Desition	Auchiono
Position	Auctions

Computational Analysis of Perfect-Information Position Auctions

Kevin Leyton-Brown

joint work with David Robert Martin Thompson

INFORMS: October 12, 2009

Computational Analysis of Position Auctions

Kevin Leyton-Brown, joint work with David R.M. Thompson

伺い イヨト イヨト

Consider mathematical programming:

- LP, MIP, QP (...) models of many interesting problems
- Many theoretical tools for analyzing these models
- General, computational solvers complement the theory

(4回) (4回) (日)

Consider mathematical programming:

- LP, MIP, QP (...) models of many interesting problems
- Many theoretical tools for analyzing these models
- General, computational solvers complement the theory

Now consider game theory, especially in the context of our focus today on sponsored search auctions:

- Expressive models
- Rich theoretical tools
- Few computational techniques

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Advantages:

- General valuation distribution
 - beyond e.g., strong monotonicity assumptions about value per click across slots

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Advantages:

- General valuation distribution
 - beyond e.g., strong monotonicity assumptions about value per click across slots
- General equilibrium concept
 - beyond e.g., locally envy-free; PSNE

向下 イヨト イヨト

Advantages:

- General valuation distribution
 - beyond e.g., strong monotonicity assumptions about value per click across slots
- General equilibrium concept
 - beyond e.g., locally envy-free; PSNE
- Can handle reserve prices

伺下 イヨト イヨト

Advantages:

- General valuation distribution
 - beyond e.g., strong monotonicity assumptions about value per click across slots
- General equilibrium concept
 - beyond e.g., locally envy-free; PSNE
- Can handle reserve prices
- Can answer quantitative questions
 - e.g., what fraction of optimal social welfare?
 - e.g., which auction design achieves higher revenue?

回 と く ヨ と く ヨ と

Advantages:

- General valuation distribution
 - beyond e.g., strong monotonicity assumptions about value per click across slots
- General equilibrium concept
 - beyond e.g., locally envy-free; PSNE
- Can handle reserve prices
- Can answer quantitative questions
 - e.g., what fraction of optimal social welfare?
 - e.g., which auction design achieves higher revenue?

(Potential) drawbacks:

• Results tied to specific valuation distributions

・ 同 ト ・ ヨ ト ・ ヨ ト

Advantages:

- General valuation distribution
 - beyond e.g., strong monotonicity assumptions about value per click across slots
- General equilibrium concept
 - beyond e.g., locally envy-free; PSNE
- Can handle reserve prices
- Can answer quantitative questions
 - e.g., what fraction of optimal social welfare?
 - e.g., which auction design achieves higher revenue?

(Potential) drawbacks:

- Results tied to specific valuation distributions
- Discrete (rounding and tie-breaking)

(4月) イヨト イヨト

Position Auctions	AGGs	Experimental Setup	Results	Conclusion
Outline				

- Position Auctions
- 2 Action Graph Game Representation
- 3 Experimental Setup

白 ト く ヨ ト く ヨ ト

Position Auctions	AGGs	Experimental Setup	Results	Conclusion
Outline				

- 1 Position Auctions
- 2 Action Graph Game Representation
- 3 Experimental Setup

э

Position Auctions	AGGs	Experimental Setup	Results	Conclusion
Types of posit	ion aucti	ons		

- GFP: Yahoo! and Overture 1997–2002
- uGSP: Yahoo! 2002–2007
- wGSP: Google, MSN Live, Yahoo! 2007-present

▲□→ ▲ □→ ▲ □→

3

Position Auctions	AGGs	Experimental Setup	Results	Conclusion
Types of positio	n auction	S		

- GFP: Yahoo! and Overture 1997–2002
- uGSP: Yahoo! 2002–2007
- wGSP: Google, MSN Live, Yahoo! 2007-present

Question

Is wGSP better than GFP and uGSP?

・日・ ・ ヨ・ ・ ヨ・

Position Auctions	AGGs	Experimental Setup	Results	Conclusion
Types of positio	n auction	S		

- GFP: Yahoo! and Overture 1997–2002
- uGSP: Yahoo! 2002–2007
- wGSP: Google, MSN Live, Yahoo! 2007-present

Question

Is wGSP better than GFP and uGSP?

- Better by what metric?
 - revenue
 - efficiency

What valuation model(s) should we consider?

伺下 イヨト イヨト

One click-through rate for everyone

★ E > < E >

э

Position Auctions	AGGs	Experimental Setup	Results	Conclusion
Varian (2007)				

Click-through rates for different bidders are proportional

★ 문 ► ★ 문 ►

э

- Proportional, per-bidder click-through rates
- Proportional, per-bidder conversion rates
- Fewer clicks, higher conversion rate in lower slots

 Position Auctions
 AGGs
 Experimental Setup
 Results
 Conclusion

 Benisch, Sadeh & Sandholm (2008)

- One click-through rate for everyone
- Conversion rates are single-peaked, not proportional

Computational Analysis of Position Auctions

Kevin Leyton-Brown, joint work with David R.M. Thompson

▶ < 도 ▶ < 도 ▶</p>

æ

Position Auctions

2 Action Graph Game Representation

3 Experimental Setup

4 Results

5 Conclusion

- 4 回 2 - 4 回 2 - 4 回 2 - 4

э

- Most existing literature analyzes position auctions as unrepeated, perfect-information interactions
 - unrepeated: probability one user will click on an ad is independent of the probability for the next user
 - perfect info: bidders can probe each others' values
- Given a valuation model for each advertiser and a fixed number of bid increments, we have a big normal-form game.

向下 イヨト イヨト

- Most existing literature analyzes position auctions as unrepeated, perfect-information interactions
 - unrepeated: probability one user will click on an ad is independent of the probability for the next user
 - perfect info: bidders can probe each others' values
- Given a valuation model for each advertiser and a fixed number of bid increments, we have a big normal-form game.
- Problem: it's a really big normal-form game:
 - e.g., 10 bidders, 8 slots, bids in $\{0, 1, \dots, 40\}$: ~700,000TB

・ 同 ト ・ ヨ ト ・ ヨ ト

Position Auctions	AGGs	Experimental Setup	Results	Conclusion
Action Graph	Games [Bhat, L-B, 2004; Jiang,	L-B, 2006]	

- A compact representation for perfect-information, simultaneous-move games
 - Like Bayes nets or graphical games: big table \rightarrow directed graph and small tables
 - Nodes correspond to actions. Table gives utility for playing a given action based on number of agents playing each neighboring action.

・日・ ・ ヨ・ ・ ヨ・

Position Auctions	AGGs	Experimental Setup	Results	Conclusion
Action Graph	Games [3hat, L-B, 2004; Jiang	, L-B, 2006]	

- A compact representation for perfect-information, simultaneous-move games
 - $\bullet\,$ Like Bayes nets or graphical games: big table $\rightarrow\,$ directed graph and small tables
 - Nodes correspond to actions. Table gives utility for playing a given action based on number of agents playing each neighboring action.
- Representational savings:
 - Exponentially smaller
 - Even smaller using function nodes (e.g. sum, max)
- Computational savings:
 - Exponential speedup in expected utility calculations
 - Implies exponential speedup in
 - simpdiv [Scarf, 1967];
 - gnm [Govindan, Wilson, 2005]
 - both are implemented in Gambit [McKevley et al, 2006]

ロンスロンスモンスモンニモ

Position Auctions	AGGs	Experimental Setup	Results	Conclusion
Representing	Position	Auctions as AGGs		
Nepresenting	I USILIUII	AUCTIONS as AGGS		

- $\bullet \ n$ bidders, m bid increments
 - \bullet nm actions

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Position Auctions	AGGs	Experimental Setup	Results	Conclusion
Representing	Position	Auctions as AGGs		

- $\bullet \ n$ bidders, m bid increments
 - nm actions
- Position depends on number of higher/equal bids
 - $\bullet~$ add 2~ sum nodes per action

(日) (同) (E) (E) (E)

Position Auctions	AGGs	Experimental Setup	Results	Conclusion
Derverenting	Desition			
Representing	Position	Auctions as AGGS		

- $\bullet \ n$ bidders, m bid increments
 - nm actions
- Position depends on number of higher/equal bids
 - $\bullet~$ add 2~ sum nodes per action
- GSP price depends on next highest bid
 - add $1 \max$ node per action

Position Auctions	AGGs	Experimental Setup	Results	Conclusion
Democratic	Destries			
Representing	POSITION	Alletions as Alight		

- n bidders, m bid increments
 - nm actions
- Position depends on number of higher/equal bids
 - $\bullet~$ add 2~ sum nodes per action
- GSP price depends on next highest bid
 - add $1 \max$ node per action
- utility tables for each action:
 - GFP: $O(n^2)$ (# possible tuples from sum nodes)
 - wGSP: $O(n^3m)$ (also includes values of max node, which depends on both per-bidder weight and amount)
- Overall: AGGs are $O(n^4m^2)$, vs NFGs $O(nm^n)$

・ 同 ト ・ ヨ ト ・ ヨ ト

Position Auctions	AGGs	Experimental Setup	Results	Conclusion
	D			
Representing	Position	Auctions as $A(_{1}(_{1}$	S	

- n bidders, m bid increments
 - nm actions
- Position depends on number of higher/equal bids
 - $\bullet~$ add 2~ sum nodes per action
- GSP price depends on next highest bid
 - add $1 \max$ node per action
- utility tables for each action:
 - GFP: $O(n^2)$ (# possible tuples from sum nodes)
 - wGSP: $O(n^3m)$ (also includes values of max node, which depends on both per-bidder weight and amount)
- Overall: AGGs are $O(n^4m^2)$, vs NFGs $O(nm^n)$
- 10 bidders, 8 slots, bids in $\{0, 1, \dots, 40\}$
 - NFGs: ~700,000TB, vs. AGGs: <80MB

Position Auctions	AGGs	Experimental Setup	Results	Conclusion
Outline				

Position Auctions

2 Action Graph Game Representation

3 Experimental Setup

4 Results

5 Conclusion

- 4 回 2 - 4 回 2 - 4 回 2 - 4

Position Auctions	AGGs	Experimental Setup	Results	Conclusion
Specifying de	tails			

- Game size: 10 bidders, 8 slots, values in [0,40]¹
- Game instances: 100 draws from each model
 - assuming a uniform distribution on all free model parameters
 - normalizing the highest value to be equal to the highest bid amount, so that all increments are potentially useful
- Discretization: ties broken randomly, prices rounded up, 1 increment reserve price
- Multiple runs: 10 runs each of simpdiv and gnm, randomized starting points

¹We also considered three other sizes in our paper. $\Box \rightarrow \langle \Box \rangle \rightarrow \langle \Xi \rangle \rightarrow \langle \Xi \rangle$

Computational Analysis of Position Auctions

Position Auctions	AGGs	Experimental Setup	Results	Conclusion
Equilibrium sel	ection			

We need to decide which equilibria to report.

- Why?
 - Our solvers return arbitrary equilibria; many exist.
 - GSP best response set is interval (sets price for bidder above)

・回 ・ ・ ヨ ・ ・ ヨ ・

Position Auctions	AGGs	Experimental Setup	Results	Conclusion
Eauilibrium sel	ection			

We need to decide which equilibria to report.

- Why?
 - Our solvers return arbitrary equilibria; many exist.
 - GSP best response set is interval (sets price for bidder above)
- How?
 - Remove bids above value (always dominated)
 - Thus we restrict to *conservative Nash equilibria* [Paes Leme and Tardos, 2009]
 - Multiple runs
 - SLS through equilibrium space
 - maximize/minimize revenue/welfare

- 4 回 2 - 4 □ 2 - 4 □

Position Auctions	AGGs	Experimental Setup	Results	Conclusion
Statistical me	thods			

- Goal: Quantitative, comparisons across mechanisms
 - $\bullet~$ Is A better than B?
- Problem: Possibly insignificant conclusions.
- Solution: A conservative, nonparametric statistical test, with multiple testing correction.
 - ** denotes significance at or above $p=0.01\,$

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Position Auctions	AGGs	Experimental Setup	Results	Conclusion
Outline				

Position Auctions

2 Action Graph Game Representation

3 Experimental Setup

5 Conclusion

 Position Auctions
 AGGs
 Experimental Setup
 Results
 Conclusion

 Efficiency:
 what is known theoretically?

 Theorem (Edelman, Ostrovsky & Schwarz, 2007; Varian, 2007)

In EOS and V models, wGSP is efficient in every envy-free Nash equilibrium.²

²Caveat: these results apply to continuous case without reserve price \rightarrow \equiv \sim

Computational Analysis of Position Auctions

Position Auctions

Efficiency: what is known theoretically?

Theorem (Edelman, Ostrovsky & Schwarz, 2007; Varian, 2007)

In EOS and V models, wGSP is efficient in every envy-free Nash equilibrium.²

Theorem (Paes Leme & Tardos, 2009)

In EOS and V models, wGSP is 1.62-efficient in every conservative Nash equilibrium.²

²Caveat: these results apply to continuous case without reserve price \rightarrow \equiv \sim

Computational Analysis of Position Auctions

Efficiency: what is known theoretically?

Theorem (Edelman, Ostrovsky & Schwarz, 2007; Varian, 2007)

In EOS and V models, wGSP is efficient in every envy-free Nash equilibrium.²

Theorem (Paes Leme & Tardos, 2009)

In EOS and V models, wGSP is 1.62-efficient in every conservative Nash equilibrium.²

Theorem (Blumrosen, Hartline & Nong, 2008)

There are cases in the BHN model where wGSP is not efficient in any pure-strategy Nash equilibrium.

²Caveat: these results apply to continuous case without reserve price \rightarrow \equiv $\sim \sim$

Computational Analysis of Position Auctions

Efficiency: what is known theoretically?

Theorem (Edelman, Ostrovsky & Schwarz, 2007; Varian, 2007)

In EOS and V models, wGSP is efficient in every envy-free Nash equilibrium.²

Theorem (Paes Leme & Tardos, 2009)

In EOS and V models, wGSP is 1.62-efficient in every conservative Nash equilibrium.²

Theorem (Blumrosen, Hartline & Nong, 2008)

There are cases in the BHN model where wGSP is not efficient in any pure-strategy Nash equilibrium.

Theorem (Benisch, Sadeh & Sandholm, 2008)

There are cases in the BSS model where wGSP is not efficient in any pure-strategy Bayes-Nash equilibrium.²

²Caveat: these results apply to continuous case without reserve price \rightarrow

AGGs Results Position Auctions Experimental Setup Conclusion Efficiency: Experimental Questions Question When we go beyond restricted equilibrium families (e.g., envy-free), what happens?

Question

How common are efficiency failures, and how severe are they?

Position Auctions	AGGs	Experimental Setup	Results	Conclusion

Results: Efficiency

Kevin Leyton-Brown, joint work with David R.M. Thompson

3

Position Auctions	AGGs	Experimental Setup	Results	Conclusion
Revenue:	Theoretical	Predictions and	Questions	

Theorem (Edelman, Ostrovsky & Schwarz, 2007; Varian, 2007)

In EOS and V models, wGSP generates more revenue than VCG in every "envy-free" Nash equilibrium.

回 と く ヨ と く ヨ と

Theorem (Edelman, Ostrovsky & Schwarz, 2007; Varian, 2007)

In EOS and V models, wGSP generates more revenue than VCG in every "envy-free" Nash equilibrium.

Question

When we go beyond envy-free equilibria, does this result still hold?

Question

How do different auction designs compare in terms of revenue?

- - 4 回 ト - 4 回 ト

Position Auction	s AGGs	Experimental Setup	Results	Conclusion
EOS: reve	enue range			

EOS: Without envy-free restriction but with restriction to conservative equilibria:

- expected worst wGSP revenue $<^{**}$ expected VCG revenue
- expected best wGSP revenue $<^{**}$ expected VCG revenue

Computational Analysis of Position Auctions

Position Auctions	AGGs	Experimental Setup	Results	Conclusion
V: revenue ra	inge			

V: Without envy-free restriction but with restriction to conservative equilibria:

- expected worst wGSP revenue $<^{**}$ expected VCG revenue
- expected best wGSP revenue $>^{**}$ expected VCG revenue

Computational Analysis of Position Auctions

V: best-case revenue

No significant revenue difference between the mechanisms.

Computational Analysis of Position Auctions

Position Auctions	AGGs	Experimental Setup	Results	Conclusion

V: best-case revenue

No significant revenue difference between the mechanisms.

Computational Analysis of Position Auctions

Position Auctions AGGs Experimental Setup Results Conclusion

BHN: revenue comparison

Expected wGSP revenue $>^{**}$ expected GFP/uGSP revenue

not significant at all problem sizes we studied

3 ×

Position Auctions AGGs Experimental Setup Results Conclusion

BSS: revenue comparison

Expected GFP revenue $>^{**}$ expected uGSP/wGSP revenue

not significant at all problem sizes we studied

Position Auctions	AGGs	Experimental Setup	Results	Conclusion
Outline				

Position Auctions

2 Action Graph Game Representation

3 Experimental Setup

4 Results

- 4 回 2 - 4 回 2 - 4 回 2 - 4

Position Auctions	AGGs	Experimental Setup	Results	Conclusion
Conclusion				

- This approach is possible and yields real economic insights!
- Efficiency: wGSP is more efficient (even in difficult models) and very robust to equilibrium selection.
- Revenue: Ranking is unclear. Equilibrium selection and instance details have large impact.
- Code and data are available at: http://www.cs.ubc.ca/research/position_auctions/

This work was supported by Microsoft's Beyond Search program.

向下 イヨト イヨト

Position Auctions	AGGs	Experimental Setup	Results	Conclusion
Future work				

- Learning distributions from real-world data
- Generalize representation to other models (e.g. cascade)
- Better game solving techniques (e.g. provable bounds on revenue and welfare)

▲圖 → ▲ 国 → ▲ 国 →