored search auctions:

Expressive models

Rich theoretical tools

Few computational techniques
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What if we could analyze auctions computationally?

Advantages:

General valuation distribution

beyond e.g., strong monotonicity assumptions about value per
click across slots

General equilibrium concept

beyond e.g., locally envy-free; PSNE

Can handle reserve prices

Can answer quantitative questions

e.g., what fraction of optimal social welfare?
e.g., which auction design achieves higher revenue?

(Potential) drawbacks:

Results tied to specific valuation distributions

Discrete (rounding and tie-breaking)
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Types of position auctions

GFP: Yahoo! and Overture 1997–2002

uGSP: Yahoo! 2002–2007

wGSP: Google, MSN Live, Yahoo! 2007–present

Question

Is wGSP better than GFP and uGSP?

Better by what metric?

revenue
efficiency

What valuation model(s) should we consider?
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Edelman, Ostrovsky & Schwarz (2007)
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Varian (2007)
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Blumrosen, Hartline & Nong (2008)
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Benisch, Sadeh & Sandholm (2008)
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Analyzing Position Auctions as Games

Most existing literature analyzes position auctions as
unrepeated, perfect-information interactions

unrepeated: probability one user will click on an ad is
independent of the probability for the next user
perfect info: bidders can probe each others’ values

Given a valuation model for each advertiser and a fixed
number of bid increments, we have a big normal-form game.

Problem: it’s a really big normal-form game:

e.g., 10 bidders, 8 slots, bids in {0, 1, . . . , 40}: ∼700,000TB
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Action Graph Games [Bhat, L-B, 2004; Jiang, L-B, 2006]

A compact representation for perfect-information,
simultaneous-move games

Like Bayes nets or graphical games: big table → directed
graph and small tables
Nodes correspond to actions. Table gives utility for playing a
given action based on number of agents playing each
neighboring action.

Representational savings:

Exponentially smaller
Even smaller using function nodes (e.g. sum, max)

Computational savings:

Exponential speedup in expected utility calculations
Implies exponential speedup in

simpdiv [Scarf, 1967];
gnm [Govindan, Wilson, 2005]

both are implemented in Gambit [McKevley et al, 2006]
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Representing Position Auctions as AGGs

n bidders, m bid increments

nm actions

Position depends on number of higher/equal bids

add 2 sum nodes per action

GSP price depends on next highest bid

add 1 max node per action

utility tables for each action:

GFP: O(n2) (# possible tuples from sum nodes)
wGSP: O(n3m) (also includes values of max node, which
depends on both per-bidder weight and amount)

Overall: AGGs are O(n4m2), vs NFGs O(nmn)
10 bidders, 8 slots, bids in {0, 1, . . . , 40}

NFGs: ∼700,000TB, vs. AGGs: <80MB
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Specifying details

Game size: 10 bidders, 8 slots, values in [0,40]1

Game instances: 100 draws from each model

assuming a uniform distribution on all free model parameters
normalizing the highest value to be equal to the highest bid
amount, so that all increments are potentially useful

Discretization: ties broken randomly, prices rounded up, 1
increment reserve price

Multiple runs: 10 runs each of simpdiv and gnm, randomized
starting points

1We also considered three other sizes in our paper.
Computational Analysis of Position Auctions Kevin Leyton-Brown, joint work with David R.M. Thompson
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Equilibrium selection

We need to decide which equilibria to report.

Why?

Our solvers return arbitrary equilibria; many exist.
GSP best response set is interval (sets price for bidder above)

How?
Remove bids above value (always dominated)

Thus we restrict to conservative Nash equilibria
[Paes Leme and Tardos, 2009]

Multiple runs
SLS through equilibrium space

maximize/minimize revenue/welfare
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Statistical methods

Goal: Quantitative, comparisons across mechanisms

Is A better than B?

Problem: Possibly insignificant conclusions.

Solution: A conservative, nonparametric statistical test, with
multiple testing correction.

∗∗ denotes significance at or above p = 0.01

Computational Analysis of Position Auctions Kevin Leyton-Brown, joint work with David R.M. Thompson
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Efficiency: what is known theoretically?

Theorem (Edelman, Ostrovsky & Schwarz, 2007; Varian, 2007)

In EOS and V models, wGSP is efficient in every envy-free Nash
equilibrium.2

Theorem (Paes Leme & Tardos, 2009)

In EOS and V models, wGSP is 1.62-efficient in every conservative
Nash equilibrium.2

Theorem (Blumrosen, Hartline & Nong, 2008)

There are cases in the BHN model where wGSP is not efficient in
any pure-strategy Nash equilibrium.

Theorem (Benisch, Sadeh & Sandholm, 2008)

There are cases in the BSS model where wGSP is not efficient in
any pure-strategy Bayes-Nash equilibrium.2

2Caveat: these results apply to continuous case without reserve price.
Computational Analysis of Position Auctions Kevin Leyton-Brown, joint work with David R.M. Thompson
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Efficiency: Experimental Questions

Question

When we go beyond restricted equilibrium families (e.g.,
envy-free), what happens?

Question

How common are efficiency failures, and how severe are they?

Computational Analysis of Position Auctions Kevin Leyton-Brown, joint work with David R.M. Thompson
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Results: Efficiency

VCG

Broad conclusion: {uGSP,GFP} ≤∗∗ wGSP ≤∗∗ VCG

Computational Analysis of Position Auctions Kevin Leyton-Brown, joint work with David R.M. Thompson
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Revenue: Theoretical Predictions and Questions

Theorem (Edelman, Ostrovsky & Schwarz, 2007; Varian, 2007)

In EOS and V models, wGSP generates more revenue than VCG in
every “envy-free” Nash equilibrium.

Question

When we go beyond envy-free equilibria, does this result still hold?

Question

How do different auction designs compare in terms of revenue?

Computational Analysis of Position Auctions Kevin Leyton-Brown, joint work with David R.M. Thompson
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EOS: revenue range

Lowest NE
(µ=-0.1054)
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EOS: Without envy-free restriction but with restriction to
conservative equilibria:

expected worst wGSP revenue <∗∗ expected VCG revenue

expected best wGSP revenue <∗∗ expected VCG revenue
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V: revenue range
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V: best-case revenue
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BHN: revenue comparison
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Expected wGSP revenue >∗∗ expected GFP/uGSP revenue

not significant at all problem sizes we studied
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BSS: revenue comparison
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Conclusion

This approach is possible and yields real economic insights!

Efficiency: wGSP is more efficient (even in difficult models)
and very robust to equilibrium selection.

Revenue: Ranking is unclear. Equilibrium selection and
instance details have large impact.

Code and data are available at:
http://www.cs.ubc.ca/research/position_auctions/

This work was supported by Microsoft’s Beyond Search program.
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Future work

Learning distributions from real-world data

Generalize representation to other models (e.g. cascade)

Better game solving techniques (e.g. provable bounds on
revenue and welfare)
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