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We discuss the parallel implementation of two operations, A := L−1AL−H and A := LHAL,

where A is Hermitian and L is lower triangular, that are important to the solution of dense gener-

alized Hermitian-definite eigenproblems. We use the FLAME formalisms to derive and represent
a family of algorithms and implement these using Elemental, a new C++ library for distributed

memory architectures that may become the successor to the widely-used ScaLAPACK and PLA-

PACK libraries. It is shown that, provided the right algorithm is chosen, excellent performance
is attained on a large cluster.
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General Terms: Algorithms; Performance
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1. INTRODUCTION

The generalized Hermitian-definite eigenvalue problem occurs in one of three forms:
Ax = λBx, ABx = λx, and BAx = λx, where A is Hermitian and B is Hermitian
and positive-definite. The usual solution strategy for each of these problems is to
exploit the positive-definiteness of B in order to compute its Cholesky factorization
and transform the problem into a standard Hermitian eigenvalue problem, solve
the Hermitian eigenproblem, and then backtransform the eigenvectors if necessary.

In particular, the following steps are performed for the Ax = λBx case: (1) Com-
pute the Cholesky factorization B = LLH . (2) Transform C := L−1AL−H so that
Ax = λBx is transformed to Cy = λy with y = L−Hx. (3) Reduce C to tridiagonal
form: C := QCTQ

H
C where QC is unitary and T is tridiagonal. (4) Compute the

Spectral Decomposition of T : T := QTDQ
H
T where QT is unitary and D is diagonal.

(5) Form X := LQCQT so that AX = BXD. Then the generalized eigenvalues
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can be found on the diagonal of D and the corresponding generalized eigenvectors
as the columns of X. In this paper, we focus on Step 2. For the other two forms of
the generalized Hermitian eigenvalue problem this step becomes C := LHAL and
C := LALH . Typically C overwrites matrix A. The present paper demonstrates
how Elemental benefits from the FLAME methodology [Gunnels and van de Geijn
2001; Gunnels et al. 2001; Quintana-Ort́ı and van de Geijn 2003; van de Geijn and
Quintana-Ort́ı 2008; Bientinesi et al. 2008] by allowing families of algorithms for
dense matrix computations to be systematically derived and presented in a clear,
concise fashion. This results in the most complete exposition to date of algorithms
for computing L−1AL−H and LHAL.

While a family of algorithms and their parallelization for these operations is the
primary focus of this paper, we also consider this paper the second in a series of pa-
pers related to the Elemental library for dense matrix computations on distributed
memory architectures. The first paper [Poulson et al. ] gave a broad overview of
the vision behind the design of the Elemental library and performance comparisons
between ScaLAPACK [Choi et al. 1992] and Elemental for a representative subset
of operations. Since the comparison is not the main focus of that paper, the reader
is left wondering as to how much of the improvement in performance is due to al-
gorithm choice rather than implementation. This paper answers that question for
the discussed operations. It thus adds to the body of evidence that Elemental may
be a worthy successor to ScaLAPACK.

This paper is organized as follows. In Sections 2 and 3 we derive algorithms for
computing L−1AL−H and LHAL, respectively. In Section 4 we present results from
performance experiments on a large cluster. Related work is discussed in Section 5
and concluding remarks are given in the conclusion.

2. ALGORITHMS FOR COMPUTING A := L−1AL−H

In this section, we derive algorithms for computing C := L−1AL−H , overwriting
the lower triangular part of Hermitian matrix A with the lower triangular part of
Hermitian matrix C.

Derivation. We give the minimum information required so that those familiar
with the FLAME methodology understand how the algorithms that are discussed
later were derived. Those not familiar with the methodology can simply take the
resulting algorithms—presented in Figure 2—on face value and move on to the
discussion at the end of this section.

First, we reformulate the computation C := L−1AL−H as the constraint A =
C ∧ LCLH = Â where ∧ denotes the logical AND operator. This constraint ex-
presses that A is to be overwritten by matrix C, where C satisfies the given con-
straint in which Â represents the input matrix A. This constraint is known as the
postcondition in the FLAME methodology.

Next, we form the Partitioned Matrix Expression (PME), which can be viewed
as a recursive definition of the operation. For this, we partition the matrices so
that

A→
(
ATL ?

ABL ABR

)
, C →

(
CTL ?

CBL CBR

)
, and L→

(
LTL 0
LBL LBR

)
,
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where ATL, CTL, and LTL are square submatrices and ? denotes the parts of
the Hermitian matrices that are neither stored nor updated. Substituting these
partitioned matrices into the postcondition yields(
ATL ?

ABL ABR

)
=
(
CTL ?

CBL CBR

)
∧(

LTL 0
LBL LBR

)(
CTL ?

CBL CBR

)(
LTL 0
LBL LBR

)H

=

(
ÂTL ?

ÂBL ÂBR

)
︸ ︷︷ ︸(

LTLCTLLH
TL = ÂTL ?

LBRCBL = ÂBLL−H
TL − LBLCTL LBRCBRLH

BR = ÂBR − LBLCTLLH
BL

− LBLCH
BLLH

BR − LBRCBLLH
BL

)
This represents all conditions that must be satisfied upon completion of the com-
putation, in terms of the submatrices. The bottom-right quadrant can be further
manipulated into

LBRCBRL
H
BR = ÂBR − LBLCTLL

H
BL − LBLC

H
BLL

H
BR − LBRCBLL

H
BL

= ÂBR − LBL

(
1
2
CTLL

H
BL + CH

BLL
H
BR

)
︸ ︷︷ ︸

WH
BL

−
(

1
2
LBLCTL + LBRCBL

)
︸ ︷︷ ︸

WBL

LH
BL

using a standard trick to cast three rank-k updates into a single symmetric rank-k
update. Now, the PME can be rewritten as(

ATL ?

ABL ABR

)
=
(
CTL ?

CBL CBR

)
∧ YBL = LBLCTL ∧WBL = LBRCBL −

1
2
YBL

∧
(

LTLCTLLH
TL = ÂTL ?

LBRCBL = ÂBLL−H
TL − YBL LBRCBRLH

BR = ÂBR − LBLW H
BL −WBLLH

BL

)
.

The next step of the methodology identifies loop invariants for algorithms. A loop
invariant is a predicate that expresses the state of a matrix (or matrices) before
and after each iteration of the loop. In the case of this operation, there are many
such loop invariants. However, careful consideration for maintaining symmetry
in the intermediate update and avoiding unnecessary computation leaves the five
tabulated in Figure 1.

The methodology finishes by deriving algorithms that maintain these respective
loop invariants. The resulting blocked algorithms are given in Figure 2 where
Variant k corresponds to Loop Invariant k. Unblocked algorithms result if the
block size is chosen to equal 1 and operations are simplified to take advantage of
this.

Discussion. All algorithms in Figure 2 incur a cost of about n3 flops where n is
the matrix size. A quick way to realize where the algorithms in Figure 2 spend
most of their time is to consider the partitionings A00 ? ?

A10 A11 ?
A20 A21 A22

 and

 L00 0 0
L10 L11 0
L20 L21 L22
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Loop Invariant 10@ ATL ?

ABL ABR

1A =

0@ CTL ?

ÂBL ÂBR

1A
Loop Invariant 20@ ATL ?

ABL ABR

1A =

0@ CTL ?

ÂBLL−H
TL ÂBR

1A
Loop Invariant 30@ ATL ?

ABL ABR

1A =

0@ CTL ?

ÂBLL−H
TL ÂBR

1A ∧
0@ YTL

YBL YBR

1A =

0@
LBLCTL

1A
Loop Invariant 40@ ATL ?

ABL ABR

1A =

0@ CTL ?

ÂBLL−H
TL − LBLCTL ÂBR − (LBLW H

BL + WBLLH
BL)

1A
Loop Invariant 50@ ATL ?

ABL ABR

1A =

0@ CTL ?

CBL ÂBR − (LBLW H
BL + WBLLH

BL)

1A
Fig. 1. Four loop invariants for computing A := L−1AL−H . Loop Invariant 2 is maintained by
the new algorithm described in this paper while Loop Invariant 4 is maintained by the algorithm

currently used by LAPACK and ScaLAPACK.

and to note that operations that involve at least one operand that is highlighted
contribute to an O(n3) (highest order) cost term while the others contribute to
an O(bn2) term. Thus, first and foremost, it is important that the highlighted
operations in Figure 2 attain high performance.

On sequential architectures, all of the highlighted operations can attain high
performance [Goto and van de Geijn 008a; Goto and van de Geijn 008b]. However,
as we will demonstrate, there is a notable difference on parallel architectures. In
particular, it is the parallel triangular solves with b right-hand sides (trsm), A10 :=
A10L

−H
00 in Variant 1 and A21 := L−1

22 A21 in Variant 5, that inherently do not
parallelize well yet account for about 1/3 of the flops for Variants 1 and 5. The
reason is that inherent dependencies exist within the trsm operation, the details of
which go beyond the scope of this paper (as was, for example, already noted in [Sears
et al. 1998]). All of the other highlighted operations can, in principle, asymptotically
attain near-peak performance when correctly parallelized on an architecture with
reasonable communication [van de Geijn and Watts 1997; Chtchelkanova et al. 1997;
Gunnels et al. 1998; van de Geijn 1997]. Thus, Variants 1 and 5 cast a substantial
fraction of computation in terms of an operation that does not parallelize well, in
contrast to Variants 2, 3, and 4. Variant 3 has the disadvantage that intermediate
result YBL must be stored. (In the algorithm we show Y for all algorithms, but
only Y10 or Y21 are needed for Variants 1, 2, and 5.)

In Section 4 we will see that Variant 4 attains the highest performance. This
is because its most computationally intensive operations parallelize most naturally
when targeting distributed memory architectures. Variant 2 might be a good choice
when implementing an out-of-core algorithm, since the highlighted computations
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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Algorithm: A := L−1AL−H

Partition A→
 

ATL ATR

ABL ABR

!
, L→

 
LTL LTR

LBL LBR

!
, Y →

 
YTL YTR

YBL YBR

!
where ATL, LTL, and YTL are 0× 0. Initially, Y = 0.

while m(ATL) < m(A) do
Determine block size b

Repartition 
ATL ?

ABL ABR

!
→

0@ A00 ? ?

A10 A11 ?

A20 A21 A22

1A,

 
LTL 0

LBL LBR

!
→

0@ L00 0 0

L10 L11 0

L20 L21 L22

1A,

 
YTL 0

YBL YBR

!
→

0@ Y00 0 0

Y10 Y11 0

Y20 Y21 Y22

1A
where A11, L11, and Y11 are b× b

Variant 1 Variant 2

Y10 := L10A00 (hemm)

A10 := A10L−H
00 (trsm)

A10 := W10 = A10 − 1
2
Y10

A11 := A11 − (A10LH
10 + L10AH

10)

A11 := L−1
11 A11L−H

11

A10 := A10 − 1
2
Y10

A10 := L−1
11 A10

Y10 := 1
2
L10A00 (hemm)

A10 := W10 = −Y10 + A10

A11 := A11 − (A10LH
10 + L10AH

10)

A11 := L−1
11 A11L−H

11
A21 := A21 −A20LH

10 (gemm)

A21 := A21L−H
11

A10 := L−1
11 (A10 − Y10)

Variant 3 Variant 4

A10 := W10 = − 1
2
Y10 + A10

A11 = A11 − (A10LH
10 + L10AH

10)

A11 = L−1
11 A11L−H

11
A21 = A21 −A20LH

10 (gemm)

A21 = A21L−H
11

A10 = A10 − 1
2
Y10

A10 = L−1
11 A10

Y20 = Y20 + L21A10 (gemm)

Y21 = L21A11

Y21 = Y21 + L20AH
10 (gemm)

A10 := L−1
11 A10

A20 := A20 − L21A10 (gemm)

A11 := L−1
11 A11L−H

11
Y21 := L21A11

A21 := W21 = A21L−H
11 −

1
2
Y21

A22 := A22 − (L21AH
21 + A21LH

21) (her2k)

A21 := A21 − 1
2
Y21

Variant 5

A11 := L−1
11 A11L−H

11
Y21 := L21A11

A21 := W21 = A21L−H
11 −

1
2
Y21

A22 := A22 − (L21AH
21 + A21LH

21) (her2k)

A21 := A21 − 1
2
Y21

A21 := L−1
22 A21 (trsm)

Continue with 
ATL ?

ABL ABR

!
←

0@ A00 ? ?

A10 A11 ?

A20 A21 A22

1A,

 
LTL 0

LBL LBR

!
←

0@ L00 0 0

L10 L11 0

L20 L21 L22

1A,

 
YTL 0

YBL YBR

!
←

0@ Y00 0 0

Y10 Y11 0

Y20 Y21 Y22

1A
endwhile

Fig. 2. Blocked algorithms for computing A := L−1AL−H .
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Loop Invariant 10@ ATL ?

ABL ABR

1A =

0@ LH
TLÂTLLTL ?

ÂBL ÂBR

1A
Loop Invariant 20@ ATL ?

ABL ABR

1A =

0@ LH
TLÂTLLTL ?

ÂBLLTL ÂBR

1A
Loop Invariant 30@ ATL ?

ABL ABR

1A =

0@ LH
TLÂTLLTL + W H

BLLBL + LH
BLWBL ?

LH
BR(ÂBLLTL + ÂBRLBL) ÂBR

1A
Fig. 3. Four loop invariants for computing A := LHAL.

for it require the bulk of data (A00 and A20) to be read but not written.

3. ALGORITHMS FOR COMPUTING A := LHAL

In this section, we derive algorithms for computing C := LHAL, overwriting the
lower triangular part of Hermitian matrix A.

Derivation. We once again give the minimum information required so that those
familiar with the FLAME methodology understand how the algorithms (discussed
later) were derived.

The postcondition for this operation is given by A = LHÂL where, again, Â
represents the input matrix A. We partition the matrices so that

A→
(
ATL ?

ABL ABR

)
, and L→

(
LTL 0
LBL LBR

)
,

where ATL and LTL are square submatrices and ? denotes the parts of the Hermi-
tian matrices that are neither stored nor updated. Substituting these partitioned
matrices into the postcondition yields the PME(

ATL ?

ABL ABR

)
=

(
LTLÂTLL

H
TL +WH

BLLBL + LH
BLWBL ?

LH
BR(ÂBLLTL + ÂBRLBL) LH

BRÂBRLBR

)
,

where WTL = ÂBLLTL + 1
2 ÂBRLBL. Letting YBL = ÂBRLBL yields three loop

invariants for this operation that exploit and maintain symmetry without adding
cost. These loop invariants are listed in Figure 3 while the corresponding blocked
algorithms are shown in Figure 4.

Discussion. For this operation, in principle, all of the highlighted suboperations
can be implemented to be scalable on parallel architectures.

4. PERFORMANCE EXPERIMENTS

We now show the performance attained by the different variants on a large dis-
tributed memory parallel architecture. We compare implementations that are part
of the Elemental library to the implementation of this operation that is part of
netlib ScaLAPACK version 1.8.
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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Algorithm: A := LHAL

Partition A→
 

ATL ATR

ABL ABR

!
, L→

 
LTL LTR

LBL LBR

!
where ATL and LTL are 0× 0.

while m(ATL) < m(A) do

Determine block size b

Repartition 
ATL ?

ABL ABR

!
→

0@ A00 ? ?

A10 A11 ?

A20 A21 A22

1A,

 
LTL 0

LBL LBR

!
→

0@ L00 0 0

L10 L11 0

L20 L21 L22

1A
where A11 and L11 are b× b

Variant 1 Variant 2
Y10 := A11L10

A10 := A10L00 (trmm)

A10 := W10 = A10 + 1
2
Y10

A00 := A00 + (AH
10L10 + LH

10A10) (her2k)

A10 := LH
11(A10 + 1

2
Y10)

A11 := LH
11A11L11

Y10 := A11L10

A10 := W10 = A10 + 1
2
Y10

A00 := A00 + (AH
10L10 + LH

10A10) (her2k)

A10 := LH
11(A10 + 1

2
Y10)

A11 := LH
11A11L11

A20 := A20 + A21L10 (gemm)
A21 := A21L11

Variant 3
Y21 := A22L21 (hemm)

A21 := W21 = A21L11 + 1
2
Y21

A11 := LH
11A11L11

A11 := A11 + AH
21L21 + LH

21A21

A21 := A21 + 1
2
Y21

A21 := LH
22A21 (trmm)

Continue with 
ATL ?

ABL ABR

!
←

0@ A00 ? ?

A10 A11 ?

A20 A21 A22

1A,

 
LTL 0

LBL LBR

!
←

0@ L00 0 0

L10 L11 0

L20 L21 L22

1A
endwhile

Fig. 4. Blocked algorithms for computing A := LHAL.

Target Architectures. The performance experiments were carried out on Ar-
gonne National Laboratory’s IBM Blue Gene/P architecture. Each compute node
consists of four 850 MHz PowerPC 450 processors for a combined theoretical peak
performance of 13.6 GFlops (13.6 × 109 floating-point operations per second) per
node using double-precision arithmetic. Nodes are interconnected by a three-
dimensional torus topology and a collective network that each support a per-node
bidirectional bandwidth of 2.55 GB/s. Our experiments were performed on one
midplane (512 compute nodes, or 2048 cores), which has an aggregate theoretical
peak of just under 7 TFlops (7×1012 floating-point operations per second). For this
configuration, the X, Y , and Z dimensions of the torus are each 8 and the optimal
decomposition into a two-dimensional topology was found to be Z×(X,Y ) in every
case, with the fourth intra-node dimension, T , combined with the Z dimension to
produce a 32× 64 process grid.

ScaLAPACK. ScaLAPACK [Dongarra et al. 1992; Anderson et al. 1992; Choi
et al. 1992; Blackford et al. 1997] was developed in the 1990s as a distributed

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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Fig. 5. Performance of the various implementations for A := L−1AL−H on 2048 cores of Blue

Gene/P. The top of the graph represents the theoretical peak of this architecture. (The three

curves for Variants 1 and 5, which cast substantial computation in terms of a parallel trsm,
essentially coincide near the bottom of the graph.)
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Fig. 6. Performance of the various implementations for A := LHAL on 2048 cores of Blue Gene/P.
The top of the graph represents the theoretical peak of this architecture.
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memory dense matrix library coded in Fortran-77 in the style of LAPACK. It uses
a two-dimensional block cyclic data distribution, meaning that p MPI processes are
viewed as a logical r × c mesh and the matrices are partitioned into br × bc blocks
(submatrices) that are then cyclically wrapped onto the mesh. Almost always is
the case that br = bc = bdistr, where bdistr is the distribution block size. The
vast majority of the library is layered so that the algorithms are coded in terms of
parallel implementations of the Basic Linear Algebra Subprograms (BLAS) [Lawson
et al. 1979; Dongarra et al. 1988; Dongarra et al. 1990]. An important restriction
for ScaLAPACK is that the algorithmic block size b in Figure 2 is tied to the
distribution block size.

The ScaLAPACK routines p[sd]sygst and p[cz]hegst implement Variant 5
from Figure 2 when used to compute A := L−1AL−H and Variant 1 from Figure 4
when computing A := LHAL. In addition, a vastly more efficient algorithm (Vari-
ant 4 from Figure 2) is implemented as the routines p[sd]syngst and p[cz]hengst.
These faster routines currently only support the case where the lower triangular
part of A is stored.

Elemental. We think of Elemental as a modern replacement for ScaLAPACK
and PLAPACK [van de Geijn 1997]. It is coded in C++ in a style that resem-
bles the FLAME/C API [Bientinesi et al. 2005] used to implement the libflame
library [Van Zee 2009] (a modern replacement for LAPACK, coded in C). For the
uninitiated, this means that the routines in Elemental that implement the algo-
rithm in Figure 2 resemble those algorithms. Elemental uses a two-dimensional
elemental distribution that can be most easily described as the same distribution
used by ScaLAPACK except that bdistr = 1. The algorithmic block size is not
restricted by the distribution block size. Elemental uses a more flexible layering
so that calls to global BLAS-like operations can be easily fused, which means that
communication overhead can be somewhat reduced by combining communications
from within separate calls to BLAS-like operations. See [Poulson et al. ] for details
regarding Elemental.

Tuning. As mentioned above, all variants of Elemental and ScaLAPACK were
tested on one midplane of a Blue Gene/P using a 32 × 64 process grid. Both
packages were run with one MPI process per core using IBM’s non-threaded ESSL
library for sequential BLAS calls.1 Both packages were tested over a wide range
of typical block sizes; ScaLAPACK was tested with block sizes {16, 24, 32, 48, 64},
while the block sizes {64, 80, 96, 112, 128} were investigated for Elemental. Only
the results for the best-performing block size for each problem size are reported
in the graphs. In the case of ScaLAPACK, the algorithmic and distribution block
sizes are equal, since this is a restriction of the library. In the case of Elemental,
the distribution is elemental (block size of one) and the block size refers to the
algorithmic block size.

1Elemental also efficiently supports SMP+MPI parallelism while ScaLAPACK does not seem to

benefit from this kind of hybrid parallelism on this architecture [Poulson et al. ]. For the sake
of an apples-to-apples comparison, performance of hybrid implementations is not given for either

package.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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Results. In Figure 5 and 6 we report performance of the different variants for
the studied computations. We do so for the case where only the lower triangular
part of A is stored, since this case is the most commonly used and it exercises
ScaLAPACK’s fastest algorithms (the more efficient routines p[sd]syngst and
p[cz]hengst are only implemented for the lower triangular storage case). In order
to lower the required amount of compute time, all experiments were performed with
real double-precision (64-bit) data.

In Figure 5 performance for computing A := L−1AL−H is given. As expected,
the variants that cast a significant part of the computation in terms of a triangular
solve with multiple right-hand sides (trsm) attain significantly worse performance.
Variant 4 performs best, since it casts most computation in terms of a symmetric
(Hermitian) rank-2k update (A22− (L21A

H
21 +A21L

H
21)) and general rank-k update,

(A20 − L21A10), which parallelize more naturally. Variants 2 and 3 underperform
since symmetric (Hermitian) or matrix-panel multiplies (matrix multiply where the
result matrix is narrow), like L10A00, A21−A20L

H
10, and Y21 +L20A

H
10, require local

contributions to be summed (reduced) across processes, a collective communication
that often requires significantly more time than the simpler duplications needed for
rank-k updates. Also, the local matrix-panel multiply that underlies these parallel
operations is often less optimized than the local rank-k update that underlies the
parallel implementations of the symmetric (Hermitian) rank-2k and general rank-k
updates.

We believe that ScaLAPACK’s Variant 4 is slower than Elemental’s Variant 4 for
two reasons: (1) ScaLAPACK’s implementation is layered on top of the PBLAS and
therefore redundantly communicates data, and (2) ScaLAPACK has a hard-coded
block size for the local updates of their parallel symmetric (Hermitian) rank-2k
update that is therefore not a parameter that is easily tuned in that package (and
we did not tune it for that reason). The point is that, in general, part of the
increased performance attained by parallel implementations stems from the proper
choice of algorithm, part is the result of implementation details, and part comes
from how easily the implementation can be tuned.

In Figure 6 performance for computing A := LHAL is given. As can be expected
given the above discussion, Variant 2, which casts the bulk of computation in terms
of a symmetric (Hermitian) rank-2k update and general rank-k update, attains the
best performance.

5. RELATED WORK

In writing this paper, we first derived all of the discussed algorithms via the FLAME
methodology. Upon finishing, we felt that algorithms like Variants 3 and 4 in
Figure 2 would be nearly impossible to discover without the systematic method
described in Sections 2 and 3. When we subsequently searched the literature,
we were surprised to find what is essentially Variant 4 in Figure 2 in a paper by
Sears, Stanley, and Henry [Sears et al. 1998] and also in the ScaLAPACK routines
p[sd]syngst and p[cz]hengst.

The algorithm in the paper by Sears et al. computes L−HAL−1 after having
computed a somewhat unusual version of the Cholesky factorization: B = LHL.
The paper gives few clues about what motivated the discovery of the algorithm.
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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Variant 4 (Elemental) Variant 4 (ScaLAPACK)

A10 := L−1
11 A10

A20 := A20 − L21A10 (gemm)

A11 := L−1
11 A11L−H

11
Y21 := L21A11

A21 := W21 = A21L−H
11 −

1
2
Y21

A22 := A22 − (L21AH
21 + A21LH

21) (her2k)

A21 := A21 − 1
2
Y21

G21 := L21

R21 := A21

S10 := A10

R11 := tril(A11)

G21 := −G21L−1
11

R21 := R21 + 1
2
G21A11

A22 := A22 + G21RH
21 + R21GH

21 (her2k)

A20 := A20 + G21S10 (gemm)
A21 := A21 + G21R11

A10 := L−1
11 A10

C11 := tril(A11)

triu(C11) := tril(C11)H

C11 := L−1
11 C11

C11 := C11L−1
11

tril(A11) := tril(C11)

9>>>>=>>>>;A11 := L−1
11 A11L−H

11

A21 := A21L−H
11

Fig. 7. Operations performance by Variant 4 in Elemental (left) and ScaLAPACK (right).

The algorithm itself is presented as a double-nested loop around vector operations
so that even level-2 BLAS operations are not obvious. No blocked algorithm is
given in the paper. It is merely mentioned that the unblocked algorithm that is
given motivated a blocked version. The one hint at how the algorithm came to
be is the mentioning of “Gauss transforms”. We conclude that the authors used
the following insight: When factoring a square matrix A into its LU factorization,
A = LU , one can view the process as

L̂n−1 · · · L̂0︸ ︷︷ ︸
L−1

A = U, where L̂k =

 Ik×k 0 0
0 1 0
0 −l(k)

21 I


is a Gauss transform. (Here Ik×k denotes a k × k identity matrix.) There is a
simple relation between L and these Gauss transforms in that the l(k)

21 equal the
corresponding subdiagonal elements of matrix L. Thus, the inverse of a unit lower
triangular matrix L can be viewed as a sequence of Gauss transforms that are easily
identified from the matrix L. Thus, if one wishes to compute L−1AL−H one can
instead compute

(
L̂n−1 · · ·

(
L̂0AL̂

H
0

)
· · · L̂H

n−1

)
. The paper contains a few details

beyond this insight, like how to modify this algorithm for the L from the Cholesky
factorization, which is not unit lower triangular, and how to generalize this to a
blocked algorithm. However, these topics are only barely discussed in [Sears et al.
1998], and we choose to omit discussion here since we have an alternative way
of deriving the algorithm. Hopefully, this gives the reader some idea of how the
authors of [Sears et al. 1998] may have derived their algorithm as an alternative to
our derivation based on the FLAME methodology.

It appears that the routines p[sd]syngst and p[cz]hengst in ScaLAPACK were
derived from the work described above. There are a few subtle differences between
the algorithm used by those routines and Variant 4 in Figure 2, as illustrated

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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in Figure 7. The two algorithms are essentially the same: expansion of each of
the dark gray updates in terms of the states of A and L at the beginning of the
iteration reveals that they are identical. Likewise, the light gray update on the
right is merely an expanded version of the update A11 := L−1

11 A11L
−H
11 that could

have been performed more simply via a call to LAPACK’s [sd]sygs2 or [cz]hegs2
routines.

6. CONCLUSION

We have systematically derived and presented a multitude of algorithms for the
transformation of the generalized Hermitian-definite eigenvalue problem to the stan-
dard Hermitian eigenvalue problem. While the concept of avoiding the unscalability
in the traditional algorithm for A := L−1ALH was preceded by the work of Sears
et al., we give a clear derivation of this prior work as well as several other new
algorithmic possibilities. For A := LHAL we similarly present several algorithms,
including one that is different from that used by ScaLAPACK that achieves superior
performance.

The performance improvements of Elemental over ScaLAPACK are not the cen-
tral message of this paper. Instead, we argue that a systematic method for deriving
algorithms combined with a highly-programmable library has allowed us to thor-
oughly explore the performance of a wide variety of approaches. The resulting
performance improvements can be viewed as a consequence of this approach.

Availability

The Elemental library can be found at
http://code.google.com/p/elemental.

This library includes all discussed variants for single, double, complex, and double
complex datatypes, and for updating either the upper or lower triangular parts of
A. The algorithms are also implemented as part of the libflame library [Van Zee
2009] (a modern replacement library for LAPACK) including algorithm-by-blocks
that can be scheduled for parallel execution on multi-threaded and/or multi-GPU
accelerated architectures via the SuperMatrix runtime system [Quintana-Ort́ı et al.
2009; Chan and Igual 2010; Quintana-Ort́ı et al. 2009].
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