
Verifying Numerical Convergence Rates

1 Order of accuracy

We consider a numerical approximation of an exact value u. The approximation depends on a
small parameter h, such as the grid size or time step, and we denote it by ũh. If the numerical
method is of order p, we mean that there is a number C independent of h such that

|ũh − u| ≤ Chp, (1)

at least for sufficiently small h. We also say that the convergence rate of the method is hp. (The
number C typically depends on the exact solution.) Often the error u − ũh depends smoothly
on h. Then

ũh − u = Chp + O
(

hp+1
)

. (2)

We will assume this henceforth.

Example 1 In the trapezoidal rule we approximate the exact integral

u =

∫ b

a
f(x)dx,

by a sum

ũh =
h

2
f(a) + h

N−1
∑

j=1

f(a + jh) +
h

2
f(b), h =

b − a

N
.

For sufficiently smooth functions f(x) this is a second order method and ũh − u = Ch2 + O(h3).

2 Determining the order of accuracy

We are often faced with the problem of how to determine the order p given a sequence of
approximations ũh1

, ũh2
, . . . This is can be a good check that a method is correctly implemented

(if p is known) and also a way to get a feeling for the credibility of an approximation ũh (high p
means high credibility). We can either be in the situation that the exact value u is known, or,
more commonly, that u is unknown.

2.1 Known u

If the exact value u is known, it is quite obvious how to do this. Then we just check the sequence

log |ũh − u| = log |C| + p log h + O(h),

for h1, h2, . . . and fit it to a linear function of log h to approximate p. A quick way to do this
is to plot |ũh − u| as a function of h in a loglog plot and determine the slope of the line that
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Figure 1. Error in trapezoidal rule for f(x) = sin(x). The dashed line is h2 which indicates the
slope for a second order method.

appears. The standard way to get a precise number for p is to halve the parameter h and look
at the ratios of the errors u − ũh and u − ũh/2,

ũh − u

ũh/2 − u
=

Chp + O(hp+1)

C(h/2)p + O((h/2)p+1)
= 2p + O(h).

Hence

log2

∣

∣

∣

∣

ũh − u

ũh/2 − u

∣

∣

∣

∣

= p + O(h).

Example 2 The exact integral of sin(x) over [0, π] equals two. Computing ũh with the trapezoidal
rule and plotting |ũh − 2| in a loglog plot we get the result shown in Figure 1.

2.2 Unknown u

When u is not known there are two main approaches. The first one is to compute a numerical
reference solution with a very small h and then proceed as in the case of a known u. This can
be quite an expensive strategy if ũh is costly to compute. Using p to gauge the credibility of a
ũh is also less relevant when we already have a good reference solution.

The second approach is to look at ratios of differences between ũh computed for different h.
Most commonly we compare solutions where h is halved succesively. Then we get

ũh − ũh/2

ũh/2 − ũh/4

=
Chp − C(h/2)p + O(hp+1)

C(h/2)p − C(h/4)p + O(hp+1)
=

1 − 2−p + O(h)

2−p − 2−2p + O(h)
= 2p + O(h). (3)
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h ũh ũh − ũh/2

ũh−ũh/2

ũh/2−ũh/4

log
2

ũh−ũh/2

ũh/2−ũh/4

π/5 1.933765598092805 -0.049757939416650 4.024930251575880 2.008963782835339

π/10 1.983523537509455 -0.012362435199260 4.006184396966857 2.002228827158397

π/20 1.995885972708715 -0.003085837788350 4.001543117204195 2.000556454557076

π/40 1.998971810497066 -0.000771161948770 4.000385593360853 2.000139066704584

π/80 1.999742972445836 -0.000192771904301 4.000096386716427 2.000034763740606

π/160 1.999935744350136 -0.000048191814813

π/320 1.999983936164949

Table 1. Table of values for the trapezoidal rule for f(x) = sin(x). The last column is the final
approximation of the order of accuracy p.

Hence, after computing ũh for h, h/2 and h/4 we can evaluate the expression above and get an
estimate of p. We can do it similarly for other grid sizes, e.g. h, αh, α2h gives

ũh − ũαh

ũαh − ũα2h
=

Chp − C(αh)p + O(hp+1)

C(αh)p − C(α2h)p + O(hp+1)
=

1 − αp + O(h)

αp − α2p + O(h)
= α−p + O(h). (4)

Example 3 Consider again Example 2. If the exact integral value was not known we would look
at the values computed by the trapezoidal rule and check the ratios of differences as above. The
result is summarized in Table 1.

3 Asymptotic region

We note that the estimates of p in all the methods above gets better as h → 0 because of the
O(h) term. (The precise value is only given in the limit h → 0.) We say that the method is
in its asymptotic region of accuracy when h is small enough to give a good estimate of p —
then the O(hp+1) term in (2) is significantly smaller than Chp. This required size of h can,
however, be quite different for different problems. To verify that we are indeed in the asymptotic
region, it can be valuable to make the estimate of p for several different h and check that we get
approximately the same value. Usually one therefore computes ũh not just for three values of h,
but for a longer sequence, h, h/2, h/4, h/8, h/16, . . . and compares the corresponding ratios,

ũh − ũh/2

ũh/2 − ũh/4

,
ũh/2 − ũh/4

ũh/4 − ũh/8

,
ũh/4 − ũh/8

ũh/8 − ũh/16

, . . .

Similarly, if u is known one considers u − ũh for several decreasing values of h when fitting the
line.

Example 4 If we perform the same experiments as in Example 2 and Example 3 above, but with
f(x) = sin(31x) the constant C will be much bigger, meaning that the asymptotic region is shifted
to smaller h. The results are shown in Figure 2 and Table 2. It is not until h < π/40 ≈ 10−1

that the numbers start to look reasonable. The general size of the error is also much larger than
in Figure 2 because of the bigger C.
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Figure 2. Error in trapezoidal rule for f(x) = sin(31x). The dashed line is h2 which indicates the
slope for a second order method.

h ũh ũh − ũh/2

ũh−ũh/2

ũh/2−ũh/4

log
2

ũh−ũh/2

ũh/2−ũh/4

π/5 1.933765598092808 1.983523537509458 14.784906442999516 3.886053209184444

π/10 -0.049757939416650 0.134158680351247 -0.630173999781565 —

π/20 -0.183916619767896 -0.212891487744257 7.778391902691306 2.959471924644287

π/40 0.028974867976361 -0.027369601635860 4.437830912882666 2.149854700028653

π/80 0.056344469612220 -0.006167337641551 4.096338487974619 2.034334932805155

π/160 0.062511807253771 -0.001505573247830

π/320 0.064017380501601

Table 2. Table of values for the trapezoidal rule for f(x) = sin(31x). The last column is the final
approximation of the order of accuracy p.
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Figure 3. Pointwise approximations.

4 Grid functions

When solving differential equations the numerical solution in question is often a grid function uj

which approximates a continuous function on a grid {xj}. We assume that the grid is uniform,
with xj = x0 + jh for some x0 and fixed h, cf. Figure 3a. The grid size h is restricted to values
such that the grid fits the boundary, typically h = d/N for a fixed domain size d and integer N
of our choice. We will write uj(h) to indicate the dependence on h. To check convergence rates
for these problems it is very important that we compare with the same thing when we change h.
This can be a bit tricky.

4.1 Pointwise values

In a finite difference scheme we would approximate pointwise values,

uj(h) = u(xj) + C(xj)h
p + O(hp+1),

where C now depends on the spatial location xj . Suppose we want to check pointwise conver-
gence. When computing the ratios of differences in (3) the solutions for different grids must be
compared in exactly the same points. Let x∗, x′

∗
and x′′

∗
be the grid points where the solution

is compared for the grid sizes h, h′ and h′′, respectively. Suppose x∗ = x0 + j∗h. If we halve
h we must then precisely double j∗ to stay at the same grid point. Hence, if h′ = h/2 and
h′′ = h′/2 = h/4, then x′

∗
= x0 + 2j∗h/2 = x∗ and x′′

∗
= x0 + 4j∗h/4 = x∗, see Figure 3b. We

obtain

uj∗(h) − u2j∗(h/2)

u2j∗(h/2) − u4j∗(h/4)
=

u(x∗) + C(x∗)h
p − u(x′

∗
) − C(x′

∗
)
(

h
2

)p
+ O(hp+1)

u(x′

∗
) + C(x′

∗
)
(

h
2

)p
− u(x′′

∗
) − C(x′′

∗
)
(

h
4

)p
+ O(hp+1)

= 2p + O(h),

as before in Section 2.2. However, if we are not careful and the grid points used are just one
index off, an error will be introduced which completely ruins the estimate.

Example 5 To apply Neumann boundary conditions one often shifts the entire grid by half a
cell, giving x0 = h/2 as in Figure 4a. Hence, x0 now depends on h. As before we let the
measuring point be x∗ = x0 + j∗h = h/2 + j∗h. Then if we do the same thing here, halving h
and doubling j, we get three slightly different grid points where the solutions are compared: x∗,
x′

∗
= h/4 + 2j∗h/2 = x∗ − h/4 and x′′

∗
= h/8 + 4j∗/4 = x∗ − 3h/8 (see Figure 4b). This gives an
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Figure 4. Pointwise approximations, shifted grid.

error in the ratio of differences which prevents it from predicting the convergence rate:

uj∗+1(h) − u2j∗(h/2)

u2j∗(h/2) − u4j∗(h/4)
=

u(x∗) + C(x∗)h
p − u(x′

∗
) − C(x′

∗
)
(

h
2

)p
+ O(hp+1)

u(x′

∗
) + C(x′

∗
)
(

h
2

)p
− u(x′′

∗
) − C(x′′

∗
)
(

h
4

)p
+ O(hp+1)

=
u(x∗) − u(x′

∗
) + C(x∗)h

p(1 − 2−p) + O(hp+1)

u(x′

∗
) − u(x′′

∗
) + C(x∗)hp(2−p − 2−2p) + O(hp+1)

=
(x∗ − x′

∗
)ux(x∗) + O(h2)

(x′

∗
− x′′

∗
)ux(x∗) + O(h2)

= 2 + O(h).

Hence, regardless of the actual order p, the estimate would just indicate first order convergence.

Example 6 In time stepping methods for ODEs we often want to check convergence at a fixed
time T . The time step ∆t must then be chosen such that T is exactly a multiple of ∆t. Otherwise
we get the same problem as in Example 5, and ratios of differences will always indicate first order
convergence. One should therefore avoid setting ∆t in the code, but rather set the number of time
steps and compute ∆t from this.

One particular pitfall is the common practice of doubling the number of unknowns N in
a problem, rather than halving the grid size h. Often h = d/N and the two approaches are
equivalent. However, depending on boundary conditions we can also have for instance h =
d/(N + 1) or h = d/(N − 1). Then if N is doubled, we get the wrong order of convergence from
our tests.

Remark 1 Using interpolation is one way to avoid the problems associated with choosing the
right grid sizes. Then we can evaluate any grid function at an arbitrary point, and these values
can then readily be compared. However, it is important that the order of interpolation is at least as
high as the order of the method we are studying. Otherwise the interpolation error will dominate.

4.2 Local averages

In a finite volume scheme we would approximate local averages over grid cells [xj−h/2, xj +h/2],

uj(h) =
1

h

∫ xj+h/2

xj−h/2

u(x)dx + C(xj)h
p + O(hp+1).

See Figure 5. In this case also the exact value that we compare with changes as we refine the
grid. We can deal with this in two ways.
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Figure 5. Local averages.

First, if p ≤ 2 we can use the fact that the value in the mid point of the cell is a second order
approximation of the average when the function is smooth,

1

h

∫ xj+h/2

xj−h/2

u(x)dx = u(xj) + C ′(xj)h
2 + O(h3).

and therefore
uj(h) = u(xj) + C(xj)h

p + O(hp+1),

possibly with a different C(x). Hence, this takes us back to the same considerations as for
pointwise values in Section 4.1. Note that also here the grid can be shifted, see Figure 5b.

Second, when p > 2 we must really compare local averages instead of pointwise values. This
means that uj(h) must be compared with the average of two computed values when h is halved,
1

2
(uj′(h/2) + uj′(h/2)) for some j′, and four values when h is halved again.

In these comparisons it is important then that we consider the same interval in every grid. For
instance, let x∗, x′

∗
and x′′

∗
be the left edges of three cells in the grids with cell sizes h, h/2 and h/4.

Suppose we have the shifted grid in Figure 5b and that x∗ = xj∗ −h/2 = h/2+ j∗h−h/2 = j∗h.
As in the pointwise case we can double the index, taking 2j∗ and 4j∗, such that all three points
are equal x∗ = x′

∗
= x′′

∗
. Our first value Ih for grid size h is then

Ih = uj∗(h) =
1

h

∫ x∗+h

x∗

u(x)dx + C(x∗ + h/2)hp + O(hp+1).

For grid size h/2 we need two values,

Ih/2 =
u2j∗(h/2) + u2j∗+1(h/2)

2

=
1

h

∫ x∗+h/2

x∗

u(x)dx +
1

2
C(x∗ + h/4)(h/2)p + O(hp+1)

+
1

h

∫ x∗+h

x∗+h/2

u(x)dx +
1

2
C(x∗ + 3h/4)(h/2)p + O(hp+1)

=
1

h

∫ x∗+h

x∗

u(x)dx + C(x∗ + h/2)(h/2)p + O(hp+1).

Finally, for grid size h/4 one can check that

Ih/4 =
1

4

3
∑

k=0

u4j∗+k(h/4) =
1

h

∫ x∗+h

x∗

u(x)dx + C(x∗ + h/2)(h/4)p + O(hp+1).

It follows as before in (3) that
Ih − Ih/2

Ih/2 − Ih/4

= 2p + O(h).
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h ũh ũh − ũh/2

ũh−ũh/2

ũh/2−ũh/4

log
2

ũh−ũh/2

ũh/2−ũh/4

0.2 0.302842712474619 0.009289321881345 26.142135623725615 4.708305098603142

0.1 0.293553390593274 0.000355339059327 1.999999999999688 0.999999999999775

0.05 0.293198051533946 0.000177669529664 2.000000000001875 1.000000000001352

0.025 0.293020382004283 0.000088834764832 2.635450714080436 1.398049712285012

0.0125 0.292931547239451 0.000033707617584 12.589489353884787 3.654147861537719

0.00625 0.292897839621867 0.000002677441208

0.003125 0.292895162180659

Table 3. Table of values for the trapezoidal rule for f(x) = |x−α| with α = 1/
√

2. The last column
is the final approximation of the order of accuracy p, which fails for this case.

5 Non-smooth error

So far we have assumed that the error depends smoothly on the parameter h. Then the error
is of the form in (2). This is, however not always the case. The error can, for instance, depend
discontinuously on h, eventhough it is bounded as in (1). The reason for this can be discontinuities
in the method itself (e.g. case switches) or non-smooth functions in the problem (e.g. solutions,
sources, integrands). When the error is non-smooth one cannot check convergence rates by
looking at ratios of differences as in Section 2.2. Other methods must be used.

Example 7 Consider the trapezoidal rule applied to the integral

∫

1

0

|x − α|dx,

for some value 0 < α < 1. The trapezoidal rule is exact everywhere except at the grid cell which
contains α. The error there depends crucially on the distance between α and the nearest grid
point. More precisely, if xj ≤ α < xj+1 and xj+1 − xj = h,

u − ũh =

∫ xj+1

xj

|x − α|dx − h
|xj − α| + |xj+1 − α|

2

=

∫ α

xj

(α − x)dx +

∫ xj+1

α
(x − α)dx − h

xj+1 − xj

2
= β(β − 1)

h2

2
,

where β = β(h) = (α−xj)/h, i.e. the fractional part of α/h, which is a discontinuous function of
h. The method is still second order accurate since |β(h)| ≤ 1 and (1) therefore holds with C = 1/8.
However, the results presented in Figure 6 and Table 3 clearly shows the non-smoothness of the
error and the failure of the ratios of the differences to predict the order of convergence.
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Figure 6. Error in trapezoidal rule for f(x) = |x−α| with α = 1/
√

2. The dashed line is h2 which
indicates the slope for a second order method.
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