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come rich in operations that can achieve near-peak performance on a modern processor. The key is a
novel, cache-friendly algorithm for applying multiple sets of Givens rotations to the eigenvector/singular
vector matrix. This algorithm is then implemented with optimizations that (1) leverage vector instruction

units to increase floating-point throughput, and (2) fuse multiple rotations to decrease the total number of
memory operations. We demonstrate the merits of these new QR algorithms for computing the Hermitian
eigenvalue decomposition (EVD) and singular value decomposition (SVD) of dense matrices when all eigen-
vectors/singular vectors are computed. The approach yields vastly improved performance relative to the

traditional QR algorithms for these problems and is competitive with two commonly used alternatives—
Cuppen’s Divide and Conquer algorithm and the Method of Multiple Relatively Robust Representations—
while inheriting the more modest O(n) workspace requirements of the original QR algorithms. Since the

computations performed by the restructured algorithms remain essentially identical to those performed by
the original methods, robust numerical properties are preserved.
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1. INTRODUCTION

The tridiagonal (and/or bidiagonal) QR algorithm is taught in a typical graduate-level
numerical linear algebra course, and despite being among the most accurate1 meth-
ods for performing eigenvalue and singular value decompositions (EVD and SVD, re-
spectively), it is not used much in practice because its performance is not competi-
tive [Watkins 1982; Golub and Loan 1996; Stewart 2001; Dhillon and Parlett 2003].
The reason for this is twofold: First, classic QR algorithm implementations, such as
those in LAPACK, cast most of their computation (the application of Givens rotations)
in terms of a routine that is absent from the BLAS, and thus is typically not available
in optimized form. Second, even if such an optimized implementation existed, it would

1Notable algorithms which exceed the accuracy of the QR algorithm include the dqds algorithm (a variant
of the QR algorithm) [Fernando and Parlett 1994; Parlett and Marques 1999] and the Jacobi-SVD algorithm
by [Drmač and Veselić 2008a; 2008b].
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not matter because the QR algorithm is currently structured to apply Givens rotations
via repeated instances of O(n2) computation on O(n2) data, effectively making it rich
in level-2 BLAS-like operations, which inherently cannot achieve high performance
because there is little opportunity for reuse of cached data. Many in the numerical
linear algebra community have long speculated that the QR algorithm’s performance
could be improved by saving up many sets of Givens rotations before applying them
to the matrix in which eigenvectors or singular vectors are being accumulated. In this
paper, we show that, when computing all eigenvectors of a dense Hermitian matrix or
all singular vectors of a dense general matrix, dramatic improvements in performance
can indeed be achieved.
This work makes a number of contributions to this subject:

— It describes how the traditional QR algorithm can be restructured so that computa-
tion is cast in terms of an operation that applies many sets of Givens rotations to
the matrix in which the eigen-/singular vectors are accumulated. This restructuring
preserves a key feature of the original QR algorithm: namely, the approach requires
only linear (O(n)) workspace. An optional optimization to the restructured algorithm
that requires O(n2) workspace is also discussed and tested.

— It proposes an algorithm for applying many sets of Givens rotations that, in theory,
exhibits greatly improved reuse of data in the cache. It then shows that an imple-
mentation of this algorithm can achieve near-peak performance by (1) utilizing vector
instruction units to increase floating-point operation throughput, and (2) fusing mul-
tiple rotations so that data can be reused in-register, which decreases costly memory
operations.

— It exposes and leverages the fact that lower computational costs of both the method
of Multiple Relatively Robust Representations (MRRR) [Dhillon and Parlett 2004;
Dhillon et al. 2006] and Cuppen’s Divide-and-Conquer method (D&C) [Cuppen 1980]
are partially offset by an O(n3) difference in cost between the former methods’ back-
transformations and the corresponding step in the QR algorithm.

— It demonstrates performance of EVD via the QR algorithm that is competitive with
that of D&C- and MRRR-based EVD, and QR-based SVD performance that is com-
parable to D&C-based SVD.

— It makes the resulting implementations available as part of the open source libflame
library.

The paper primarily focuses on the complex case; the mathematics then trivially sim-
plify to the real case.
We consider these results to be significant in part because we place a premium

on simplicity and reliability. The restructured QR algorithm presented in this paper
is simple, gives performance that is almost as good as that of more intricate algo-
rithms (such as D&C and MRRR) and does so using only O(n) workspace, and without
the worry of what might happen to numerical accuracy in pathological cases such as
tightly clustered eigen-/singular values.
It should be emphasized that the improved performance we report is not so pro-

nounced that the QR algorithm becomes competitive with D&C and MRRR when per-
forming standalone tridiagonal EVD or bidiagonal SVD (that is, when the input matrix
is already reduced to condensed form). Rather, we show that in the context of the dense
decompositions, which include two other stages ofO(n3) computation, the restructured
QR algorithm provides enough speedup over the more traditional method to facilitate
competitive overall performance.
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2. COMPUTING THE SPECTRAL DECOMPOSITION OF A HERMITIAN MATRIX

Given a Hermitian matrix A ∈ C
n×n, its eigenvalue decomposition (EVD) is given by

A = QDQH , where Q ∈ C
n×n is unitary (QHQ = I) and D ∈ R

n×n is diagonal. The
eigenvalues of matrix A can then be found on the diagonal of D while the correspond-
ing eigenvectors are the columns of Q. The standard approach to computing the EVD
proceeds in three steps [Stewart 2001]: Reduce matrix A to real tridiagonal form T via
unitary similarity transformations: A = QATQH

A ; Compute the EVD of T : T = QT DQT
T ;

and back-transform the eigenvectors of T : Q = QAQT so that A = QDQH . Let us dis-
cuss these in more detail. Note that we will use the general term “workspace” to refer
to any significant space needed beyond the n × n space that holds the input matrix A
and the n-length space that holds output eigenvalues (ie: the diagonal of D).

2.1. Reduction to real tridiagonal form

The reduction to tridiagonal form proceeds as the computation and application of a
sequence of Householder transformations. When the transformations are defined as
reflectors [Golub and Loan 1996; Van Zee et al. 2012; Stewart 2001], the tridiagonal
reduction takes the form Hn−2 · · ·H1H0AH0H1 · · ·Hn−2 = QH

A AQA = T , a real-valued,
tridiagonal matrix.2

The cost of the reduction to tridiagonal form is 4

3
n3 floating-point operations (flops)

if A is real and 4 × 4

3
n3 flops if it is complex-valued. About half of those computa-

tions are in symmetric (or Hermitian) matrix-vector multiplications (a level-2 BLAS
operation [Dongarra et al. 1988]), which are inherently slow since they perform O(n2)
computations on O(n2) data. Most of the remaining flops are in Hermitian rank-k up-
dates (a level-3 BLAS operation) which can attain near-peak performance on modern
architectures. If a flop that is executed as part of a level-2 BLAS operation is K2 times
slower than one executed as part of a level-3 BLAS operation, we will give the effective
cost of this operation as (K2 + 1)2

3
n3, where K2 ≥ 1 and typically K2 ≫ 1. Reduc-

tion to tridiagonal form requires approximately bn workspace elements, where b is the
algorithmic blocksize used in the blocked algorithm [Van Zee et al. 2012].

2.2. Spectral decomposition of T

LAPACK [Anderson et al. 1999] provides four algorithms for computing the tridiagonal
EVD (eigenvalues and eigenvectors), which we now discuss.

The QR algorithm (QR). The cost of the QR algorithm is approximated by 3fn3,
where f equals the average number of Francis steps before deflation when a trailing
eigenvalue has been found. The rule of thumb is that 1 ≤ f ≤ 2. For a complex matrix
A, the cost becomes 2 × 3fn3 because updating a complex eigenvector matrix QA with
real Givens rotations requires twice as many flops.

The fundamental problem with traditional QR algorithm implementations, such as
the one currently found in LAPACK, is that this O(n3) computation is cast in terms
of a level-2 BLAS-like operation [Dongarra et al. 1988], which itself is actually im-
plemented in terms of a level-1 BLAS-like operation [Lawson et al. 1979]. Such an
implementation inherently cannot achieve high performance. If we assume that such
operations are K1 slower than those performed as part of a level-3 BLAS operation, the

2Actually, this produces a matrix with complex off-diagonal elements, which are then “fixed” to become
real, as described in [Van Zee et al. 2012; Stewart 2001], an unimportant detail for the present discussion.
Note that LAPACK does not need to fix the off-diagonal elements because the library defines Householder
transformations in such a way that T is reduced directly to real tridiagonal form. However, the cost of this
minor optimization is that the transformations do not retain the property of being reflectors (ie: HH 6= I),
and thus they must sometimes be conjugate-transposed depending on the direction from which they are
applied.
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effective cost becomes 3K1fn3. Generally, K1 ≥ K2 ≫ 1. The main contribution of this
paper is the restructuring of the computation so that the cost approaches (2×)3fn3.
The QR algorithm typically requires only 2(n−1) real-valued elements of workspace,

which constitutes the maximum needed to hold the scalars which define the Givens
rotations of any single Francis step. The eigenvectors overwrite the original matrix A.

Cuppen’s Divide and Conquer (D&C). An implementation of D&C, similar to the
one in LAPACK, costs approximately 4

3
α2n3(1 − 4−t) flops, where t = log2 n − 1 and

α = 1−δ [Rutter 1994]. Here δ represents a typical value for the fraction of eigenvalues
at any given level of recursion that deflate. Notice that (1−4−t) quickly approaches 1 as
n grows larger, and thus we drop this term in our analysis. It has been shown that the
D&C algorithm is, in practice, quite fast when operating on matrices that engender
a high number of deflations [Cuppen 1980; Rutter 1994; Gu and Eisenstat 1995b].
This is captured in the α parameter, which attenuates quadratically as the number of
deflations increase. A small value for α can significantly lessen the impact of the n3

term. However, for some types of matrices, the number of deflations is relatively low,
in which case the algorithm behaves more like a typical O(n3) algorithm.
The LAPACK implementation of D&C requires n2 complex-valued elements and

2n2 + 4n real-valued elements of workspace to form and compute with QT , in addi-
tional to 5n additional integer elements.

Bisection and Inverse Iteration (BII). Bisection and Inverse Iteration (BII) requires
O(n2) operations to compute eigenvalues and, in the best case, another O(n2) opera-
tions to compute the corresponding eigenvectors [Parlett 1980; Demmel et al. 1995;
Demmel et al. 2008]. For matrices with clustered eigenvalues, the latter cost rises to
O(n3) as the algorithm must also perform modified Gram-Schmidt orthogonalization
in an attempt to produce orthogonal eigenvectors [Demmel et al. 2008; Dhillon 1998].
This method of reorthogonalization, however, has been shown to cause BII to fail in
both theory and practice [Dhillon 1998]. Thus, its use in the community has waned.

The implementation of BII in LAPACK requires n2, 5n, and 5n complex-, real-, and
integer-valued elements of workspace, respectively.

Multiple Relatively Robust Representations (MRRR). MRRR is a more recent algo-
rithm that guarantees O(n2) computation even in the worst case: when the matrix
contains a cluster of eigenvalues, where each eigenvalue in the cluster is identical to
d digits of precision, the algorithm must perform work proportional to dn2 [Demmel
et al. 2008].
The MRRR algorithm is widely reported to require only linear O(n) workspace [An-

derson et al. 1999; Dhillon et al. 2006; Demmel et al. 2008]. But in the context
of a dense Hermitian eigenproblem, the workspace required is actually n2 real-
valued elements for the same reason that the D&C and BII algorithms require O(n2)
workspace—namely, the algorithm inherently must explicitly compute and store the
eigenvectors of T before applying QA towards the formation of Q. The latest imple-
mentation of MRRR in LAPACK as of this writing (version 3.3.1) requires n2 +22n and
10n real- and integer-valued elements of workspace, respectively.

2.3. Back-transformation

D&C, BII, and MRRR all share the property that they compute and store QT ex-
plicitly as a dense matrix. The matrix QA is stored implicitly as Householder trans-
formations, which are applied to QT , yielding Q. This step is known as the back-
transformation. The application of Householder transforms can be formulated as a
blocked algorithm (either with the traditional compact WY-transform [Bischof and van
Loan 1987; Schreiber and van Loan 1989] or with the UT-transform used by libflame
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EVD Algorithm
Effective higher-order floating-point operation cost

A → QATQH
A T → QT DQT

T Form/Apply QA

original QR 4 × (K2 + 1)2

3
n3 2 × K13fn3 4 × 4

3
n3

restructured QR 4 × (K2 + 1)2

3
n3 2 × 3fn3 4 × 4

3
n3

D&C 4 × (K2 + 1)2

3
n3 4

3
α2n3 4 × 2n3

BII 4 × (K2 + 1)2

3
n3 O(n2) ∼ O(n3) 4 × 2n3

MRRR 4 × (K2 + 1)2

3
n3 O(n2) 4 × 2n3

Fig. 1. A summary of approximate floating-point operation cost for suboperations of various algorithms
for computing a Hermitian eigenvalue decomposition. Integer scalars at the front of the expressions (e.g.
“4 × . . .”) indicate the floating-point multiple due to performing arithmetic with complex values. In the cost
estimates for the QR algorithms, f represents the typical number of Francis steps needed for an eigenvalue
to converge. For Cuppen’s Divide-and-conquer algorithm, α represents the number of non-deflations in each
recursive subproblem.

[Joffrain et al. 2006; Van Zee et al. 2012]) at a cost of approximately 2n3 flops (multi-
plied by four for complex). This casts most computation in terms of level-3 BLAS.
When the QR algorithm is employed, QA is formed before the QR algorithm is called.

Forming QA is done “in place,” overwriting matrix A at a cost of approximately 4

3
n3

flops (times four for complex), cast mostly in terms of level-3 BLAS. The Givens rota-
tions are subsequently applied directly to QA. Thus, the back-transformations of D&C
and MRRR incur an additional 2

3
n3 flops (times four for complex) relative to the cor-

responding stage of the QR algorithm. Later, we will show that this additional O(n3)
term in the cost of EVD via D&C or MRRR will partially offset the cost savings of
performing the tridiagonal EVD stage with either of these aforementioned methods.

2.4. Numerical accuracy

A recent paper evaluated the numerical accuracy of the four tridiagonal eigenvalue
algorithms available in LAPACK [Demmel et al. 2008]. The authors observed that,
in practice, the QR and D&C algorithms were the most accurate, exhibiting O(

√
nε)

accuracy, where n is the dimension of the matrix and ε is the machine precision.3 By
contrast, the accuracy of BII and MRRR was observed to be approximately O(nε). An-
other paper compared the numerical performance of the netlib MRRR (as of LAPACK
3.3.2), netlib D&C, and an improved MRRR algorithm. The authors found that netlib
MRRR produced unsatisfactory results for “not too few” of the test cases [Willems and
Lang 2011]. The authors assert that the “best method for computing all eigenvalues” is
a derivative of the QR algorithm, known as the dqds algorithm [Fernando and Parlett
1994; Parlett and Marques 1999], but suggest that it is avoided only because it is, in
practice, found to be “very slow.”4

Recent efforts at producing accurate SVD algorithms have focused on Jacobi iter-
ation [Drmač and Veselić 2008a; 2008b; Drmač 2009]. Admittedly, these algorithms
tend to be somewhat more accurate than the QR algorithm [Demmel and Veselić 1992].

3This paper investigated accuracy only for tridiagonal matrices. By contrast, our work concerns the dense
problem, which also includes a tridiagonal/bidiagonal reduction pre-process as well as a back-transformation
step. Since these steps are implemented in terms of Householder transformations, we believe them to be
quite accurate, but examining their precise numerical impact on the multi-stage EVD or SVD is beyond the
scope of this paper.
4Note that if the matrix generated by the application is already tridiagonal, then D&C and MRRR would be
the methods of choice. If, additionally, only a few eigenvectors are desired and the application can accept the
possibility of somewhat less accurate results, then MRRR may be preferred.
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00:6 F. G. Van Zee et al.

EVD Algorithm
Workspace required for optimal performance

A → QATQH
A T → QT DQT

T Form/Apply QA

original QR C: (b + 1)n
R: 2n − 1

R: 2(n − 1) C: b(n − 1)

restructured QR C: (2b + 1)n
R: 2n − 1

R: 2b(n−1) C: b(n − 1)

D&C C: (b + 1)n
R: 2n − 1

C: n2

R: 2n2 + 4n
Z: 5n

C: bn

BII C: (b + 1)n
R: 2n − 1

C: n2

R: 5n
Z: 5n

C: bn

MRRR C: (b + 1)n
R: 2n − 1

C: n2

R: 20n
Z: 12n

C: bn

Fig. 2. A summary of workspace required to attain optimal performance for each suboperation of various
algorithms employed in computing a Hermitian eigenvalue decomposition. Expressions denoted by R, C,
and Z refer to the amount of real, complex, and integer workspace required. Some suboperations, such as
forming or applying Q, may be executed with less workspace than indicated, but at a cost of significantly
lower performance. Note that we consider workspace for the overall Hermitian EVD, not the individual
stages in isolation. Thus, workspace refers to any storage needed beyond the n × n input matrix and the
n-length vector needed to hold the eigenvalues.

However, Jacobi-based algorithms suffer from performance hurdles similar to that of
conventional QR algorithms due to their common heavy reliance upon Givens rota-
tions.
It goes without saying that some applications are dependent upon very high accu-

racy, even if these algorithms are slower for many classes of matrices. Therefore, re-
alizing a QR algorithm that is restructured for high-performance becomes even more
consequential.

2.5. Cost comparison

The cost and workspace requirements for each step of the EVD are summarized in
Figures 1 and 2. We use these estimates to predict the benefits of a hypothetical
restructured QR algorithm that applies Givens rotations with level-3 BLAS perfor-
mance, shown in Figure 3. For that figure we make the following assumptions: First,
we assume that K1 ≈ K2; Furthermore, since microprocessor cores are increasing in
speed at a faster rate than memory architectures, and since level-1 and level-2 BLAS
operations are memory-bound, K1 and K2 for future architectures will likely increase;
the average number of Francis steps before deflation is taken as f = 1.5 and α = 0.5 for
D&C; And we entirely ignore the O(n2) cost of T → QT DQT

T in the MRRR-based algo-
rithm. We omit BII from our results because (1) in the best case, its performance is sim-
ilar to that of MRRR, and (2) it has been shown to be numerically unreliable [Dhillon
1998].
Inspecting Figure 3, together with the cost expressions from Figure 1, we make the

following observations:

—A restructured QR algorithm allows competitive EVD performance relative to MRRR.
For instance, when K1 = K2 = 8, an EVD using a restructured QR algorithm has the

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 00, Publication date: January 2012.
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conventional QR / MRRR (real)
conventional QR / MRRR (complex)
restructured QR / MRRR (real)
restructured QR / MRRR (complex)
D&C / MRRR (real)
D&C / MRRR (complex)

Fig. 3. Predicted ratios of floating-point operation cost for various Hermitian EVD algorithms relative to
the cost of Hermitian EVD via MRRR. Note that these cost estimates include estimated costs of reduction to
tridiagonal form (via Householder transformations) and also the corresponding back-transformation step.

potential to be only 48% and 20% slower thanMRRR-based EVD for real and complex
matrices, respectively. (In comparison, using the conventional QR algorithm results
in EVD that is 442% and 217% slower for real and complex matrices, respectively.)

—As K1 increases, the relative benefit of restructuring over a conventional QR algo-
rithm quickly becomes significant.

—As K2 increases, the reduction to tridiagonal form consumes a higher fraction of the
total EVD cost, regardless of which method is used. This allows the restructured QR
algorithm to become more competitive with D&C- and MRRR-based EVD.

—While a restructured QR algorithm would still greatly benefit EVD on real matrices,
it is the complex case where we would expect the algorithm to be most competitive
with D&C- and MRRR-based methods.

Thus, a high-performance QR algorithm is theoretically within reach. The question
now becomes how to achieve this high performance.

3. TRIDIAGONAL QR ALGORITHM BASICS

We quickly review the basic ideas behind the (tridiagonal) QR algorithm for computing
the EVD.

3.1. Shifted tridiagonal QR algorithm

Given a tridiagonal matrix T , the shifted QR algorithm is given by

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 00, Publication date: January 2012.
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V := I
for i = 0 : convergence

κi := (some shift)
T − κiI → QR
T next := RQ + κiI
V := V Q
T := T next

endfor

Here, T → QR denotes a QR factorization. Under mild conditions this converges to

a matrix of structure

(

TTL 0
0 λ

)

, where λ is an eigenvalue of T . The process can then

continue by deflating the problem, which means continuing the iteration with the tridi-
agonal matrix TTL. Eventually, T becomes a diagonal matrix, with the eigenvalues
along its diagonal and V converges to a matrix with the corresponding eigenvectors (of
the original matrix) as its columns.
Convergence occurs when one of the off-diagonal elements τi+1,i becomes negligible.

Following Stewart [Stewart 2001], τi+1,i is considered to be negligible when |τi+1,i| ≤
ε
√

|τi,i τi+1,i+1|. Most often, deflation will occur in element τn−1,n−2.
Two choices for shift κi are commonly used: (1) The Rayleigh Quotient shift — This

method consists of choosing κi = τn−1,n−1 (i.e., the bottom-right-most element of the
current tridiagonal matrix), yields cubic convergence [Stewart 2001], but has not been
shown to be globally convergent; and (2) The Wilkinson shift — This shift chooses κi as

the eigenvalue of

(

τn−2,n−2 τn−1,n−2

τn−1,n−2 τn−1,n−1

)

that is closest to τn−1,n−1, converges at least

quadratically, and is globally convergent [Stewart 2001]. We will use the Wilkinson
shift, which in practice appears to yield faster results.

3.2. The Francis Implicit Q Step

One of the most remarkable discoveries in numerical linear algebra is the Francis
Implicit Q Step, which provides a clever way of implementing a single iteration of the
QR algorithm with a tridiagonal matrix [Watkins 1982]. Let T − κiI equal

T =





















τ0,0 − κi τ1,0 0 0 · · · 0
τ1,0 τ1,1 − κi τ1,2 0 · · · 0

0 τ2,1 τ2,2 − κi τ3,2

. . .
...

0 0 τ3,2

. . .
. . . 0

...
...

. . .
. . . τn−2,n−2 − κi τn−1,n−2

0 0 · · · 0 τn−1,n−2 τn−1,n−1 − κi





















.

As part of the QR factorization of T − κiI, the first step is to annihilate τ1,0. For this

purpose, we compute a Givens rotation GT
0 =

(

γ0 σ0

−σ0 γ0

)

that, when applied to the

first two rows, annihilates τ1,0. (We label the rotations such that GT
i is the rotation

that affects rows i and i+1.) But rather than applying GT
0 to T −κiI, we instead apply

it to the original T , affecting the first two rows, after which we apply G0 from the right

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 00, Publication date: January 2012.
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to the first two columns. This yields a matrix of the form

T =

























τnext
0,0 ⋆ ⋆ 0 · · · 0

⋆ ⋆ ⋆ 0 · · · 0

⋆ ⋆ τ2,2 τ3,2

. . .
...

0 0 τ3,2

. . .
. . . 0

...
...

. . .
. . . τn−2,n−2 τn−1,n−2

0 0 · · · 0 τn−1,n−2 τn−1,n−1

























.

where the “⋆”s represent non-zeroes. This step of computing GT
0 from T−κiI and apply-

ing it to T is said to “introduce the bulge” because it causes a non-zero entry to appear
below the first subdiagonal (and, because of symmetry, above the first superdiagonal),
which we have highlighted above. Next, we compute a rotation GT

1 that will annihilate
τ2,0 and apply it to the second two rows of the updated matrix, and its transpose to
the second two columns. This begins the process of “chasing the bulge” and causes the
non-zero entry to reappear at element (3, 1):

T =

























τnext
0,0 τnext

1,0 0 0 · · · 0

τnext
1,0 τnext

1,1 ⋆ ⋆ · · · 0

0 ⋆ ⋆ ⋆
. . .

...

0 ⋆ ⋆
. . .

. . . 0
...

...
. . .

. . . τn−2,n−2 τn−1,n−2

0 0 · · · 0 τn−1,n−2 τn−1,n−1

























.

This process continues, computing and applying rotations G0, G1, G2, . . . , Gn−2 in this
manner (transposed from the left, without transpose from the right) until the matrix
is again tridiagonal. Remarkably, the T that results from this process is, in theory,
exactly the same as the T next in the original algorithm.

This process is known as a Francis Implicit Q Step (or, more concisely, a Francis
step). Neither Q nor R nor T is ever explicitly formed.

3.3. Accumulating the eigenvectors

If we initially let V = I, then QT can be computed as follows. First, we partition V into
its columns: V = ( v0 v1 · · · vn−1 ). For each Francis step, for j = 0, . . . , n − 2, apply
the rotations Gj to columns vj and vj+1, in the order indicated by

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9

G0 G1 G2 G3 G4 G5 G6 G7 G8→ → → → → → → →

Here, the arrows indicate the order in which the Givens rotations must be applied
while the two columns situated below each rotation represent the columns vj and vj+1

to which that rotation is applied. We refer to {G0, . . . , Gn−2} as a single Francis set
of rotations. Following this process, after the QR iteration is complete and T has con-
verged to D (i.e., the eigenvalues of T ), V = QT . That is, column vj contains the eigen-
vector of T that corresponds to the eigenvalue δj,j .
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v0 v1 v2 v3 v4 v5 v6 v7 v8 v9

G0,0 G1,0 G2,0 G3,0 G4,0 G5,0 G6,0 G7,0 G8,0

G0,1 G1,1 G2,1 G3,1 G4,1 G5,1 G6,1 G7,1 G8,1

G0,2 G1,2 G2,2 G3,2 G4,2 G5,2 G6,2 G7,2 G8,2

G0,3 G1,3 G2,3 G3,3 G4,3 G5,3 G6,3 G7,3 G8,3

→ → → → → → → →

→ → → → → → → →

→ → → → → → → →

→ → → → → → → →

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

տ տ տ տ տ տ տ տ

տ տ տ տ տ տ տ տ

տ տ տ տ տ տ տ տ

Fig. 4. Applying Givens rotations from four Francis steps to a matrix V consisting of 10 columns. A ro-
tation Gj,i is generated during the ith Francis step and is applied to columns vj and vj+1. For any given
rotation G, inbound arrows indicate dependencies that must be satisfied before the rotation may be per-
formed. Temporal and spatial locality may be increased by applying rotations in diagonal “waves” from left
to right (where the rotations in each wave are separated by dotted lines), and from bottom-right to top-left
within each wave, according to the dependencies shown.

If we initialize V := QA and the rotations computed from each Francis step are
applied to V as previously described, then upon completion of the QR iteration V = Q,
where column vj contains the eigenvector of A associated with the eigenvalue δj,j .

The application of a Givens rotation to a pair of columns of Q requires approximately
6n flops (2 × 6n flops for complex V ). Thus, applying n − 1 rotations to n columns costs
approximately (2×)6n2 flops. Since performing the Francis step without applying to Q
takes O(n) computation, it is clearly the accumulation of eigenvectors that dominates
the cost of the QR algorithm.

3.4. LAPACK routines {sdcz}steqr

The tridiagonal QR algorithm is implemented in LAPACK in the form of the subrou-
tines ssteqr and dsteqr (for single- and double-precision real matrices, respectively)
and csteqr and zsteqr (for single- and double-precision complex matrices, respec-
tively). These routines implement the entire algorithm described in Sections 3.1–3.3
in a single routine.5 In these implementations, Givens rotations from a single Fran-
cis step are saved in temporary storage until the step is complete. These rotations, a
Francis set, are then applied to QA before moving on to the next Francis step. The
application of the Givens rotations to the columns of QA is implemented via calls to
{sdcz}lasr, which provide flexible interfaces to routines that are very similar to the
level-1 BLAS routines {sd}rot. This, inherently, means that LAPACK’s {sdcz}steqr
routines do not benefit from the fast cache memories that have been part of modern mi-
croprocessors since the mid-1980s. Thus, accumulating eigenvectors is costly not only
because of total number of flops, but also because those flops are performed at a very
slow rate.

4. APPLYING GIVENS ROTATIONS

We now analyze the application of Givens rotations to a matrix.
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4.1. The basic idea

Recall from Section 3.3 that applying one Francis set of (n − 1) rotations to the n × n
matrix V in which eigenvectors are being accumulated requires approximately 6n2

flops (or 2 × 6n2 for complex V ). This means that (2×)n2 floating-point numbers must
be loaded from and stored back to main memory at least once each, for an absolute
minimum number of (2×)2n2 memory operations.6 Thus, the ratio of flops to memops
is at best 3. In practice, this ratio is even lower. For instance, the LAPACK routines
for performing this operation, {sdcz}lasr, perform (2×)6 flops for every (2×)4 mem-
ops, leaving them with a flop-to-memop ratio of just 1.5. This is a problem given that
a memop typically requires much more time to execute than a flop, and the ratio be-
tween them is getting worse as microprocessor speeds outpace memory technology. We
conclude that updating the matrix one Francis set at a time will not be efficient.

The first key insight behind this paper is that if one instead applies k Francis sets,
the theoretical maximum number of flops per memop rises to 3k. Evidence that this
opportunity exists is presented in Figure 4. In this example, there are k = 4 Francis
sets of rotations. The arrows indicate dependencies between rotations. The semantic
meaning expressed by these arrows is simple: a rotation must have all dependencies
(inbound arrows) satisfied before it may be performed. Notice that the drawing is a
directed-acyclic graph (DAG) and hence a partial order. As long as the partial order is
obeyed, the rotations are applied to columns in the exact same order as the traditional
QR algorithm.

The second key insight is that the dotted lines in Figure 4 expose “waves” of rotations
that may be applied. The idea here is that waves of rotations are applied from left to
right with rotations applied from bottom-right to top-left within each wave. (Notice
that this pattern of applying rotations obeys the partial order.) It is easy to see that
this wave-based approach increases temporal and spatial data locality. In fact, once
the wavefront is fully formed, only one new column of V is brought into cache for each
wave; all of the other columns needed for that wave are already residing in the cache.

The dependencies depicted in Figure 4 have been observed by others [Lang 1998;
Kågström et al. 2008]. However, these efforts used the dependency graph to identify
groups of waves which could be accumulated into an intermediate Givens rotation
matrix and then applied to QA via optimized level-3 BLAS operations dgemm and dtrmm.
It is worth pointing out, though, that these two-stage implementations still need to
accumulate individual Givens rotations into the intermediate rotations matrix. As a
result, these efforts still stand to benefit from the insights in this paper because we
will show how to accelerate the direct application of Givens rotations. In Section 6.4,
we discuss an optional optimization to our restructured QR algorithm that, similar to
the techniques used in [Lang 1998; Kågström et al. 2008], leverages dgemm. In that
section, we compare and contrast the two approaches.

We are not the first to highlight the need for optimized routines for applying Givens
rotations. As part of the BLAST forum [BLAST 2002] there were requests for a routine
that would apply multiple sets of rotations to a matrix. However, a standard interface
never materialized, and so library maintainers were never sufficiently motivated to
include the operation in their BLAS libraries.

4.2. Details of cache behavior

Let us perform a more detailed (but still simple) analysis of the cache behavior of ap-
plying Givens rotations, as described in the previous section. Let us assume we have

5These routines, coded in Fortran-77, are likely direct translations from EISPACK, which dates back to the
late 1960’s. Evidence of this exists in the number of GO TO statements in the code.
6Henceforth, we will call the reading or writing of a floating-point number a memory operation, or memop.
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a fully-associative cache that uses the least-recently used replacement policy, and that
the number of elements in our cache, nC , is significantly less than n2 but is greater
than kn, where k ≪ n. Also, let us ignore the fact that accessing data of unit stride of-
ten produces cache hits due to entire cache lines being loaded from memory. We justify
ignoring this effect by pointing out that the scalar-level hit and miss pattern would
be identical for all column-oriented algorithms and thus would not affect our analy-
sis. The idea is that we wish to abstract away to hits and misses of entire columns
of V = QA, given that applying Givens rotations inherently means touching entire
columns of data. Thus, from now on, in the context of analyzing the application of
Givens rotations, we will count only column-accesses, which refer to the memory oper-
ations needed to load or store n consecutive elements.7

Let us begin by considering how we apply the first of k Francis sets of Givens ro-
tations using the single-step approach employed by the traditional QR algorithm. Ap-
plying the first set of rotations accesses most of the n columns of V twice, for a total of
2(n−1) column-accesses. Of these accesses, n are cache misses and n−2 are cache hits.
Now, we assume that since nC ≪ n2, upon finishing applying the first Francis set and
beginning the next, columns v0, v1, v2, . . . have long since been evicted from the cache.
Thus, there is no data reuse between sets of Givens rotations using the single-step ap-
proach found in LAPACK, resulting in kn cache misses and k(n − 2) cache hits, for a
hit rate of approximately 50%.
We now highlight a simple observation. If multiple sets of rotations are accumulated,

the order in which they are applied can be modified to improve the reuse of data in
the caches. Consider the approach exemplified by Figure 4. We identify three distinct
“stages” of the wavefront algorithm. For our discussion, let us define these phases as
follows:

—The startup phase refers to the initial k − 1 waves of rotation applications where the
“wavelength” (the number of rotations within the wave) is initially 1 and gradually
increases.

—The pipeline phase refers to the middle n − k waves of rotation applications where
each wave is of length k.

— The shutdown phase refers to the final k − 1 waves, where the wavelength becomes
less than k and gradually decreases to 1.

Next, we analyze the cache behavior of this algorithm. The wavefront algorithm illus-
trated in Figure 4 produces k×2(n−1) = 2k(n−1) column-accesses. Of these accesses,
there are 2 + (k − 2) = k cache misses in the startup phase, (n − 1) − (k − 1) = n − k
cache misses in the pipeline phase, and no cache misses in the shutdown phase, for a
total of n cache misses. This means the ratio of cache misses to total accesses is ap-

proximately
n

2k(n − 1)
≈ 1

2k
, and the fraction of cache hits is 1 − 1

2k
. For larger values

of k, this cache hit ratio is quite close to 1, and as a result the wavefront algorithm
should exhibit very favorable data access patterns.

4.3. A wavefront algorithm

We now give several algorithms for applying Givens rotations, leading up to an al-
gorithm for wavefront application of k sets of rotations to an m × n matrix. To our
knowledge, this wavefront algorithm is previously unpublished.8

7If nC < n, that is, if the matrix is so large that not even one column can fit in the cache, then we may
employ the blocking technique discussed in Section 4.4, in which case the above analysis still holds.
8While we believe the wavefront algorithm for applying Givens rotations to be novel in the context of tridi-
agonal EVD via the QR algorithm, the idea of structuring computation in terms of successive waves is
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Algorithm: [ x, y ] :=APPLYGMX2( m, {γ, σ}, x, y )
if( γ = 1 ) return fi
for( i := 0; i < m; ++i )

( χi ψi ) := ( χi ψi )

(

γ −σ
σ γ

)

endfor

Fig. 5. An algorithm for applying a single Givens rotation, defined by a pair of Givens scalars {γ, σ}, to two
length m columns x and y from the right.

Algorithm: [ V ] :=APPLYGSINGLE( k, m, n, G, V )
for( h := 0; h < k; ++h )

for( j := 0; j < n − 1; ++j )
APPLYGMX2( m, Gj,h, vj , vj+1 )

endfor
endfor

Fig. 6. An algorithm for applying the Givens rotations contained within an (n − 1) × k matrix G of Givens
scalar pairs, in single-step fashion, to an m × n matrix V .

First, let us define a helper algorithm APPLYGMX2, shown in Figure 5, which applies

a single rotation G =

(

γ −σ
σ γ

)

from the right to a pair of vectors x and y of length m.

The rotation is never explicitly formed. Rather, it is represented and passed in by the
pair of Givens scalars {γ, σ}. Also, notice that APPLYGMX2 avoids any computation if
the rotation is equal to identity.

Let us now formulate, for reference, an algorithm APPLYGSINGLE that, given an
(n − 1) × k matrix G of Givens scalar pairs, applies the sets of Givens rotations in
single-step fashion to an m × n matrix V . We show this algorithm in Figure 6.

Figure 7 shows a wavefront algorithm that applies the Givens rotations stored in an
(n−1)×k matrix G of Givens scalars to an m×n matrix V . This algorithm implements
the exact sequence of rotation application captured by the drawing in Figure 4. Each
outer loop iterates through a series of waves, while the inner loops iterate through the
rotations within each wave. Note that we simply call APPLYGSINGLE if there are not
enough columns in V to at least fully execute the startup and shutdown phases (ie: if
n < k).

4.4. Blocking through V to control cache footprint

If applied to a matrix V with n rows, the wavefront algorithm requires approximately
k columns to simultaneously fit in cache. Clearly, if k such columns do not fit, matrix
V can be partitioned into blocks of rows (using a blocksize b) and the k sets of rotations
can be applied to one such block at a time. Note that this blocking also naturally sup-
ports updating matrix V in parallel by assigning blocks of rows to different processing
cores.

4.5. Why we avoid (for now) a hybrid QR/QL algorithm

There exist certain kinds of graded matrices for which the QR algorithm does not
perform well. In particular, if a matrix is graded so that |τn−1,n−1| ≫ |τ0,0|, then the
shifting of the matrix (computing τ0,0 − τn−1,n−1 wipes out the accuracy in τ0,0 and
causes excessive roundoff error. For this reason, an implementation may choose to

not new and has been used, for example, in the contexts of tridiagonalization via Householder-based band
reduction [Bischof et al. 1994] and Givens-based band reduction within sparse SVD [Rajamanickam 2009].
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Algorithm: [ V ] :=APPLYGWAVE( k, m, n, G, V )
if( n < k OR k = 1 )

V := APPLYGSINGLE( k, m, n, G, V )
return

endif
for( j := 0; j < k − 1; ++j ) // Startup phase

for( i := 0, g := j; i < j + 1; ++i, −−g )
[vg, vg+1] := APPLYGMX2( m, Gg,i, vg, vg+1 )

endfor
endfor
for( j := k − 1; j < n − 1; ++j ) // Pipeline phase

for( i := 0, g := j; i < k; ++i, −−g )
[vg, vg+1] := APPLYGMX2( m, Gg,i, vg, vg+1 )

endfor
endfor
for( j := n − k; j < n − 1; ++j ) // Shutdown phase

for( i := 1, g := n − 2; i < k; ++i, −−g )
[vg, vg+1] := APPLYGMX2( m, Gg,i, vg, vg+1 )

endfor
endfor

Fig. 7. An algorithm for applying the Givens rotations contained within an (n − 1) × k matrix G of Givens
scalar pairs, in waves, to an m × n matrix V .

use a QL algorithm instead, in which T − κiI → QL and T next := LQ + κiI. Indeed,
depending on which of τ0,0 and τn−1,n−1 is greater in magnitude, QR or QL may be
used on an iteration-by-iteration basis.
Alternating between QR and QL steps disrupts our ability to accumulate and apply

many rotations. Key to applying the wavefront algorithm is that all Francis steps move
in the same direction through matrix T : in the case of the QR algorithm, from top-
left to bottom-right. Clearly, if we only used the QL algorithm, we could formulate a
similarly optimized algorithm with waves moving in the opposite direction. It would
also be possible to periodically switch between multiple QR steps and multiple QL
steps. However, frequent mixing of directions would limit our ability to reuse data
in cache. It is for this reason that we don’t alternate between QR and QL steps. As a
result, this is the one part of the traditional implementation that we do not yet directly
incorporate in our restructured algorithm.

5. A RESTRUCTURED TRIDIAGONAL QR ALGORITHM

In the last section, we discussed how the application of multiple Francis sets of ro-
tations can, in principle, yield a performance boost. The problem is that the QR al-
gorithm, as implemented in LAPACK, is not structured to produce multiple sets of
rotations. In this section, we discuss the necessary restructuring.

5.1. The basic idea

The fundamental problem is that applying multiple sets of rotations is most effective
if there are a lot of rotations to be applied. Now, take a possible state of T after some
Francis steps have been performed:

T =

(

T0 0 0
0 T1 0
0 0 T2

)

.
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Algorithm: [ T , G ] = TRIQRALGKSTEPS( i, k, n, T )
if( n ≤ 1 OR i = k − 1 )

return
else if( n = 2 )

[T,G0,i] := SYMEVD2X2( T )
return

else
if no deflation is possible

Perform QR Francis step, computing G0:n−2,i

[T,G0:n−2,i+1:k−1] :=TRIQRALGKSTEPS( i + 1, k, n, T )
else

T →
(

T0 0
0 T1

)

where T0 is n0 × n0 and T1 is n1 × n1

[T0, G0:n0−2,i:k−1] := TRIQRALGKSTEPS( i, k, n0, T0 )
[T1, Gn0:n−2,i:k−1] := TRIQRALGKSTEPS( i, k, n1, T1 )

endif
return

endif

Fig. 8. A recursive algorithm for computing k Francis steps, saving the rotations in G. It is assumed that
G was initialized with identity rotations upon entry.

Algorithm: [ T , V ] :=RESTRUCTUREDTRIQR( b, k, n, T , V )
do

Partition T →













T0 0 · · · 0 0
0 T1 · · · 0 0
...

...
. . .

...
...

0 0 · · · TN−1 0
0 0 · · · 0 D













, G →

















G0

g0

...
GN−1

gN−1

GN

















where
Ti is ni × ni and unreducible,
D is nN × nN and diagonal,
nN is as large as possible,
Gi is (ni − 1) × k, and
gi is 1 × k.

if( nN = n ) break
for( i = 0; i < N ; ++i )

[Ti, Gi] := TRIQRALGKSTEPS( 0, k, ni, Ti )
endfor
[V ] := APPLYGWAVEBLK( b, k, n, n, G, V )

od
return

Fig. 9. Our restructured QR algorithm for the tridiagonal EVD.

What we capture here is the fact that an internal off-diagonal element may become
negligible, causing a split. What a typical QR algorithm would do is continue sepa-
rately with each of the diagonal blocks, but that would disrupt the generation of all
rotations for all k Francis steps with the original matrix T . We still want to take ad-
vantage of splitting. Essentially, if a split occurs and the number of Francis steps com-
pleted so far is i < k, then for each block on the diagonal we perform the remaining
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k − i Francis steps, while continuing to accumulate rotations. After the k rotation sets
are accumulated for all subproblems along the diagonal of T , the rotations are applied
to V . A recursive algorithm that achieves this is given in Figure 8. What is left is an
outer loop around this routine, as given in Figure 9.

5.2. Restructured QR algorithm details

Now that we have given a brief, high-level description for the restructured tridiagonal
QR algorithm, let us walk through the algorithm in further detail.

We start with the RESTRUCTUREDTRIQR algorithm in Figure 9. The first time
through the outer loop, it is assumed that T has no negligible (or zero) off-diagonal
entries. Thus, N = 1, n0 = n, nN = 0, and as a result T is partitioned such that T0

contains all of T and D is empty. Likewise, G is partitioned into just the (n − 1) × k
subpartition G0, which contains all of G. (Note that, once a split occurs, the reason we
separate Gi from Gi+1 by a single row vector gi is because this vector corresponds to
the rotations that would have been applied to the 2 × 2 submatrix starting at element
(ni − 1, ni − 1) along the diagonal of T if the split had not already occurred there.) Now,
since N = 1, the inner loop executes just once, calling TRIQRALGKSTEPS with T0 = T
and passing in i = 0.
Within TRIQRALGKSTEPS, we return if T is empty or a singleton. (We also return

if i = k−1, which happens when we have accumulated the Givens scalars for k Francis
sets.) If n = 2, we compute the EVD of T via SYMEVD2X2, which returns the eigen-
values λ1 and λ2 along the diagonal of T and a pair {γ, σ} (stored to G) such that

T =

(

γ −σ
σ γ

)(

λ1 0
0 λ2

)(

γ −σ
σ γ

)T

. Otherwise, if n > 2, we search the off-diagonal of

T for negligible elements. If we find a negligible element, then we may split T into top-
left and bottom-right partitions T0 and T1, which are n0 × n0 and n1 × n1, respectively,
where n0 + n1 = n, and then call TRIQRALGKSTEPS recursively on these subparti-
tions, saving the resulting Givens scalar pairs to the corresponding rows of columns
i through k − 1. If no negligible off-diagonal elements are found, then we perform a
Francis step on T , saving the Givens scalar pairs to the ith column of matrix G. We
then proceed by recursively calling TRIQRALGKSTEPS with an incremented value of
i.
At some point, we will fill matrix G with Givens scalar pairs, at which time con-

trol returns to RESTRUCTUREDTRIQR and APPLYGWAVEBLK applies the rotations
encoded in G to matrix V .

After the application, the outer loop repeats and, upon re-entering the inner loop,
another “sweep” of T begins where up to k Francis steps are performed on each sub-
matrix Ti before once again applying the rotations to V . This process repeats until the
entire off-diagonal of T becomes negligible, at which time nN = n, and control breaks
out of the outer loop, signaling that the QR algorithm’s execution is complete.

5.3. Impact of identity rotations

Notice that we initialize G to contain identity rotations (γ = 1 and σ = 0) prior to
each entry into the inner loop of RESTRUCTUREDTRIQR. This allows Francis steps
executed by TRIQRALGKSTEPS to simply overwrite elements of G with scalar pairs
representing Givens rotations as they are computed, without having to worry about
which elements are not needed due to deflation (and splitting). Then, APPLYGWAVE

simply detects these identity rotations and skips them so as to save computation.
Depending on how much splitting occurs, this method of storing rotations could have

an impact on cache performance. We would expect that the wavefront algorithm for
applying Givens rotations would execute most favorably when splits occur only (or
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Fig. 10. An illustration of the possible contents of (n− 1)× k matrix G at the end of a sweep, just before its
rotations are applied to matrix V . (G is shown transposed to better visualize the portion of V (highlighted)
that is affected by the application.) Givens scalar pairs, which encode Givens rotations, are marked by “×”
symbols while unmarked locations represent identity rotations (which are skipped). This picture shows what
G might look like after executing a sweep that encountered two instances of splitting: one in the first Francis
step, which occurred while iterating over the entire non-deflated portion of T , and one in the sixth Francis
step, which occurred within the lower-right recursive subproblem that began as a result of the first split.

mostly) at or near the bottom-right corner of T . This is because each column of V
would be accessed and re-used a maximum number of times.

However, Figure 10 shows how splitting early on in a set of Francis steps can create
“pockets” of identity rotations. When these identity rotations are skipped, the columns
associated with these rotations are not touched. This results in a somewhat greater
proportion of cache misses since the reduction in overall column-accesses comes en-
tirely from a reduction in column-accesses that would have been cache hits. The worst
case arises when a split, and subsequent deflation, occurs (1) somewhere in the middle
of T , corresponding to the columns that would have been updated as part of full waves,
and/or (2) very early on in the Francis set, as it gives the pocket of identity rotations
the most time to grow due to subsequent tail deflation in the upper-left subproblem.

6. OPTIMIZING THE APPLICATION OF GIVENS ROTATIONS

In Section 4, we developed a wavefront algorithm for applying Givens rotations that
is, in theory, capable of accessing data in a very cache-efficient manner. We also intro-
duced a supplementary blocked algorithm to partition the eigenvector matrix V into
smaller panels to further control the amount of data from V the algorithm tries to
keep in cache without compromising the expected hit rate for column-accesses. This
effectively induces a blocked algorithm for the operation, which constitutes a substan-
tial algorithm-level improvement over a naive approach that applies one Francis set
of rotations at a time to the entire matrix V . Even with these advances, further opti-
mizations are possible.

6.1. Instruction-level optimizations

Instead of implementing the wavefront algorithm implementation in traditional C and
relying only upon the compiler to perform instruction-level optimizations, we instead
utilize SSE vector intrinsics to facilitate the use of SIMD hardware instructions. These
low-level, vector-based APIs are supported by recent versions of both the Intel and
GNU C compilers, and allow the software developer to precisely specify when to load
and store data. In our case, the vector intrinsic code was applied only to the implemen-
tation of APPLYGMX2 (and derivatives mentioned in the next section). The curious
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v0 v1 v2 v3 v4 v5 v6 v7 v8 v9

G0,0 G1,0 G2,0 G3,0 G4,0 G5,0 G6,0 G7,0 G8,0

G0,1 G1,1 G2,1 G3,1 G4,1 G5,1 G6,1 G7,1 G8,1

G0,2 G1,2 G2,2 G3,2 G4,2 G5,2 G6,2 G7,2 G8,2

G0,3 G1,3 G2,3 G3,3 G4,3 G5,3 G6,3 G7,3 G8,3

→ → → → → → → →

→ → → → → → → →

→→

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

↑ ↑

տ տ տ տ տ տ տ տ

տ տ տ տ տ տ տ տ

տ տ տ տ տ տ տ տ

Fig. 11. By fusing pairs of successive rotations within the same wave, the number of memory operations
performed on each element of V , per rotation applied, may be reduced from approximately four to three.
Here, fused rotations are highlighted, with arrows redrawn to show dependencies within a fused pair as well
as dependencies between pairs. Rotation pairs may be applied in waves, similar to the approach illustrated
by Figure 4. Note that the updated dependencies satisfy the original dependency graph.
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G0,0 G1,0 G2,0 G3,0 G4,0 G5,0 G6,0 G7,0 G8,0

G0,1 G1,1 G2,1 G3,1 G4,1 G5,1 G6,1 G7,1 G8,1

G0,2 G1,2 G2,2 G3,2 G4,2 G5,2 G6,2 G7,2 G8,2

G0,3 G1,3 G2,3 G3,3 G4,3 G5,3 G6,3 G7,3 G8,3
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Fig. 12. Instead of fusing successive rotations within the same wave, as shown in Figure 11, we may also
fuse pairs of successive rotations from the same Francis step. This approach similarly reduces the number
of memory operations performed on each element of V per rotation from four to three.

reader can find a concrete code example in a related technical report [Van Zee et al.
2011].
Next, we will show how precisely controlling the loading and storing of data to and

from main memory opens the door to further algorithmic-level optimizations within
the application of Givens rotations.

6.2. Fusing rotations

In [Van Zee et al. 2012] the authors showed how certain level-2 BLAS operations could
be “fused” to reduce the total number of memory accesses, which tend to be rather slow
and expensive relative to floating-point computation. They further showed that fusing
two operations at the register-level—that is, re-using the data while it is still loaded
in the register set—is superior to a cache-level approach whereby we simply assume
that recently touched data in the cache will be readily available. The bottom line: all
else being equal, reducing the number of memory operations, regardless of whether the
data is already in cache, will typically allow shorter execution times and thus higher
performance.
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Fig. 13. Combining the approaches from Figures 11 and 12, we can fuse in both the k and n dimensions.
This creates parallelogram-shaped groups of fusings. This two-dimensional fusing reduces the average num-
ber of column-access memory operations per rotation from four, in an algorithm that uses no fusing, to just
two.

Consider Figure 11. Here, we have made the observation that successive Givens
rotations within a single wave may be fused to reduce the number of times the rota-
tions must access their corresponding columns of V . (Dependency arrows have been
redrawn to indicate dependencies within pairs of rotations as well as dependencies be-
tween pairs.) Let us consider one such fusable pair, G1,0 and G0,1, in detail. When no
fusing is employed, G1,0 will load and store each element of v1 and v2, for a total of four
column-accesses. Immediately following, G0,1 will load and store v0 and v1, for another
four column accesses. However, any given element of v1 does not change in between
the time that G1,0 stores it and G0,1 loads it. Thus, we could fuse the application of
rotations G1,0 and G0,1. This would result in the ith element of v1 and the ith element
of v2 first being loaded (by G1,0). After computing the updated values, only element i of
v2 is stored while the ith element of v1 is retained in a register. At this point, G0,1 need
only load the corresponding ith element from v0 in order to execute. After its compu-
tation, G0,1 stores the ith elements of both v0 and v1. This reduces the total number
of column-accesses needed to apply two rotations from eight to six. Put another way,
this reduces the number of column-accesses needed per rotation from four to three—a
25 percent reduction in memory operations. Likewise, this increases the ratio of total
flops to total memops from 1.5, as established in Section 4.1, to 2.

We can express the number of memory accesses in terms of the level of fusing, as fol-
lows. If we fuse p rotations in a single wave where p ≪ k, then the approximate number

of total column-accesses incurred is given by 2kn
(

1 + 1

p

)

, and thus with k(n − 1) total

rotations to apply, the number of column-accesses needed per rotation is approximated

by 2
(

1 + 1

p

)

. Notice that aggressively increasing p results in diminishing improvement

in the number of memory accesses.
If we turn our attention back to Figure 4, we can find another method of fusing

rotation pairs. This method is illustrated in Figure 12. Instead of fusing successive
rotations within the same wave, we can instead fuse successive rotations from the
same Francis step. This approach, like the previous one, is similarly generalizable
to fuse p rotations, and similarly reduces the number of column memory operations

incurred per rotation to 2
(

1 + 1

p

)

.

Now, let us revisit both Figures 11 and 12. Notice that the dependency arrows al-
low us to fuse rotations along both the k dimension (across Francis sets) and the n
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dimension (within a Francis set) of matrix G, as illustrated by Figure 13, to create
parallelogram-shaped groups of fused rotations. By inspection, we find that the aver-
age number of column-accesses per rotation, nCAPR, incurred by this more generalized
method of fusing can be expressed as

nCAPR ≈ 2(pk + pn)

pkpn

where pk and pn are the number of rotations fused in the k and n dimensions, re-
spectively. Notice that for pk = pn = 2, the situation captured by Figure 13, this
two-dimensional fusing reduces the average number of memory operations required
per rotation to just two column-accesses. This places the ratio of total flops to total
memops at 3. Also notice that the optimal fusing shape is that of a “square” parallel-
ogram (ie: pk = pn) because it corresponds to the classic problem of maximizing the
area of a rectangle (the number of rotations) relative to its perimeter (the number of
column-accesses).
In the limit, when pk = k and pn = n, the ratio of total flops to memops rises to our

theoretical maximum, 3k. However, values of pk and pn higher than 2 are harder to
implement because it implies that either (1) an increasing number of Givens scalars
are being kept in registers, or (2) an increasing number of Givens scalars’ load times
are being overlapped with computation (a technique sometimes called “pre-fetching”).
Since the processor’s register set is typically quite small, either of these situations may
be sustained only to a limited extent.

6.3. Pitfalls to fusing

In our experience, we have encountered one major caveat to fusing: if any of the rota-
tions within a fused group is the identity rotation, then extra conditional logic must be
introduced into the algorithm so as to not unnecessarily apply that rotation to V . This
extra logic may add some overhead to the algorithm. In addition, the larger the fused
group of rotations, the greater the chance that any given fused group will contain an
identity rotation, which reduces opportunities for cache reuse during the execution of
that group.

6.4. An alternate method of forming Q for complex matrices

Until now, we have only discussed Hermitian EVDwhereby Givens rotations computed
during the QR iteration are applied directly to V = QA, where QA ∈ C

n×n. However,
there is another option that holds potential as long as the input matrix A remains
complex.
Consider an algorithm for EVD in which we initialize VR = I, where VR ∈ R

n×n.
Rotations may then be accumulated into VR as before, which results in VR = QT .
Subsequently, Q may be formed by computing Q := QAVR, which may be done with
a general matrix-matrix multiplication where the left input matrix is complex and
the right input matrix is real. While this kind of dgemm is not implemented in the
BLAS, it is equivalent to multiplying VR by the real and imaginary components of QA

separately. If all matrices are stored in column-major order, this can be done by using
dgemm and specifying the m and leading dimensions of QA as twice their actual values,
since the floating-point representation of complex numbers consists of two real-valued
components. This requires that QA be copied to a temporary matrix Q̂A so that dgemm

can overwrite QA := Q̂AVR. This approach has advantages and at least one major
drawback.
The first advantage of this approach is that part of the computation is now shifted to

dgemm, which is capable of near-peak performance on many modern architectures [Goto
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and van de Geijn 2008] (whereas applying Givens rotations is inherently limited to 75%
of peak on some architectures, as discussed later in Section 9.2).

The second advantage is that this method incurs fewer floating-point operations
when the number of Francis steps performed per deflation, f , is above a certain thresh-
old. As discussed earlier in this paper, applying rotations directly to V = QA leads to
approximately 2 × 3fn3 flops. However, accumulating the rotations to a real matrix
VR results in only 3fn3 flops. The subsequent invocation of dgemm incurs an additional
2(2n)n2 = 4n3 flops. Thus, this approach incurs fewer flops when 3fn3 +4n3 < 2×3fn3,
or, when f > 4

3
. However, additional flops may be saved during the accumulation of

VR. Notice that after applying the first Francis set of rotations to VR = I, the matrix
is filled in down to the first subdiagonal with the remaining entries containing zeros.
Applying the second Francis set results in one additional subdiagonal of fill-in. By
exploiting this gradual fill-in, we can save approximately n3 flops, reducing the total
number of Givens rotation flops from 3fn3 to approximately (3f −1)n3. With these flop
savings, the method now incurs fewer flops when f > 1, which is almost always the
case.

The most obvious disadvantage of this approach is that it requires O(n2) workspace.
Specifically, one would need to allocate a real n×n matrix VR to store the accumulated
rotations. In addition, it would require a second complex n × n matrix to hold Q̂A.
(Actually, one could get by with allocating a smaller b × n matrix for Q̂A, where b ≪ n
but still large enough to allow dgemm to operate at high performance, and use a blocked
algorithm to repeatedly perform several smaller panel-matrix multiplications.)

The idea of using matrix-matrix multiplication to accelerate rotation-based algo-
rithms has been studied before [Lang 1998; Quintana-Ortı́ and Vidal 1992]. Most re-
cently, in [Kågström et al. 2008], it has been shown that it is possible to accumulate
blocks of rotations and then use dgemm and dtrmm to multiply these blocks into V = QA.
This method uses only O(n) workspace. However, this method incurs roughly 50%
more flops than our plain restructured QR algorithm due to overlap between the accu-
mulated blocks. This method would become advantageous when the ratio of observed
performance between APPLYGWAVEBLK and dgemm (and dtrmm) is less than 2

3
. Other-

wise, we would expect this method to exhibit longer run times than that of applying
rotations directly to V = QA via the blocked wavefront algorithm. (In Section 9.2, we
report the performance of an implementation of APPLYGWAVEBLK that does indeed
exceed this two-thirds threshold relative to dgemm on the test machine.)

7. NUMERICAL ACCURACY

Ordinarily, this kind of paper would include extensive experiments to measure the
accuracy of the new approach and compare it to that of other algorithms. However, be-
cause the computations performed by our restructured QR algorithm, and the order in
which they are performed, are virtually identical to those of the original implementa-
tion in LAPACK (modulo the case of certain highly graded matrices), it follows that the
algorithm’s numerical properties are preserved, and thus the residuals ‖Avj − λjvj‖
are small. Furthermore, the accuracy and convergence properties of the tridiagonal
QR algorithm relative to other algorithms are well-studied subjects [Wilkinson 1968;
Stewart 2001; Demmel et al. 2008].

It is worth pointing out that even in the case of graded matrices, there are cer-
tain cases where the QR algorithm performs well. Specifically, if the matrix grading
is downward along the diagonals, the QR algorithm typically yields eigenvalues and
eigenvectors to high relative accuracy [Stewart 2001].
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8. EXTENDING TO SINGULAR VALUE DECOMPOSITION

Virtually all of the insights presented in this paper thus far may be easily applied to
the SVD of a dense matrix.
Given a general matrix A ∈ C

m×n, its singular value decomposition is given by
A = UΣV H , where U ∈ C

m×m, V ∈ C
n×n, both U and V are unitary, and Σ ∈ R

m×n is
positive and diagonal. The singular values of A can then be found on the diagonal of Σ
while the corresponding left and right singular vectors reside in U and V , respectively.
Computing the SVD is similar to the three stages of dense Hermitian EVD [Stewart

2001]: reduce matrix A to real bidiagonal form B via unitary similarity transforma-
tions: A = UABV H

A ; compute the SVD of B: B = UBΣV T
B ; and back-transform the left

and right singular vectors of B: U = UAUB and V = VAVB so that A = UΣV H .
If m is larger than n to a significant degree, it is often more efficient to first perform

a QR factorization A → QR and then reduce the upper triangular factor R to real
bidiagonal form [Stewart 2001], as R = URBV H

R . The process then unfolds as described
above, except that after the bidiagonal SVD (and back-transformation, if applicable),
the matrix URUB must eventually be combined with the unitary matrix Q to form the
left singular vectors of A.
Let us briefly discuss each stage.

Reduction to real bidiagonal form. One can reduce a matrix to bidiagonal form in a
manner very similar to that of tridiagonal form, except that here separate Householder
transformations are computed for and applied to the left and right sides of A. In the
(more common) case of m ≥ n, where the matrix is reduced to upper bidiagonal form,
these transformations annihilate the strictly lower triangle and all elements above the
first superdiagonal. Families of algorithms for reducing a matrix to bidiagonal form are
given in [Van Zee et al. 2012].

Computing the SVD of a real bidiagonal matrix. Computing the SVD of a real bidi-
agonal matrix can be performed via Francis steps similar to those discussed in Sec-
tion 3.2, except that: (1) the shift is typically computed from the smallest singular
value of the trailing 2 × 2 submatrix along the diagonal [Stewart 2001]; (2) the bulge
in the Francis step is chased by computing and applying separate Givens rotations
from the left and the right; and (3) the left and right Givens rotations are similarly
applied to left and right matrices which, upon completion, contain the left and right
singular vectors of the bidiagonal matrix B. Also, the test to determine whether a su-
perdiagonal element is negligible is somewhat different than the test used in the tridi-
agonal QR algorithm. Details concerning the negligibility test, along with other topics
related to computing singular values, may be found in [Demmel and Kahan 1990].
Others have successfully developed Divide and Conquer [Gu and Eisenstat 1995a] and
MRRR [Willems et al. 2006] algorithms for computing the singular value decomposi-
tion of a bidiagonal matrix. The most recent release of LAPACK (version 3.3.1 as of
this writing) includes an implementation of dense matrix SVD based on the D&C al-
gorithm; however, an MRRR implementation has not yet been published in the library.
Many algorithmic variants of the SVD exist, including several based on the QR algo-
rithm [Cline and Dhillon 2006], but for practical purposes we limit our consideration
to those algorithms implemented in LAPACK.

Back-transformation of U and V . The back-transformation of U and V take place in
a manner similar to that of Q in the EVD, except that when m > n only the first n
columns of UA are updated by UB, and when m < n only the first m columns of VA are
updated by VB.
Figures 14 and 15 show floating-point operation counts and workspace require-

ments, respectively, for the dense SVD problem. When counting workspace for SVD, we
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SVD
Algorithm

Effective higher-order floating-point operation cost

A → UABV H
A B → UBΣV T

B Form/Apply U, V

orig. QR
4 × (K2 + 1)
(2mn2− 2

3
n3)

2 × K13fn2(m + n) 4 × 4n(m2 − mn + 2

3
n2)

rest. QR
4 × (K2 + 1)
(2mn2− 2

3
n3)

2 × 3fn2(m + n) 4 × 4n(m2 − mn + 2

3
n2)

D&C
4 × (K2 + 1)
(2mn2− 2

3
n3)

O(mn + n2) 4 × 4n(m2 − 1

2
mn + 1

2
n2)

Fig. 14. A summary of approximate floating-point operation cost for suboperations of various algorithms
for computing a general singular value decomposition. Integer scalars at the front of the expressions (e.g.
“4 × . . .”) indicate the floating-point multiple due to performing arithmetic with complex values. In the cost
estimates for the QR algorithms, f represents the typical number of Francis steps needed for an eigenvalue
to converge. For simplicity, it is assumed that m ≥ n, but also that it is not the case that m ≫ n and thus
an initial QR factorization of A is not employed.

SVD Algorithm
Workspace required for optimal performance

A → UABV H
A B → UBΣV T

B Form/Apply U, V

original QR C: 2n + b(m + n)
R: 2n − 1

R: 4(n − 1) C: b(m − 1)

restructured QR C: 2n + b(m + 3n)
R: 2n − 1

R: 4b(n − 1) C: b(m − 1)

D&C C: 2n + b(m + n)
R: 2n − 1

R: 3n2 + 4n
Z: 8n

C: bm

Fig. 15. A summary of workspace required to attain optimal performance for each suboperation of various
algorithms employed in computing a general singular value decomposition. For simplicity, it is assumed that
m ≥ n, but also that it is not the case that m ≫ n and thus an initial QR factorization of A is not employed.

do not count either of the m×m or n×n output singular vector matrices as workspace.
Here, we stray from our convention of only exempting the input matrices since it is not
possible to output all singular vectors by overwriting the input matrix.

As with reduction to tridiagonal form, our reduction to bidiagonal form retains the
triangular factors of the block Householder transformations, except here the operation
requires an additional 2bn complex storage elements since we must retain the trian-
gular factors for both UA and VA.
Note that the back-transformation of D&C has an O(n3) cost difference relative to

the QR algorithm that is very similar to the cost difference found in the D&C and
MRRR algorithms for computing the Hermitian EVD. Actually, when m = n, the
addtional cost is 4

3
n3, which is twice as large as that of the EVD because the SVD

must back-transform both U and V . The original and restructured QR algorithms can
achieve high performance with approximately O(b(m + n)) workspace while the D&C-
based method requires an additional 3n2 workspace elements.

9. PERFORMANCE

We have implemented the restructured QR algorithm, along with several algorithms
for applying multiple sets of Givens rotations, including several optimized variants
of the wavefront algorithm presented in Section 4. In this section, we will discuss
observed performance of these implementations.
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9.1. Platform and implementation details

All experiments reported in this paper were performed on a single core of a Dell Pow-
erEdge R900 server consisting of four Intel “Dunnington” six-core processors, where
each core has a 16 megabyte L2 cache. Each core provides a peak performance of 10.64
GFLOPS. Performance experiments were gathered under the GNU/Linux 2.6.18 oper-
ating system. All experiments were performed in double-precision floating-point arith-
metic on complex Hermitian (for EVD) and complex general (for SVD) input matrices.
Generally speaking, we test three types of implementations:

—netlib LAPACK. Our core set of comparisons are against Hermitian EVD and SVD
implementations found in the netlib distribution of the LAPACK library, version
3.3.1 [Anderson et al. 1999; LAPACK 2011]. When building executables for these
netlib codes, we link to OpenBLAS 0.1-alpha-2.4 [OpenBLAS 2011]. The OpenBLAS
project provides highly-optimized BLAS based on the GotoBLAS2 library, which was
released under an open source license subsequent to version 1.13.

—MKL. We also compare against the Math Kernel Library (MKL), version 10.2.2,
which is a highly-optimized commercial product offered by Intel that provides a wide
range of scientific computing tools, including an implementation of LAPACK as well
as a built-in BLAS library.

— libflame. The restructured QR algorithm discussed in this paper was implemented
in the C programming language and integrated into the libflame library for dense
matrix computations, which is available to the scientific computing community under
an open source license [Van Zee 2011; libflame 2011]. When linking these implemen-
tations, we use the same OpenBLAS library used to link netlib codes.

We compile the netlib and libflame codes with the GNU Fortran and C compilers,
respectively, included in the GNU Compiler Collection version 4.1.2.

9.2. Applying Givens rotations

Before presenting dense EVD and SVD results, we will first review performance re-
sults for various implementations for applying k sets of Givens rotations to an n × n
matrix. For these tests, random (non-identity) rotations were applied to a random ma-
trix V . The results for these implementations are shown in Figure 16.

Let us begin our discussion with the results for “ApplyGsingle (no SSE),” which most
closely represent the performance of the LAPACK routine zlasr, which applies a single
set of Givens rotations to a double-precision complex matrix. Asymptotically, the per-
formance for this implementation is very low—on par with un-optimized level-1 BLAS
routines. As with many so-called “unblocked” algorithms, this one performs somewhat
better for smaller problem sizes, when the entire matrix V can fit in the L2 cache.
Looking at the results for “ApplyGsingle (with SSE),” we see the benefit to using SSE
instructions (implemented via C compiler intrinsics). However, performance beyond
small problems is still quite low due to the algorithm’s relative cache-inefficiency, as
discussed in Section 4. By switching to a wavefront algorithm with blocking (while
still using SSE vector intrinsics), as reflected by “ApplyGwaveBlk (no fusing),” perfor-
mance is significantly improved and quite consistent as problem sizes grow larger. We
further optimize the blocked wavefront algorithm by employing three kinds of fusing
(labeled as pk × pn), corresponding to the illustrations in Figures 11, 12, and 13. Re-
markably, fusing with pk = pn = 2 yields performance that is over 60% higher than
a similar blocked wavefront implementation without fusing. We include dense dgemm

performance (via OpenBLAS) for reference, where all three matrices are square and
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Fig. 16. Performance of various implementations for applying k = 192 sets of Givens rotations. Those im-
plementations based on blocked algorithms use an algorithmic blocksize b = 256. The maximum attainable
peak for applying Givens rotations, which is 25% lower than that of dgemm because of a 1:2 ratio of floating-
point additions to multiplications, is also shown. Performance results for dgemm (via OpenBLAS), where all
matrix dimensions are equal, are included for reference.

equal to the problem size. We also mark the maximum attainable peak performance
for applying Givens rotations.9

9.3. Hermitian eigenvalue decomposition

Figure 17 shows relative performance for eight implementations for Hermitian EVD,
with linearly distributed eigenvalues. (We report results for five other distributions
of eigenvalues in Appendix A, along with descriptions of how the distributions were
created. There, we also report results for computation on real-domain matrices.) The
implementations tested are described as follows:

—MKL EVD via QR refers to MKL zheev.
—MKL EVD via D&C refers to MKL zheevd.
—MKL EVD via MRRR refers to MKL zheevr.
—netlib EVD via QR refers to netlib zheev linked to OpenBLAS.
—netlib EVD via D&C refers to netlib zheevd10 linked to OpenBLAS.
—netlib EVD via MRRR refers to netlib zheevr linked to OpenBLAS.

9Matrix-matrix multiplication typically incurs equal numbers of floating-point additions and multiplica-
tions, which is well-suited for modern architectures which can execute one add and one multiply simultane-
ously. But if an operation does not have a one-to-one ratio of additions to multiplications, some instruction
cycles are wasted, resulting in a lower peak performance. The application of Givens rotations is one such
operation, generating one addition for every two multiplications. Furthermore, we confirmed that our test
system does indeed suffer from this limitation in floating-point execution. Thus, our maximum attainable
peak is 7.98 GFLOPS, which is 25% lower than the single core peak of 10.64 GFLOPS.
10During our tests, we discovered that the netlib implementation of zheevd, when queried for the optimal
amount of workspace, returns a value that is approximately b(n − 1) less than is needed for the back-
transformation to run as a blocked algorithm, which unnecessarily limits performance for most problem
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Fig. 17. Performance of implementations relative to netlib EVD via MRRR. Experiments were run with
complex matrices generated with linear distributions of eigenvalues.
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Fig. 18. Breakdown of time spent in the three stages of (complex) Hermitian EVD: tridiagonal reduction,
tridiagonal EVD, and the formation of QA (for QR-based algorithms) or the back-transformation (netlib
D&C and MRRR) for problem sizes of 1000 × 1000 (left) and 3000 × 3000 (right). Here, “oQR” refers to EVD
based on the original netlib QR algorithm while “rQR” refers to our restructured algorithm. This shows how
the run time advantage of the tridiagonal D&C and MRRR algorithms over restructured QR is partially
negated by increased time spent in the former methods’ back-transformations.

—EVD via restructured QR refers to an EVD based on our restructured tridiagonal
QR algorithm linked to OpenBLAS.

—EVD via restructured QR II refers to a variant of EVD via restructured QR that
uses the alternative method of forming Q described in Section 6.4.

sizes. When running our tests, we always provided zheevd with additional workspace so that the routine
could run at full speed.
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Note that the three EVD implementations found in MKL are widely known to be
highly-optimized by experts at Intel. Also, the two EVDs based on our restructured
QR algorithm use an implementation of reduction to tridiagonal form that exhibits a
performance signature very similar to that of netlib LAPACK’s zhetrd.

Default block sizes for netlib LAPACK were used for all component stages of netlib
EVD. For each of these suboperations, all of these block sizes happen to be equal to
32. This block size of 32 was also used for the corresponding stages of the EVD via re-
structured QR. (MKL block sizes are, of course, not known and most likely immutable
to the end-user.) For the implementation of APPLYGWAVEBLK, the values k = 32 and
b = 512 were used. (These parameter values appeared to give somewhat better results
than the values that were used when collecting standalone performance results for
APPLYGWAVEBLK in Figure 16.)
The results in Figure 17 reveal that using our restructured QR algorithm allows

Hermitian EVD performance that is relatively competitive with that of D&C and
MRRR. The variant which uses the alternative method of forming Q performs even
more closely with that of D&C and MRRR.

While compelling, these data report only overall performance; they do not show how
each stage of EVD contributes to the speedup. As expected, we found that the time
spent in the reduction to tridiagonal form was approximately equal for all netlib im-
plementations and our restructured QR algorithm.11 Virtually all of the differences in
overall performance were found in the tridiagonal EVD and the back-transformation
(or formation of QA).

Figure 18 shows, for problem sizes of 1000 × 1000 and 3000 × 3000, the breakdown
of time spent in the reduction to tridiagonal form, the tridiagonal EVD, and the
formation of QA (for the netlib and restructured QR-based algorithms) or the back-
transformation (for netlib D&C and MRRR). It is easy to see why methods based on
the original QR algorithm are not commonly used: the tridiagonal EVD is many times
more expensive than either of the other stages. This can be attributed to the fact that
netlib’s zheev applies one set of Givens rotations at a time, and does so via a routine
that typically performs on-par with un-optimized level-1 BLAS. These graphs also il-
lustrate why the restructured QR algorithm is relatively competitive with D&C and
MRRR: the run time advantage of using these faster O(n2) algorithms is partially off-
set by an increase in time spent in their back-transformation stages.
The bar graphs in Figure 18 also show that the tridiagonal EVD stage based on

the restructured QR algorithm, in isolation, still significantly underperforms that of
D&C and MRRR. Thus, we reaffirm to the reader that eigenproblems that begin in
tridiagonal form should most likely be solved via one of these two latter methods.

9.4. General singular value decomposition

We now turn to performance of the SVD of a dense matrix. Figure 19 shows relative
performance for six implementations. (Once again, we present results for five other
singular value distributions, as well as results for the real domain, in Appendix A.)
The implementations tested are:

—MKL SVD via QR refers to MKL zgesvd.
—MKL SVD via D&C refers to MKL zgesdd.
—netlib SVD via QR refers to netlib zgesvd linked to OpenBLAS.
—netlib SVD via D&C refers to netlib zgesdd linked to OpenBLAS.

11Note that we could not confirm this for MKL since we have no way to know that the top-level routines—
zheev, zheevd, and zheevr—are actually implemented in terms of the three lower-level operations called by
the netlib implementation.
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Fig. 19. Performance of implementations relative to netlib SVD via D&C. Experiments were run with com-
plex matrices generated with linear distributions of singular values. Here, the problem sizes listed are
m = n. In the case of “SVD via restructured QR” and “SVD via restructured QR II”, matrices were reduced
to bidiagonal form using a conventional implementation similar to that of zgebrd.
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Fig. 20. Breakdown of time spent in the three stages of (complex) SVD: bidiagonal reduction, bidiagonal
SVD, and the formation of UA and VA (for QR-based algorithms) or the back-transformation (netlib D&C)
for problem sizes of 1000 × 1000 (left) and 3000 × 3000 (right). Here, “oQR” refers to EVD based on the
original netlib QR algorithm while “rQR” refers to our restructured algorithm. This shows how the run time
advantage of the bidiagonal D&C algorithm over restructured QR is partially negated by increased time
spent in the former method’s back-transformations.

— SVD via restructured QR refers to an SVD based on our restructured bidiagonal
QR algorithm linked to OpenBLAS.

— SVD via restructured QR II refers to a variant of SVD via restructured QR that
uses an alternative method of forming U and V very similar to that of forming Q in
EVD, as described in Section 6.4.
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Fig. 21. Performance of implementations relative to netlib SVD via D&C. Experiments were run with com-
plex matrices generated with linear distributions of singular values. Here, the problem sizes listed are
m = 2n. In the case of “SVD via restructured QR” and “SVD via restructured QR II”, matrices were reduced
to bidiagonal form using a conventional implementation similar to that of zgebrd.

Note that we do not compare against an MRRR implementation of SVD since no such
implementation currently exists within LAPACK. Also, we use an implementation of
reduction to bidiagonal form that performs very similarly to that of netlib LAPACK’s
zgebrd.

As with the case of EVD, the default block sizes were equal to 32 and also used
within the corresponding stages of SVD via restructured QR. Similarly, for APPLYG-
WAVEBLK, the values k = 32 and b = 512 were used.
Looking at the performance results, we once again find that the method based on a

restructured QR algorithm performs very well against a D&C-based implementation,
with the alternate variant performing even better. Figure 20 shows a time breakdown
for SVD where m = n. The data tell a story similar to that of Figure 18: we find
that the benefit to using the D&C algorithm, when compared to restructured QR, is
partially negated by its more costly back-transformation. Figures 21 and 22 show run
time and time breakdowns for SVD when the problem size is equal to n, where m = 2n.
These matrices are sufficiently rectangular to trigger the use of a QR factorization,
as described in Section 8. (We know the netlib codes, as well as our implementation
using restructured QR, use the QR factorization for these problem shapes, though
we are unsure of MKL since it is a proprietary product.) Aside from the additional
step of performing the QR factorization, it also requires a corresponding additional
back-transformation, performed via zgemm, to multiply the unitary matrix Q by the
intermediate product URUB. However, the time spent in both the QR factorization and
the Q back-transformations is relatively small, and very consistent across methods.
The results show that this m = 2n problem size configuration actually allows the

restructured QR-based SVD to match D&C’s performance. Figure 22 reveals why: the
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Fig. 22. Breakdown of time spent in the three stages of (complex) SVD: bidiagonal reduction, bidiagonal
SVD, and the formation of UA and VA (for QR-based algorithms) or the back-transformation (netlib D&C)
for problem sizes of 2000×1000 (left) and 6000×3000 (right). Here, “oQR” refers to EVD based on the original
netlib QR algorithm while “rQR” refers to our restructured algorithm. In contrast to Figure 20, these graphs
reflect the additional time spent in the QR factorization of A and the corresponding backtransformation
necessary to combine Q with URUB , which is implemented via zgemm.

extra time spent forming Q, along with back-transforming UA with UB (and VA with
VB) virtually erases the time saved by using D&C for the bidiagonal SVD.
As with the tridiagonal EVD stage of dense Hermitian EVD, we can intuit from

Figures 20 and 22 that D&C-based SVD would continue to offer superior performance
over the restructured QR algorithm when the input matrix happens to already be in
bidiagonal form.
Now that there exist high-performance implementations of both the QR and D&C

algorithms (and their back-transformations or equivalent stages) the last remaining
performance bottleneck is the reduction to bidiagonal form. However, there is potential
for speedup via this operation, too. The authors of [Van Zee et al. 2012], building on the
efforts of [Howell et al. 2008], report on an implementation of reduction to bidiagonal
form that is 60% faster, asymptotically, than the reference implementation provided by
netlib LAPACK. For cases where m = n, we found the bidiagonal reduction to consti-
tute anywhere from 40 to 60% of the total SVD run time when using the restructured
QR algorithm. Thus, combining the results of that paper with this one would further
accelerate the overall SVD. (The impact of this faster reduction on the overall SVD can
be seen in the curves labeled “libflame SVD (fast BiRed + QR)” and “libflame SVD (fast
BiRed + QR II)” in Figures 29–34 of Appendix A.) While, admittedly, this bidiagonal
reduction could be used to speed up any code based on bidiagonal SVD, the libflame

library is the only dense linear algebra library we know of to currently offer such an
implementation.

10. CONCLUSIONS

Ever since the inception of the level-3 BLAS, some have questioned whether a routine
for applying multiple sets of Givens rotations should have been part of the BLAS. We
believe that the present paper provides compelling evidence that the answer is in the
affirmative.
One could render quick judgment on this work by pointing out that the restructured

QR algorithm facilitates performance that is merely competitive with, not faster than,
that of a number algorithms that were developed in the 1980s and 1990s. But one could
argue that there is undervalued virtue in simplicity and reliability (and the QR algo-
rithm exhibits both), especially if it comes at the expense of only minor performance
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degradation. And to some, the option of O(n) workspace is important. The D&C and
MRRR algorithms took many years to tweak and perfect (mostly for accuracy reasons)
and require an expert to maintain and extend. By contrast, the QR algorithm as we
present it is essentially identical to the one developed for EISPACK [Smith et al. 1976]
in the 1960s, which can be understood and mastered by a typical first-year graduate
student in numerical linear algebra. Perhaps most importantly, the QR algorithm’s nu-
merical robustness is undisputed, and now that its performance (in the case of dense
matrices) is competitive, we would argue that it should be preferred over other alter-
natives because it can reliably solve a wide range of problems.
One important caveat to this work is that we show the restructured QR algorithm to

be competitive with other methods only in the context of Hermitian EVD and SVD on
dense matrices (and only when all eigen-/singular vectors are required). While the re-
structuring and optimizations discussed here would greatly benefit someone who had
decided a priori to use the QR algorithm when the input matrix is already tridiagonal
or bidiagonal, such individuals are most likely best served by D&C or MRRR, as those
standalone methods still offer substantially shorter runtimes.

The results presented in this paper present several avenues for future research.

—We believe that the application of Givens rotations within the restructured QR al-
gorithm may be parallelized for multicore systems with relatively minor changes.
Acceleration with GPUs should also be possible. In some sense, limiting our discus-
sion in this paper to only a single core favors other methods: on multiple cores, the
reduction to tridiagonal form will, relatively speaking, become even more of an ex-
pense since it is largely limited by bandwidth to main memory. Recent re-emergence
of successive band reduction tries to overcome this [Luszczek et al. 2011; Bientinesi
et al. 2011; Haidar et al. 2011].

—Now that the QR algorithm is competitive with more recent algorithms, it may be
worth attempting to improve the shifting mechanism. For example, in [Jiang and
Zhang 1985] it is shown that a hybrid method that uses both Rayleigh Quotient
shifts and Wilkinson shifts is cubically (and globally) convergent. This may reduce
the number of Francis steps for many matrix types, which would decrease the overall
runtime of the QR algorithm. Alternatively, in [Dhillon 1997] it is suggested that,
if eigenvalues are computed first, a “perfect shift” can be incorporated in the QR
algorithm that causes deflation after only one iteration, though the same document
uncovers certain challenges associated with this approach.

— “Aggressive early deflation” has been developed to accelerate the QR algorithm for
upper Hessenberg matrices [Braman et al. 2001b], and the authors of [Nakatsukasa
et al. 2012] have extended the approach to the dqds algorithm. Thus, it may be possi-
ble to incorporate this technique into our restructured QR algorithm.

—Previous efforts have succeeded in achieving level-3 BLAS performance in the afore-
mentioned Hessenberg QR algorithm by applying multiple shifts and chasing mul-
tiple bulges simultaneously [Braman et al. 2001a]. It may be possible to further im-
prove those methods by restructuring the computation so that the wavefront algo-
rithm for applying Givens rotations may be employed.

—Periodically, the Jacobi iteration (for the EVD and SVD) receives renewed atten-
tion [Jacobi 1846; Demmel and Veselić 1992; Drmač 2009; Drmač and Veselić 2008a;
2008b]. Since, like the QR algorithm, Jacobi-based approachs rely on Givens rota-
tions, this work may further benefit those methods. Now that the excellent perfor-
mance of a routine that applies sets of Givens rotations has been demonstrated, an
interesting question is how to incorporate this into a blocked Jacobi iteration.

Thus, our work may result in a renaissance for the QR algorithm.
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DRMAČ, Z. AND VESELIĆ, K. 2008b. New fast and accurate Jacobi SVD algorithm. II. SIAM J. Matrix Anal.
Appl. 29, 4, 1343–1362.

FERNANDO, K. V. AND PARLETT, B. N. 1994. Accurate singular values and differential qd algorithms. Nu-
mer. Math. 67, 191–229.

GOLUB, G. H. AND LOAN, C. F. V. 1996.Matrix Computations 3rd Ed. The Johns Hopkins University Press,
Baltimore.

GOTO, K. AND VAN DE GEIJN, R. A. 2008. Anatomy of a high-performance matrix multiplication. ACM
Trans. Math. Soft. 34, 3.

GU, M. AND EISENSTAT, S. C. 1995a. A divide-and-conquer algorithm for the bidiagonal SVD. SIAM J.
Matrix Anal. Appl. 16, 1, 79–92.

GU, M. AND EISENSTAT, S. C. 1995b. A divide-and-conquer algorithm for the symmetric tridiagonal eigen-
problem. SIAM J. Matrix Anal. Appl. 16, 1, 172–191.

HAIDAR, A., LTAIEF, H., AND DONGARRA, J. 2011. Parallel reduction to condensed forms for symmetric
eigenvalue problems using aggregated fine-grained and memory-aware kernels. LAPACKWorking Note
254. August.

HOWELL, G. W., DEMMEL, J. W., FULTON, C. T., HAMMARLING, S., AND MARMOL, K. 2008. Cache efficient
bidiagonalization using BLAS 2.5 operators. ACM Transactions on Mathematical Software 34, 3, 14:1–
14:33.
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A. ADDITIONAL PERFORMANCE RESULTS

Authors’ note: We envision this appendix being published through ACM TOMS as an
electronic appendix.

In this section, we present complete results for six eigen-/singular value distribu-
tions for Hermitian EVD as well as SVD where m = n. The distribution types for
eigen-/singular values λi, for i ∈ 0, 1, 2, . . . , n − 1, are a follows:

—Geometric distributions are computed as λi = α(1 − α)i+1. For our experiments, we

used α =
1

n
.

— Inverse distributions are computed as λi =
α

i + 1
. For our experiments, we used

α = 1.
—Linear distributions are computed as λi = β +α(i+1). For our experiments, we used

α = 1 and β = 0.

—Logarithmic distributions are computed as λi =
αi+1

αn
. For our experiments, we used

α = 1.2.
—Random distributions are computed randomly over an interval [σ, σ + ω]. For our

experiments, we used σ = 0 and ω = n.
—Cluster distributions are generated containing nc clusters, roughly equally-sized,

where half of the overall spectrum lies in one of the nc clusters while the remain-
ing half resides in the (relatively) sparsely populated region between clusters. More
specifically, this spectrum is generated by alternating between linear and random

distributions. The first segment of the distribution is linear and roughly
n

2nc

values

are generated (with β initially zero, and α = 1 which remains constant), up to some
λj . This value λj then becomes σ in a random distribution, where 0 < ω ≪ 1. The last
value in the random interval serves as the β for the next linear segment, and so forth
until 2nc separate regions have been created. For our experiments, we used nc = 10
and ω = 10−9.

c© 2012 ACM 0098-3500/2012/01-ART00 $10.00
DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000
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Real symmetric EVD performance (cluster)
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Complex Hermitian EVD performance (cluster)
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Fig. 23. Performance of implementations relative to netlib EVD via MRRR for real (top) and complex (bot-
tom) matrices generated with clustered distributions of eigenvalues. In the case of EVD via restructured QR,
matrices were reduced to tridiagonal form using an implementation that exhibits a performance signature
nearly identical to that of dsytrd/zhetrd.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 00, Publication date: January 2012.



Restructuring the Tridiagonal and Bidiagonal QR Algorithms for Performance App–3

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

problem size

P
er

fo
rm

an
ce

 r
el

at
iv

e 
to

 n
et

lib
 E

V
D

 v
ia

 M
R

R
R

 

 

Real symmetric EVD performance (geometric)
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Complex Hermitian EVD performance (geometric)
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Fig. 24. Performance of implementations relative to netlib EVD via MRRR for real (top) and complex (bot-
tom) matrices generated with geometric distributions of eigenvalues. In the case of EVD via restructured
QR, matrices were reduced to tridiagonal form using an implementation that exhibits a performance signa-
ture nearly identical to that of dsytrd/zhetrd.
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Real symmetric EVD performance (inverse)
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Complex Hermitian EVD performance (inverse)

MKL EVD via MRRR
netlib EVD via MRRR
MKL EVD via DC
netlib EVD via DC
EVD via restructured QR II
EVD via restructured QR
MKL EVD via QR
netlib EVD via QR

Fig. 25. Performance of implementations relative to netlib EVD via MRRR for real (top) and complex (bot-
tom) matrices generated with inverse distributions of eigenvalues. In the case of EVD via restructured QR,
matrices were reduced to tridiagonal form using an implementation that exhibits a performance signature
nearly identical to that of dsytrd/zhetrd.
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Real symmetric EVD performance (linear)
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Complex Hermitian EVD performance (linear)
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Fig. 26. Performance of implementations relative to netlib EVD via MRRR for real (top) and complex (bot-
tom) matrices generated with linear distributions of eigenvalues. In the case of EVD via restructured QR,
matrices were reduced to tridiagonal form using an implementation that exhibits a performance signature
nearly identical to that of dsytrd/zhetrd.
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Real symmetric EVD performance (logarithmic)
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Complex Hermitian EVD performance (logarithmic)
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Fig. 27. Performance of implementations relative to netlib EVD via MRRR for real (top) and complex (bot-
tom) matrices generated with logarithmic distributions of eigenvalues. In the case of EVD via restructured
QR, matrices were reduced to tridiagonal form using an implementation that exhibits a performance signa-
ture nearly identical to that of dsytrd/zhetrd.
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Real symmetric EVD performance (random)

MKL EVD via MRRR
netlib EVD via MRRR
MKL EVD via DC
netlib EVD via DC
EVD via restructured QR
MKL EVD via QR
netlib EVD via QR

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

problem size

P
er

fo
rm

an
ce

 r
el

at
iv

e 
to

 n
et

lib
 E

V
D

 v
ia

 M
R

R
R

 

 

Complex Hermitian EVD performance (random)

MKL EVD via MRRR
netlib EVD via MRRR
MKL EVD via DC
netlib EVD via DC
EVD via restructured QR II
EVD via restructured QR
MKL EVD via QR
netlib EVD via QR

Fig. 28. Performance of implementations relative to netlib EVD via MRRR for real (top) and complex (bot-
tom) matrices generated with random distributions of eigenvalues. In the case of EVD via restructured QR,
matrices were reduced to tridiagonal form using an implementation that exhibits a performance signature
nearly identical to that of dsytrd/zhetrd.
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Real SVD performance (cluster)
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Complex SVD performance (cluster)

libflame SVD (fast BiRed + QR II)
MKL SVD via DC
netlib SVD via DC
SVD via restructured QR II
SVD via restructured QR
MKL SVD via QR
netlib SVD via QR

Fig. 29. Performance of implementations relative to netlib SVD via D&C for real (top) and complex (bottom)
matrices generated with clustered distributions of singular values. Here, the problem sizes listed are m = n.
In the case of SVD via restructured QR, matrices were reduced to bidiagonal form using an implementation
that exhibits a performance signature nearly identical to that of dgebrd/zgebrd. As explained in Section 9.4,
results for “libflame SVD (fast BiRed + QR)” (top) and “libflame SVD (fast BiRed + QR II)” (bottom) combine
the higher-performing bidiagonal reduction presented in [Van Zee et al. 2012] with the restructured QR
algorithm.
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Real SVD performance (geometric)
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Complex SVD performance (geometric)
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Fig. 30. Performance of implementations relative to netlib SVD via D&C for real (top) and complex (bottom)
matrices generated with geometric distributions of singular values. Here, the problem sizes listed are m = n.
In the case of SVD via restructured QR, matrices were reduced to bidiagonal form using an implementation
that exhibits a performance signature nearly identical to that of dgebrd/zgebrd. As explained in Section 9.4,
results for “libflame SVD (fast BiRed + QR)” (top) and “libflame SVD (fast BiRed + QR II)” (bottom) combine
the higher-performing bidiagonal reduction presented in [Van Zee et al. 2012] with the restructured QR
algorithm.
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Real SVD performance (inverse)
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Complex SVD performance (inverse)
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Fig. 31. Performance of implementations relative to netlib SVD via D&C for real (top) and complex (bottom)
matrices generated with inverse distributions of singular values. Here, the problem sizes listed are m = n.
In the case of SVD via restructured QR, matrices were reduced to bidiagonal form using an implementation
that exhibits a performance signature nearly identical to that of dgebrd/zgebrd. As explained in Section 9.4,
results for “libflame SVD (fast BiRed + QR)” (top) and “libflame SVD (fast BiRed + QR II)” (bottom) combine
the higher-performing bidiagonal reduction presented in [Van Zee et al. 2012] with the restructured QR
algorithm.
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Real SVD performance (linear)
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Complex SVD performance (linear)
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Fig. 32. Performance of implementations relative to netlib SVD via D&C for real (top) and complex (bottom)
matrices generated with linear distributions of singular values. Here, the problem sizes listed are m = n.
In the case of SVD via restructured QR, matrices were reduced to bidiagonal form using an implementation
that exhibits a performance signature nearly identical to that of dgebrd/zgebrd. As explained in Section 9.4,
results for “libflame SVD (fast BiRed + QR)” (top) and “libflame SVD (fast BiRed + QR II)” (bottom) combine
the higher-performing bidiagonal reduction presented in [Van Zee et al. 2012] with the restructured QR
algorithm.
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Real SVD performance (logarithmic)
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Complex SVD performance (logarithmic)
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Fig. 33. Performance of implementations relative to netlib SVD via D&C for real (top) and complex (bot-
tom) matrices generated with logarithmic distributions of singular values. Here, the problem sizes listed
are m = n. In the case of SVD via restructured QR, matrices were reduced to bidiagonal form using an im-
plementation that exhibits a performance signature nearly identical to that of dgebrd/zgebrd. As explained
in Section 9.4, results for “libflame SVD (fast BiRed + QR)” (top) and “libflame SVD (fast BiRed + QR II)”
(bottom) combine the higher-performing bidiagonal reduction presented in [Van Zee et al. 2012] with the
restructured QR algorithm.
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Real SVD performance (random)
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Complex SVD performance (random)
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Fig. 34. Performance of implementations relative to netlib SVD via D&C for real (top) and complex (bottom)
matrices generated with random distributions of singular values. Here, the problem sizes listed are m = n.
In the case of SVD via restructured QR, matrices were reduced to bidiagonal form using an implementation
that exhibits a performance signature nearly identical to that of dgebrd/zgebrd. As explained in Section 9.4,
results for “libflame SVD (fast BiRed + QR)” (top) and “libflame SVD (fast BiRed + QR II)” (bottom) combine
the higher-performing bidiagonal reduction presented in [Van Zee et al. 2012] with the restructured QR
algorithm.
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