2016 2nd IEEE International Conference on Computer and Communications

A Source Routing Based Link Protection Method for Link Failure in SDN

Huang Liaoruo, Shen Qingguo

Communication Engineering Institute
PLA University of Science and Technology
Nanjing, China
e-mail: huangliaoruo@sina.com; shenqg2@163.com

Abstract—The link failure recovery process may introduce
large delay and serious packet loss in SDN because the failure
has to be handled by remote controller. In recent years, several
link protection methods have been put forward to solving this
problem using preplanned backup paths, and avoiding the
involvement of remote controller. However, it may need large
quantities of flow entries to build these backup paths and
complex mechanism to keep them active, and may cause
congestion during rerouting process. In order to solve these
problems, this paper proposes a source routing based link
protection method in SDN. With predefined backup paths for
every link, our method uses source routing to control the flow’s
route and steers the packet into backup path through updating
the source routing header when link failure happens. Through
implementation and evaluation, it is shown that this method
can significantly reduce the overhead to build and maintain
backup paths because we store the route information in the
packet’s header instead of flow entries installed in switch. And
with flexibly and dynamically backup path planning, this
method can achieve better congestion avoidance in the backup
path during rerouting process comparing to previous methods.

Keywords-source routing; link protection; link failure; SDN

L. INTRODUCTION

When link failure happens, switch has to depend on the
remote controller to handle the failure and compute a new
path for the interrupted flow because of the separation of
control plan and data plan in SDN. Due to the delay between
switch and controller, the failure recovery process may
introduce heavy packet loss and thus cause service
interruption. In order to solve this problem, predefined
backup paths are used to reroute the interrupted flow
avoiding the involvement of remote controller so that it can
reduce the failover time in SDN. Path protection is the
method which uses end-to-end backup paths and may cause
packet loss of the flow on the fly. Therefore, an improved
version of path protection called link protection or segment
protection is put forward. It builds backup paths for every
link along the working path so that the switch adjacent to the
failure node can perform local link failure recovery and
further reduce the failover time and packet lose when failure
occurs.

Through experiments and simulations, it can be
demonstrated that link protection method can significantly
reduce the failure recovery time in SDN and meet the
demand of carrier grade network. However, it also has some

978-1-4673-9026-2/16/$31.00 ©2016 IEEE

Shao Wenjuan

Zi Jin College
Nanjing University of Science and Technology
Nanjing, China
e-mail: Shaowj nj@139.com

disadvantages: First, it needs large quantities of flow entries
to build backup paths and complex mechanism to keep them
active; second, the preplanned backup paths once
constructed are hard to be modified or adjusted according to
the network status so that it may cause congestion during
rerouting process. So a dynamic and flexible link protection
method is needed.

In order to solve the problems of link protection methods
mentioned above, this paper proposes a source routing based
link protection method which can significantly reduce the
overhead to build backup paths and realize dynamically and
flexibly backup path planning according to the network
status. Our method uses source routing to control packet’s
behavior at the edge of network and steers packet into
backup path through updating the packet’s source routing
header. With source routing SDN, we store the packet’s
route in the source routing header rather than the flow entries
installed in switches, so that it can significantly reduce the
number of entries to build paths. Furthermore, source routing
also provides the ability to flexibly control the packet’s
behavior through programming the source routing header
rather than the flow entries along the working path. Thus,
with our method, we can easily modify, delete and
reconstruct the packet’s route without touching the switches
and their flow entries. So it can provide flexibly and fast
backup path constructing according to the network status and
therefore avoid the congestion problem of backup path,
which has been ignored by most of link failure recovery
methods.

II. REALATED WORKS

Link failure recovery is one of the hot topics in SDN.
There are two mechanisms to handle the link failure: reactive
and proactive. The typical reactive method is fast path
restoration proposed in [1]. With this method, the switch
informs the controller of topology change event. The
controller computes and installs the new path for the
interrupted flows. Besides, authors of [1] also propose an
improved version of fast path restoration called
“predetermined restoration”. Different from fast restoration,
the backup paths are preplanned with priorities and controller
can pick a proper backup path for the disrupted flows. The
main short coming of reactive method is the failure handling
process is depend on the remote controller and hard to meet
the requirement of recovery time in carrier grade network.

2588

To overcome the disadvantages of reactive methods,
proactive methods use static predefined backup paths to
reroute the interrupted flows without involvement of the
controller. And the key of the proactive methods is a
handover mechanism which can disable the flow entries of
old paths and then automatically put the backup path’s flow
entries into use. Before the Openflow v1.4, there are no such
mechanisms but entry expiry timer as “idle time out” and
“hard time out”. So in order to realize fast proactive link
failure, [2] proposes a method called “Auto-Reject” which
can detect the link failure and disable the flow entries. In [3],
authors put forward a flow entry expiry mechanism to
automatically delete the entries of old path when link failure
occurs. In [4], authors use Openstate to monitor the packet
and switch ports state and reallocate flows to new paths
when switch port is down. Openflow v1.4 provides a fast
failover mechanism itself through instantiating multi action
list for the same flow entry and applying them according to
the link status [5].

Based on these handover mechanisms above, several
proactive methods have been put forward. In order to
minimize the failure recovery time, the authors of [2]
propose an improvement of path protection called segment
protection. In this scheme, backup paths are planned on
every hop instead of end-to-end, so that flow can be rerouted
at local switch adjacent to the fail link and achieve shorter
failure recovery time. However, segment protection needs
large quantities of flow entries to build these paths and
complex mechanism to keep them active.

In order to reduce the number of flow entry to build
backup paths, authors of [6] put forward a novel design of
SDN network. They abstract network into two planes:
working plane and transient plane. The flow is transmitted
through working plane when network is normal. And
transient plane is consisted of links which can be shared
among different backup paths so that the number of flow
entries to build backup paths is reduced. When link failure
happens, packet can be handed to the transient plan through
inserting a tag into the packet header. But it still needs many
flow entries to build transient plane and still hard to avoid
congestion during rerouting process.

The authors of [7] propose a backup path optimization
method which put the link utilization into consideration.
Flows from different input links are split among different
backup paths so than it can avoid the congestion in backup
paths. Although using the optimized backup paths can reduce
the possibility of congestion, but it needs too many flow
entries to build multi backup paths for every link and still
lacks of flexibility as the backup paths are static planned.

In [4], authors propose a multi path rerouting method
based on Openstate. This method improves the segment
protection with planning multi-backup paths at every hop
and splitting flows among these paths to solve the congestion
problem. With an optimization model, this method can
significantly reduce the possibility of congestion, but is still
static planned and need too many flow entries to build
backup paths.

A source routing based method called SlickFlow is
proposed in [8]. It encodes all the backup paths into the

packet header. When link failure occurs, switch looks up the
backup path and reroute the packet. Obviously, this method
may introduce large overhead to the packet header.

In summary, there is no link protection method that can
provide fast failure recovery ability and flexibly backup path
planning ability with a low overhead for now. And the main
reason of that is the tight bound of flow and the path it
transmits in SDN. In our method, we use source routing to
separate the flow and its path so that it can achieve
congestion aware fast link failure with a very low overhead.

III. SOURCE ROUTING BASED SDN

A. Packet Header Encoding

Recent years, source routing SDN has attracted a lot of
attention as it can reduce the number of entries used in SDN
without losing the programmability of flows at the same time
[9]{11]. However, there is no source routing mechanism in
the latest Openflow, so in this paper we modify the VLAN
tag of 802.1q to realize source routing. The vlan id field is
used to encode route information.

In source routing SDN, the next hop of packet is
presented as output port ID which is encoded in vlan_id(VID)
field as figure 1 shows:

Used as next-hop

information

VLANID
12bit

Tag Protocol ID: 0x8100 ‘

User Priority CFI
2 Bytes

3bit 1bit

‘ VLAN Tag ‘ VLAN Tag XL VLAN Tag

— v
SourcRouting

Header
Figure 1. Packet header encoding.

Packetin: emm—jg- | Flow entry ID Match field Priority Instruction
match
FE_ID1 SrcAd d&&DesAdd High Action_List_1
& Ingress
Execute Action_List_1: Processing
Push Vlan Tagl;
Push Vian Tag2;
Push Vlan Tagn;
match
J
Egress Flow entry ID Match field Priority Instruction
Processing FE_ID2 Vian_id High Output_port i > Packet
out

Figure 2. Packet header programming.

The length of VID field in VLAN tag of 802.1q is 12bit
so that it can support 2'? of next hops at most. As figure 1
shows, to form the complete route information, it has to nest
several VLAN tags into the packet’s header. Then switch
outputs the packet through matching the VID field of the
outer most VLAN tag and deletes the outer most tag after
matching.

B. Source Routing Based SDN

2589

Source routing SDN mainly has three functions: packet
header programming, packet forwarding and packet steering.

1) Packet header programming

Packet header programming assembles the packet’s
source routing header with VLAN tags introduced in 3.1
according to the flow entries and action-list preinstalled by
controller as figure 2 shows:

With the Push vlan tag action provided by Openflow,
switch can nest several VLAN tags to the header of the
packet so that the route information is formed.

2) Packet forwarding

Packet forwarding process forwards the packet according
to the next hop information formed in packet header
programming process as figure 3 shows:

Flow entry ID Match field Priority Instruction

it N Pop_Vian_Tag

FE_ID1 Vian_id==id1 High Oorat nort ©

Packetin: m————fpe{ FE_ID2 Vian_id==id2 Tligh Pop_Vian_Tag ——pp Packet
match Output_port_2 out

Pop_VIan_Tag

FE_IDn Vian_id==idn Uigh Output_port_n

Figure 3. Packet forwarding.

Through matching the VID field, switch finds the proper
port to output the packet and delete the outer most VLAN tag
in packet’s header with Pop Vlan_Tag action provided by
Openflow.

3) Packet steering
Packet steering steers the packet to a new path through
updating the source routing header as figure 4 shows:

Instruction
Pop_Vian_Tag
Output_port_1

Go to FE_ID1_bp

Flow entry ID Match ficld Priority

FE_ID1 Vian_id==id1 High

Packetin: e—mm—jp FE_ID1_bp | DestinationlP—ip High Action_list 2

match *

Action-List:

{ Popold Vlan Tags;
Push new Vlan Tags;
Goto Tablen;}

match |

A J

Flow entry ID

Match field Priority Instruction

—— Packet

out

FE_ID2 Vian_id Tiigh Output_port_i

Figure 4. Packet steering process.

When link failure occurs, packet is sent to the fast
failover group table and switch modifies the status of the
original port according to the failure detection result. Then
similar to the packet header programming process, switch
update the old packet header with a new one through pop and
push VLAN tags according to the predefined action list so
that packet can be transmitted along a new path.

IV. SOURCE ROUTING BASED LINK PROTECTION

A. Procedures of the Method

There are two procedures in the proposed method:
backup path planning and fast failure recovery.

1) Backup path planning

In the backup path planning procedure, controller
computes and builds backup paths for every link of the

working path according to the network status information
gathered from switches and other devices as figure 5 shows:

Step2: Compute the
backup path set

g Controller
\%

Stepl: Gather the
network information

Packet -

o s N,
A sl o %,
e 5 t | N
Ny % g v

gntry of backup paths
OF Swtich S P

Figure 5. Backup path planning procedure.

The function of the flow entries which are installed by
controller in the backup path planning procedure is updating
the packet’s source routing header. The backup path
planning procedure is performed to find the best backup path
according to the network status so as to avoid congestion
when rerouting the interrupted flows into backup path. The
principles to build these backup paths are introduced in 4.3.

2) Fast failure recovery

The fast failure recovery procedure is performed at the
switch adjacent to the failure node without the involvement
of remote controller so that it can minimize the time of fast
failover. The architecture of this procedure is shown in figure
6

Stepl: Update the packet” s header
according to flow entries installed in
backup planning process

i

e Primary Pathe- 3 e Primary Pathi-

Packet

OF Swtich

Step2: Forward the
packet along the
backup path

Packet

New

Figure 6. Fast failure recovery procedure.

OF Swtich

With flow entries installed in backup path planning
procedure, switch adjacent to the failure node can change the
packet’s header through popping and pushing a sequence of
VLAN headers and then transmit the modified packet
through the backup path. Therefore, the local fast failure
recovery is performed and the packet can bypass the failure
link.

B. Examples

In this section, we carry out an example to explain our
method. Consider a network like figure 7.

The working path is S=>D 2T which is from source node

S to destination node 7. At the backup path planning

procedure, controller build backup path S=>4 2B >C 2T for

2590

link S=D and backup path D>B->C-2T for link D-2>T.
When network is normal, the source routing header of packet
can be presented as “11” for the simplicity, which is the
sequence of the output ports. We presume that link failure
happens at link D 2T.

(Ar—Br—=C)
T 1 1
S—=Dr AT
T 1 1
Er 2 Fr G

Figure 7. Network topology.

At node S, the source routing header of the packet is
formed as “11”. Then S checks this source routing header
and outputs the packet through port 1. At the same time, it
deletes the outermost VLAN tag which is “1” and the
packet’s source routing header changes to “1”.

At node D, the source routing header of the packet is “1”.
Then D checks this header and finds out that portl is down
so that it hands the packet to the fast failover group which is
installed at backup path planning procedure. According to
these flow entries, the packet’s source routing header
changes from “1” to “310” which represents the backup path
D =2B->C 2T through popping and pushing VLAN tags. At
last, the packet is checked again and transmitted through
port3.

C. Backup Path Planning

planning problem as a linear integer programming problem

as follows:
min Yefr

st min{etc } 2y c(f) 0
Zef’—o VpeD,,Vie N 3)
D el<1,VpeD,. (i, j)eE (4)
(G¥))
Y el <2 VieN,YpeD,V(i,j))eE (5

The target function demonstrates that we want to find a
shortest path from the recovery node to the destination node.
And this path should satisfy the lower bound of the available
bandwidth which is represented by formula (1). Also, the
backup path should not contain the failure node which is
guaranteed by formula (2). Formula (4) and (5) represent that
backup path is loop free.

To solve the problem above, we propose a modified
Dijkstra algorithm with two procedures. The first procedure
of the algorithm deletes the link which can’t provide
sufficient available bandwidth as line 1 shows. The second
procedure of the algorithm finds the shortest path as normal
Dijkstra algorithm does, which is shown in line 2~17.

Let’s defined the following parameters:

Algorithm ModifiedDijkstra(graph, start, destin, bandW)

1: graph = deleteLinks(graph,bandW)
B The set of backup paths which are selected; 2: for i=0 to number of nodes do
g %l:e set ofli ﬂo;:'s 1{‘1f:ed to reéoute; 3: pathList.add(start)
s e set of paths from s to d;) . .
e Indication function which is equal to 1 if link (i,j) g: patﬁi?“&dd(l) L
belongs to path p, and 0 otherwise; : pathListMap.put(i,pathList)
th Indication function which is equal to 1 if path p is 6: end fqr
selected in B, and 0 otherwise: 7: for bridge = 0 to number of nodes do
¢ The available bandwidth of link (ij); 8: for next = 0 to number of nodes do
o The fail point o; 9: if
fi The flow i; startTo(bridge)+getLength(bridge,next)<startTo(next)
c(t) The bandwidth demand of flow f;; then
10: path = pathListMap.get(next)
In some link protection methods, the backup paths are 11: bridgePath = pathListMap.get(bridge)
shortest path from the failure recovery node to the 12: path.clear()
destination node. However, the available bandwidth 13: path.addAll(bridgePath)
provided by backup path may not sufficient to reroute the 14: path.add(next)
interrupted flows so that causes congestion in the backup 15: end if
path. This is the congestion problem of the link failure 1 6: end for
recovery which has been ignored by most of the link 1 7: end for
protection methods. In order to solve this problem, we put :
the available bandwidth into consideration when planning V. IMPLEMENTATION AND EVALUATION
the backup paths. We introduce the parameter y (y =1) and
lower bound of the available bandwidth provided by backup 4. fmplementation

path as]/Z c(f;). Then we formalized the backup path
i

2591

In order to verify the efficiency of our method, we build
our method on an online test bed supported by SDNLAB.

The test bed is consisted of a software controller installed in
Ubuntu and software openflow-enabled switches. The
controller used is OpendayLight Desktop Litmus and the
switch used is Open vSwtich. We realize the source routing
SDN and carry out experiments on failure recovery time.

For the sake of demonstration, we compare our method
with path protection and segment protection. In the path
protection, the recovery time consists of three parts as (6)
shows:

]—;ecovery = 7:iet ection + T propaganda + 24 Thana’uver,j (6)
f

The Tjerecion is the failure detection time and the 7},,opaganda
is the time for informing the source node of the link failure.
Thandovers is the time to activate the backup path of flow f in
switch. In the segment protection, the recovery time consists
of two parts as (7) shows:

I:ecovery =]Zielecnon + Z‘ T;landoven_/ (7)
S

In the method we propose, the recovery time can be
presented as (8):

T;ecovery = T;Zeteclton + L T;«pa’ate,_f (8)
S

The T\puey is the time to activate the backup path and
modify the source routing header of flow f in switch. The
Tpavey may larger than the Tuuaowr as the former has to
perform additional actions to modify the packet’s header.
However, in the open vSwtich we carry out evaluation, the

difference is very small even the packet number is very large.

In our experiments, we use out-of-band control mode and
four matrix topologies with different scale to evaluate the
recovery time of three methods. We use in-net failure
detection method introduced by [12] which can achieve a
detection time below Sms. And the result is shown in figure

60
= Link protection
s0 = Link Protection with Source Routing
= Path Protection
40
El
Z 30
B
=
20
10
0 _III
n=2 n=5

n=10 n=20
Network Topology

Figure 8. Total recovery time in different topologies.

Through the evaluation, the time to activate backup path
in switch is 5.8ms in average. And it can be seen from the
figure 8 that due to the larger propaganda time with the
expanding of network, failure recovery time is increasing in

2592

path protection method. However, in other two methods, the
link recovery time is almost the same because the time
consumption of the link recovery is independent of the
network scale. It can be concluded that our method can
achieve the same time consumption as the segment
protection and other methods that perform local flow
rerouting, which is much less than 50ms.

B. Flow Entry Consumption

In this section, we evaluate the flow entry consumption
of our method in the worst case and compare our method
with segment protection and the ITP method proposed in [6].

Consider an n*n matrix network like figure 9 shows.

1 2 30 n
n+l n+2 n+3 2n

2n+1 2n+2 2n+3 3n
n*n-n+l n*n-n+2 n*n-n+3 n*+n+1

Figure 9. n*n matrix network.

It has been demonstrated in [2] and [6] that the flow
entries of segment protection can be presented as (9):

n_
F‘segmenrfprotection = Z Z (Nl',j S Mn,l,j) (9)

i=2 =l
And N;; , M, ; ,can be expressed by (10) and (11):
27+4i—-4;j<3
=] : J (10)
4i+4;7-8;,j=>3

)

8if j=Li+#]j
4ifi=lori=j
(11

M,,, =(n=i+Dx(n=j+Dxo, 30, ={

In independent transient plane (ITP) method, the total
number of flow entries can be presented as (12)~(14):

F}TP = Ev'orklng_ path + transient _ plane (12)
2 2
transient _plane — n-x [277 +n— 2] (13)
n_ i
Fworkrngfpath = ZZ[(Z+] _I)XM;U,J] (14)

=2 j=1

In the method we propose, the total flow entries can be
expressed as (15):

E

SR-SDN —

F

working _ path + Ftransient7 plane (1 5)

In the source routing schema, flow entries that find right
port to output packet can be shared by all working paths. So
the flow entries needed to build working paths can be
presented as (16):

FE

2
working _ path =n X p (16)

p is the number of ports in every switch. As discussed in
III, we construct one backup path for every link and it needs
one flow entry to update the packet’s header at every hop. So
the flow entries to build backup paths can be presented as

(17):

F;;ackupfpath = Z Z[(l +] - 1) x Mn),,_/] (17)

1=2 j=I1

So the total flow entries of three methods is shown in
figure 10.

9000000

8000000 '
—#— Indepent Transient Flane
7000000

—4— SR-SDIN
6000000

5000000
1000000
3000000
2000000
1000000

[

—#— Segment Protection

Number of Flow Entries

12 3 4 5 6 7 8 @ 10111213 14 15 16 17 18 19 20

Number of switch (n*n)

Figure 10. Total flow entries in n*n network.

It can be seen that our method has the minimal flow entry
consumption among three methods and the advantage is
expanding with the incensement of network scale. And the
improvement of ITP and SR-SDN compared to segment
protection is shown in figure 11. It can be demonstrated that
our method can realize less flow entry overhead compared to
ITP.

0g

2 0.7
£s
2.2 0s
LERE
‘:’én‘: 04 —m—Indepent Transient Plane
-E 5 03 —a—SR-SDN
g 5’ 02
n_:’;
E ol
0

1 2 3 4 5 6 7 8 9 1011 1213 14 15 16 17 18 19 20

Number of switch (n*n)

Figure 11. Improvement of flow entries compared to segment protection.

C. Dynamic Backup Path Planning Evaluation

To evaluate the benefit of dynamic backup path planning,
we derive simulations on OMNET++ with INET. We use
5*5 matrix network and SDN structure introduced in [13].
Every edge node of the network connects to a host which
randomly sent packets to another. And the interval of packet
arrival follows exponential distribution with A =0.2. The

backup path planning process is conducted every 0.1s. The
max transmit rate of switch is 1Mbps. We execute
simulations of SR-SDN and segment protection, and record
the link utilization of backup path during the simulation. The
average link utilization of backup path during rerouting
process can be reduced as 35.2% which is shown in figure 12.

12

1

0.8

CDF

——SRSDN

—®—Segment Protecrion

SEEEEEER N
] ;
333 = =

=
[
=

006
01z
018

L14

- 4 &)
=]
=

09
096
102
103

1
= = e =

Link Utilization(%0)
Figure 12. The CDF of backup path’s link utilization.

From the Figure 12, it can be seen that comparing to the
static planned backup path, dynamically planned backup
path according to network status using source routing can
significantly reduce the possibility of congestion during
rerouting process. At the same time, with the improvement
of the link utilization, the delay of the rerouted packet is also
decreased and the result is shown in Figure 13.

12

08

s

) y/a
o

CDF

02

—&— SR-SDN
—— segment protection

9 000999 001999 002999 0.03999 004999 0.05999 0.06999 007999 0.05999 009899

Delay(s)

0

Figure 13. The CDF of the packets’ delay.

As figure 13 shows, through choosing the less congestion
backup path, the average delay of rerouted packet can be
reduced 12.1% compared to segment protection.

In summary, comparing to the exists SDN link protection
methods, the link protection method based on source routing
SDN proposed by us can significantly reduce the flow entry
consumption and realize flexible and dynamical backup path
planning so as to avoid congestion problem during rerouting
process.

VI. CONCLUSIONS

In this paper, we propose a source routing based link
protection method for link failure in SDN. Compared with
other failure recovery methods used in SDN, it mainly has
three advantages: First, it can perform local link failure
recovery so that the time consumption is much less than
50ms; Second, it can realize fast link failure recovery with a
very low flow entry consumption; Third, it can easily realize
flexible and dynamic backup path planning according to
network status. Finally, through evaluations and simulations,

2593

it can be concluded that the method proposed in this paper
can achieve better performance than the latest failure
recovery methods. In the next step research, we will address
the detail issues during the implementation process and
explore the application of source routing SDN in other fields.

ACKNOWLEDGMENT

This work is financially supported by the Natural Science
Foundation of China (61271254).

REFERENCES

[1] S. Sharma, D. Staessens, D. Colle, M. Pickavet and P. Demeester,
"Enabling fast failure recovery in OpenFlow networks," Design of
Reliable Communication Networks (DRCN), 2011 8th International
Workshop on the, Krakow, 2011, pp. 164-171.doi:
10.1109/DRCN.2011.6076899

[2] A. Sgambelluri, A. Giorgetti, F. Cugini, F. Paolucci and P. Castoldi,
"OpenFlow-based segment protection in Ethernet networks," in
IEEE/OSA Journal of Optical Communications and Networking, vol.
5,n0. 9, pp. 1066-1075, Sept. 2013.doi: 10.1364/JOCN.5.001066

[3] Yang Yu, Li Xin, Chen Shanzhi and Wang Yan, "A framework of
using OpenFlow to handle transient link failure," Transportation,
Mechanical, and Electrical Engineering (TMEE), 2011 International
Conference on, Changchun, 2011, pp. 2050-2053.doi:
10.1109/TMEE.2011.6199619

[4] A. Capone, C. Cascone, A. Q. T. Nguyen and B. Sanso, "Detour
planning for fast and reliable failure recovery in SDN with
OpenState," Design of Reliable Communication Networks (DRCN),
2015 11th International Conference on the, Kansas City, MO, 2015,
pp. 25-32.doi: 10.1109/DRCN.2015.714898]1.

[5] Pankaj Thorat, et al. "Optimized self-healing framework for software
defined networks," Ubiquitous IInformation Management and
Communication(IMCOM), 2015 9th International Conference on,
BALI, 2015, pp. 1-6. doi:10.1145/2701126.2701235P.

2594

(6]

(71

(8]

(91

[10]

[11]

[12]

[13]

N. Kitsuwan, D. B. Payne and M. Ruffini, "A novel protection design
for OpenFlow-based networks," 2014 16th International Conference
on Transparent Optical Networks (ICTON), Graz, 2014, pp. 1-5.
doi: 10.1109/ICTON.2014.6876515.

S.S. W. Lee, K. Y. Li, K. Y. Chan, G. H. Lai and Y. C. Chung, "Path
layout planning and software based fast failure detection in survivable
OpenFlow networks," Design of Reliable Communication Networks
(DRCN), 2014 10th International Conference on the, Ghent, 2014, pp.
1-8.doi: 10.1109/DRCN.2014.6816141.

R. M. Ramos, M. Martinello and C. Esteve Rothenberg, "SlickFlow:
Resilient source routing in Data Center Networks unlocked by
OpenFlow," Local Computer Networks (LCN), 2013 IEEE 38th
Conference on, Sydney, NSW, 2013, pp. 606-613.doi:
10.1109/LCN.2013.6761297.

M. Soliman, B. Nandy, 1. Lambadaris and P. Ashwood-Smith,
"Exploring source routed forwarding in SDN-based WANs," 20714
IEEE International Conference on Communications (ICC), Sydney,
NSW, 2014, pp. 3070-3075.doi: 10.1109/ICC.2014.6883792.

Soliman, M., Nandy, B., Lambadaris, 1., & Ashwood-Smith, P.
"Source routed forwarding with software defined control,
considerations and implications," 2012 ACM Conference on
CONEXT Student Workshop, Nice, France 2012, pp.43-44.
doi:10.1145/2413247.2413274.

Jyothi, Sangeetha Abdu, M. Dong, and P. B. Godfrey. "Towards a
flexible data center fabric with source routing,"2015 Ist ACM
SIGCOMM Symposium on Software Defined Networking Research,
NewYork, USA, 2015, pp.1-8. doi:10.1145/2774993.2775005.

N. L. M. v. Adrichem, B. J. v. Asten and F. A. Kuipers, "Fast
Recovery in Software-Defined Networks," 2014 Third European
Workshop on Software Defined Networks, Budapest, 2014, pp. 61-
66.doi: 10.1109/EWSDN.2014.13.

Klein, Dominik, and M. Jarschel, "An OpenFlow extension for the
OMNeT++ INET framework." International ICST Conference on
Simulation TOOLS and Techniques 2013, pp. 322-329.
doi:10.4108/icst.simutools.2013.251722.

