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ABSTRACT
Any user interface which automatically interprets the user’s
input using natural modalities like gestures makes mistakes.
System behavior depending on such mistakes will confuse the
user and lead to an erroneous interaction flow. The automatic
detection of error potentials in electroencephalographic data
recorded from a user allows the system to detect such states
of confusion and automatically bring the interaction back on
track. In this work, we describe the design of such a self-
correcting gesture interface, implement different strategies to
deal with detected errors, use a simulation approach to ana-
lyze performance and costs of those strategies and execute a
user study to evaluate user satisfaction. We show that self-
correction significantly improves gesture recognition accu-
racy at lower costs and with higher acceptance than manual
correction.

Author Keywords
Error-Potentials; Self-Correction; Adaptive Interface;
Gesture Recognition; Simulation; User Study

ACM Classification Keywords
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INTRODUCTION
Intuitive human-computer interaction (HCI) has been a highly
active field of research in the last decade. Natural input
modalities like speech or gestures have become broadly avail-
able. However, while those input techniques are an important
step towards intuitive and efficient HCI, there are some im-
portant aspects which are still lacking. One major challenge
when using machine learning and pattern recognition tech-
niques to interpret user input is the introduction of a substan-
tial error chance compared to traditional input devices like
keyboards. Reasons are on the one hand limitations of gen-
eralizing from a finite set of training samples for data of high
intrinsic variability and on the other hand ambiguities of com-
plex, natural input patterns. Recognition errors often lead to
an inefficient and unsatisfying interaction.
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In this paper, we propose the design of an error-aware ges-
ture interface which is able to pro-actively detect erroneous
system behavior in reaction to the input of a user. To de-
tect errors, we exploit the fact that a discrepancy between the
expected and the observed system behavior results in char-
acteristic patterns of brain activity. Such a pattern is called
Error Potential (ErrP) and can be measured using Electroen-
cephalography (EEG) almost immediately after erroneous
system feedback is presented following a user action. There-
fore, identifying ErrPs allows the design of systems that pro-
actively recover from errors.

While the general feasibility of ErrP detection from EEG has
been established at least in the context of Brain-Computer-
Interfaces (BCIs, see next section), there is a lack of inves-
tigations concentrating on the design of the actual error re-
covery behavior and the related usability implications. In this
paper, we describe the design of an error-aware gesture rec-
ognizer. This recognizer uses ErrP detection and implements
different strategies for error correction. Our main focus is
to provide a thorough evaluation of the proposed error-aware
recognizer, looking at both objective and subjective metrics.
For this purpose, we use a comprehensive simulation employ-
ing data from multiple user studies.

RELATED WORK
In this section, we give an overview of related work on error
recovery. Recovery from error states is a feature which is re-
quired for any type of interaction in which the interpretation
of user input is error-prone, for example from speech or hand-
writing recognition. Most mature in that regard are probably
spoken dialog systems which often need elaborate recovery
strategies. For example, Bohus and Rudnicky [1] described
ten distinct strategies to recover from non-understanding sit-
uations and empirically evaluated the performance impact of
the different strategies. Most of their presented strategies in-
volved one of several alternatives of “reprompting” the user
after a non-understanding. Another approach is to identify
erroneous sections of a speech recognition result and propose
other likely alternatives [16].

Most of those systems make use of confidence scores to es-
timate the presence of recognition errors [5, 16]. However,
when statistical models are unreliable and generate incorrect
results, it is unreasonable to expect a very reliable confidence
estimate. For example, Vu et al. [18] showed that confidence
scores in ASR correlated well to recognition performance for
well-trained models but confidence reliability deteriorated for
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models which were trained on small data corpora or data
which did not match the testing data. This indicates that in
order to provide self-correcting behavior for a user interface,
we need additional information sources on the presence of an
error besides confidence scores. One promising candidate in
this regard is the detection of ErrPs.

Unsurprisingly, the idea to use ErrP detection for improving
interaction has been first introduced in the context of BCIs,
for which the necessary equipment for EEG recordings is al-
ready in place. BCIs as input or control device suffer from
far-from-perfect recognition rates. A standard technique to
remedy this is to always repeat each input several times. This
increases robustness but leads to a low transfer rate [8]. The
detection of ErrPs allows increasing accuracy and therefore
the potential transfer rate. Combaz et al. [2] showed how they
can detect ErrPs during operation of a P300 speller BCI. They
suggest using the second best recognition result of the BCI in
case of a detected ErrP and showed in simulations how this
would improve performance. Spüler et al. [15] pursued a dif-
ferent approach and deleted the previously given input in case
an ErrP was detected. They then prompted the user to repeat
the input command. The authors showed how they can use
an online ErrP classifier to significantly increase transfer rate.
A similar approach was chosen by Schmidt et al. [13], who
showed that they were able to reliably detect ErrPs online and
demonstrated a significant increase in communication speed
for their gaze-independent “Center Speller” BCI. The work
by Margaux et al. [11] is one of the few examples of stud-
ies which do not only regard objective criteria but also inves-
tigate subjective evaluation of error-aware interfaces. For a
P300 speller with second-best correction, the authors showed
that a majority of participants “reported a preference in favor
of a spelling including automatic correction”. However, the
authors also noted large individual differences regarding the
subjective evaluation of their error-aware BCI. Llera et al. [9]
used detected ErrPs to adapt the weight parameters of a logis-
tic regression model for BCI operation to better represent the
(assumingly) misclassified trial. They used simulation and
offline analysis of data from eight participants to show that
this process improved classification accuracy.

The number of studies which transfer ErrP detection to other
input modalities – like gestures – is limited. Förster et al. [4]
used classification of ErrPs during operation of a gesture
recognition system to improve its performance by adapta-
tion of the gesture recognizer. However, their system did
not immediately react to the detected ErrPs by error correc-
tion. Instead, it focused on improving gesture recognition
accuracy by selective online adaptation: Gesture trials which
were classified correctly (i.e., did not result in an ErrP) were
added to the training data to train a personalized gesture rec-
ognizer. This addressed the challenge of unsupervised adap-
tation that the addition of misclassified trials can result in per-
formance degradation instead of improvement. Vi and Sub-
ramanian [17] proposed an ErrP recognition system based
on a consumer-level EEG device. They performed person-
dependent ErrP classification, using a test set of 80 trials of
Flanker Task execution and achieved a classification accuracy
of about 0.7. Using a simulation of ErrP classification with

Corpus Modalities Size Used for . . .
BCI-ErrP EEG 20 training of ErrP classifier (al-

ready existed)
Gesture-ErrP EEG+IMU 11 evaluating ErrP classifier on

gesture task
Gesture-Sim IMU 20 evaluating accuracy & cost of

recovery strategies
Recovery-Study IMU 10 evaluating user satisfaction

Table 1. Overview over the different data corpora used in the paper. Size
is given in number of sessions.

different error rates, they also showed that a non-perfect ErrP
detection rate between 0.65 and 0.8 was beneficial for the
enhancement of interactive systems for detecting user errors
in spatial selection with the Flick technique on a touch sur-
face. The authors analyzed accuracy improvements of allow-
ing manual corrections when an ErrP is detected, but did not
analyze costs or other usability aspects.

While there exists a large corpus of usability investigations
on gesture-based interaction systems, we are not aware of
many studies on the impact and handling of recognition er-
rors. The cited related work on results from error-aware BCIs
cannot be directly transferred to other HCI applications (e.g.,
gesture-based interfaces) for a number of reasons: 1) Errors
of a gesture-based interface might generate different or no
ErrPs compared to BCI input. 2) The feasibility of error re-
covery behavior depends on attributes of the input modality
(number of classes, input recognition accuracy, error distri-
bution, etc.), which differ between gesture and BCI input. 3)
The acceptance of error recovery behavior is specific to the
modality, as expectations on system performance, judgment
of own performance, frequency of user errors vs. system er-
rors, the costs of recovery behavior and many other factors
differ between gesture-based interfaces and BCIs. 4) Some
approaches for error recovery are modality specific (e.g., ap-
proaches using spatial re-arrangement for gesture interfaces).
For those reasons, it is necessary to study the development
and evaluation of error-recovery strategies which can make
use of ErrP detection outside of a BCI application. We do
this for the example of a gesture recognizer. Our main fo-
cus is on a thorough (objective and subjective) evaluation of
different error recovery behaviors. For this purpose, we use a
comprehensive simulation employing data from multiple user
studies.

STRUCTURE OF THE PAPER
In this section, we describe how we design and systematically
evaluate the necessary components for an EEG-based self-
correcting gesture interface. This also defines the structure of
our paper. First, we briefly introduce an existing ErrP classi-
fier which is trained on the so-called BCI-ErrP corpus of par-
ticipants operating a simple BCI task simulating feedback er-
rors. Second, we introduce the experimantal setup, consisting
of the gesture task, the employed gesture recognizer and the
self-correcting interface. For the latter, we define several re-
covery strategies which are employed to respond to detected
gesture recognition errors. Third, we evaluate the ErrP clas-
sifier by transferring its trained models to data of participants
perceiving correct and erroneous feedback in the actual ges-
ture task. We call this data of simultaneous gesture and EEG
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recordings the Gesture-ErrP corpus. We then use an addi-
tional larger corpus – called Gesture-Sim – of 20 participants
performing the gesture task without parallel EEG recordings
to evaluate the performance and associated costs of a large
number of recovery strategy variants in a comprehensive sim-
ulation. We finally perform a user study with 10 participants
– generating the Recovery-Study corpus – using three selected
recovery strategies together with simulated ErrP classification
to compare user satisfaction between different automatic and
manual strategies. Table 1 gives an overview of the different
employed corpora.

Most of the presented results use evaluation methods which
employ partial simulation of system components. Note that
while this is an established method to evaluate error-aware
interfaces (see for example [17]), simulation is no complete
substitution for the evaluation of a complete end-to-end sys-
tem. This should be considered when interpreting the results
of the paper. On the upside, simulation allows us to generate
results which are more general than results for few concrete
end-to-end systems.

EEG-BASED ERROR RECOGNITION
In this section, we briefly review the employed methods for
ErrP classification. A typical ErrP can be measured at fronto-
central electrode positions and occurs in a window of about
150ms to 600ms after a stimulus (i.e., the feedback), with its
most pronounced components being a negative peak around
250ms and a positive peak around 350ms [3]. The exact con-
tour and latency of an ErrP varies with tasks and individu-
als [6]. Figure 1, which is taken from [12] shows a Grand
Average of an ErrP pattern as difference between brain activ-
ity following error-free and erroneous feedback.
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Figure 1. Grand Average of an ErrP (difference of correct and erroneous
feedback) after a feedback stimulus in reaction to user input.

For the present investigation, we leveraged an existing ErrP
classification system which is described and evaluated in [12].
In summary, this system extracts EEG data from a window of
1s duration after the presentation of a feedback. It prepro-
cesses the data by re-referencing data to a common average
and by removing ocular artifacts using Independent Compo-
nent Analysis (ICA). The signal is then downsampled and the
signals from two electrodes (Fz and Cz) used as features for
a Support Vector Machine with a radial basis function ker-
nel1. For each participant, the system is trained on available
training data from other persons as well as a number of avail-
able calibration trials recorded from the current test person.
1Note that the recording of additional channels is still necessary to
perform ICA.

This calibration data is also used to select only those training
sessions which are closest to the data from the present test
person. Additional details on the design of the ErrP classifier
can be found in [12].

To validate this classification setup, we tested it on a corpus
(originally described in [12]) using a highly controllable and
easily executable task for elicitation of ErrPs. The employed
paradigm to evoke ErrPs was operation of a mockup-BCI (se-
lecting one of two presented options with mental commands)
that simulated an error rate of 30%. For this task, EEG data
was recorded at 500Hz using a BrainVision actiCHamp sys-
tem with 32 active electrodes, of which 23 where used for
ICA calculation and feature extraction2: Fz, F3, F7, FC5,
FC1, C3, T7, CP5, CP1, P3, P7, O1, O2, P4, CP6, CP2,
Cz, C4, T8, FC6, FC2, F4, F8. Impedance was kept below
16kΩ for all electrodes. Pz was used as reference electrode
and an additional light sensor attached to the stimulus presen-
tation screen was used for synchronization. Using this setup,
the BCI-ErrP corpus was recorded with data from 20 partici-
pants. On this data, the authors of [12] achieved an F-score of
0.86, corresponding to an accuracy of 0.92, using leave-one-
person-out cross-validation with 125 calibration trials.

When applying the existing ErrP classifier to a gesture recog-
nition context (see next section), we will use the BCI-ErrP
corpus as training data. We use calibration data from the users
of the gesture recognizer as calibration data. The rest of the
classification setup remains unchanged.

EXPERIMENTAL SETUP
In this section, we describe the main parts of the experimen-
tal setup besides the ErrP recognition: The gesture task, the
gesture recognition component and the self-correcting inter-
face. To evaluate the potential for an ErrP classifier and cor-
responding error recovery strategies in a realistic, non-BCI
related interaction task, we designed an experiment using a
simple gesture recognizer for pointing gestures. This experi-
ment consists of a pointing gesture task, a gesture recognizer
and the self-correcting interface.

Gesture Task
In the employed task, participants selected and dragged im-
ages presented on a large projected display to a certain spot
of a 2x3 matrix, depending on the content of the image (Step
1 and 2 in Figure 2 show the interface of the task). We
used data from a wireless sensor wristband equipped with an
inertial-measurement-unit (IMU) placed on the participant’s
right hand to classify the six possible pointing gestures. Fig-
ure 3 shows a participant performing the gesture task.

Before execution of the actual experiment, each participant
trained a predefined movement sequence: From a resting po-
sition, the participant moved the arm to point at the bottom
left corner, paused for about a second, moved the arm to the
target cell of the matrix in a smooth motion, paused for about
a second and returned to the resting position. This schema en-
sured consistent execution quality across all participants. The
2Different subsets of electrodes were used in different setups and
therefore not all were available for all sessions.
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Figure 2. The gesture task: Image is shown (step 1) and moved by point-
ing gesture (step 2). Then, feedback on the recogized category is shown
(step 3).

Figure 3. Execution of the gesture task.

task supported the participant in the correct execution by giv-
ing acoustic feedback in the form of a beep when a pausing
position could be left. When the gesture was completed, the
recognition result was displayed as a large overlay showing
an abstract pictogram representing the selected category (Step
3 in Figure 2). At this point, an ErrP classifier can evaluate
the subsequently recorded EEG to recognize whether an error
has occurred. As recognition of ErrPs, and triggered effects
in EEG in general, depend on temporal patterns in the range
of milliseconds, it is important to provide such a stimulus-
locking. Note that the selected window for ErrP classification
does not contain systematic movement or system stimuli be-
sides the presented feedback.

Gesture Recognition
We designed a simple person-independent gesture recogni-
tion system for recognizing the pointing gestures. The recog-
nizer was designed to discriminate six different classes, cor-
responding to the six matrix cells of the gesture task. Arm
motion was sensed with a sensor equipped wristband. We
used a jNode sensor [14], an open research sensor platform

which contains a 9 degrees-of-freedom inertial measurement
unit (IMU). Sensor data was sampled at 50 Hz and sent wire-
lessly to a computer. We applied a standard processing chain
consisting of segmentation, feature extraction and classifica-
tion stages. It should be noted that the gesture recognizer was
deliberately not optimized towards high accuracy. An almost
perfect recognizer would not be of use in our scenario, since
we are investigating recovery strategies from errors. We tar-
geted an accuracy of 75%.

We employed a two-stage segmentation process, which first
identifies segments of motion and then separates the actual
pointing gesture from other hand movements. In the first
stage, the motion data is segmented into parts containing mo-
tion and parts that are considered to contain no motion (idle).
A motion segment is detected whenever the angular rate ex-
ceeds a given empirically determined threshold. The motion
segment ends if the angular rate is below the threshold and
stays below it for at least 200 ms.

In the second stage of the segmentation process, we model
the movement sequence with a finite state automaton. Since
the movement sequence follows a strict schema, this is a fea-
sible approach for the case of this study. The finite state au-
tomaton has four states called UNDEFINED, POINTSTART,
GESTURE, and POINTEND (see Figure 4). Whenever the
segmentation stage detects a motion/idle change, we check
for a state transition. The start state is UNDEFINED, which
captures all motion that occurs between two gestural inter-
actions. The POINTSTART state corresponds to the initial
pointing on the picture at the bottom left corner of the dis-
play. The transition into the state POINTSTART is performed
if the acceleration in the axis perpendicular to the back of the
hand is within a range of 0.98 m/s2 of an experimentally de-
termined reference value. This means, the orientation of the
hand in 3d space is compared to a reference orientation based
on the measured earth acceleration. The reference orientation
depends on the height and distance of the projected image rel-
ative to the user and is therefore dependent on the local envi-
ronment. The next motion segment triggers transition into the
state GESTURE, which indicates the execution of the actual
gesture. The next idle segment consequently triggers transi-
tion into the state POINTEND, indicating the pause at the tar-
get position. The next motion segment leads to the transition
back into UNDEFINED. The motion segment corresponding
to the state GESTURE is used for the actual classification of
the gesture.

For the classification stage, we used a Gaussian mixture
model (GMM) with five Gaussians per class for maximum
likelihood classification. Features were computed on the
complete gesture segment associated with the GESTURE state
in the finite state automaton. Preprocessing consists of a
mean subtraction to compensate constant offsets introduced
by gravity (mean calculated on previous trials) and signal
smoothing with a running average filter of order five. Due
to the drift and noise present in inertial sensor readings, there
is no established technique to reconstruct the actual trajec-
tory performed in 3d space. As a result, we could not simply
compute the direction and length of the performed gesture re-
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Figure 4. Finite state automaton that controls the second state of the
gesture segmentation process.

liably. Instead, we computed the angle of motion in each of
the three axes, the L2-norm of these three angles and the du-
ration of the gesture segment. The angles were computed by
integrating the angular rate measurements from the gyroscope
over the whole gesture segment. The resulting feature space
therefore had five dimensions. The classifier was evaluated
in crossvalidation, yielding a person-independent recognition
accuracy of 77% (on the Gesture-Sim corpus) and therefore
the gesture recognizer is suitable for our experiments. We
also computed a confidence estimate for the gesture classi-
fication: Scores of the GMMs for each feature vector were
normalized to a probability distribution across classes. The
distance between the normalized score of the highest and
second-highest scoring class was used as a confidence esti-
mate of the classification result.

Self-Correcting Interface
For the described scenario, the self-correcting interface is de-
signed as follows: The gesture classifier receives input from
the IMU and outputs a probability distribution for six classes
corresponding to the six possible matrix cells. The most
likely class is used to present feedback on the recognized
class to the user. The EEG data following this feedback is an-
alyzed; in case the ErrP detector triggers, a recovery behavior
is started to correct the error. The exact nature of this recov-
ery behavior depends on the implementation of the recovery
strategy. Different strategies can have different characteris-
tics in terms of recovery accuracy, recovery costs and other
factors.

In the evaluation section, we will show how the existing ErrP
classifier performs on erroneous feedback during the gesture
task. In the experiments comparing different recovery strate-
gies, however, the ErrP component was replaced with a sim-
ulated ErrP classifier that receives the ground truth gesture
class and the output of the gesture classifier to detect ErrPs
with a recall and precision of both 0.8. The results from the
isolated analysis of the ErrP classifier justify this simplifica-
tion of the experimental setup as they show that we are able to
achieve this performance from real EEG data. Simulating the
ErrP classification allowed us a better control over the distri-
bution of errors and therefore a better comparability between
sessions. Furthermore, it reduced the setup time, and thereby
allowed us to record data from a larger number of partici-
pants. It should be noted that the existing ErrP classifier we

describe in the previous section can also be operated in online
mode, therefore the results from the experiment can be gen-
eralized to an end-to-end system with EEG-based classifier.

Next, we defined the notion for the different recovery strate-
gies we analyzed. The most basic strategy is the REPROMPT
strategy. REPROMPT reacts to a detected error by prompt-
ing the user to repeat the input. The initial gesture data is
discarded and the second gesture is used as the final classi-
fication result. We did not repeat the correction procedure
after the first repetition as frequent handling of the same
error might lead to unexpected EEG signal patterns. The
2ND-BEST strategy is a modification of REPROMPT in that
it does not always reprompt if an error is detected. Instead, it
inspects the probability distribution of the remaining classes
without the allegedly rejected one and picks the now high-
est scoring class (i.e., the originally second best). However,
this estimate might be unreliable as it is based on a probabil-
ity distribution that has just been indicated as erroneous by
the ErrP classifier. Therefore, we only used the second best
class if its re-normalized confidence (i.e., probability mass
of the first best class distributed equally across all remaining
classes) is above a certain threshold T (which is varied during
evaluation). Otherwise, the user was asked to repeat the input.
Figure 5 shows the control flow of both correction strategies
(REPROMPT is a special case of 2ND-BEST with threshold
T =∞).

As we also want to compare the automatic correction strate-
gies with user-triggered correction, we define the MANUAL
strategy that requires the user to actively report a system error.
This could for example be executed with a “manual override”
command or a correction gesture. In our experiments, we
used a two-handed keyboard command issued by the user as
trigger. When triggered, the system performed a reprompt of
the last trial. This strategy has the advantage of near-perfect
recognition of error events but does impose additional over-
head for the user. Note that the MANUAL strategy still allows
only one correction attempt per trial and can therefore still
result in recognition errors. This restriction keeps MANUAL
comparable to the other strategies that also allow at most one
correction attempt. We finally call the recovery strategy that
does not provide any mechanism to recover from detected er-
ror situations NONE.

EVALUATION
In this section, we systematically evaluate several aspects of
the proposed approach: First, we show that ErrP classification
is feasible in the proposed gesture task. Second, we intro-
duce our simulation approach to evaluate different correction
strategies. Third, we present the simulation results on correc-
tion accuracy and correction costs. Fourth, we show how the
simulation results can be generalized to systems at different
performance levels. Fifth, we show results of a user study
comparing correction strategies.

ErrP Classification on Gesture Task
To understand how the existing ErrP classifier generalizes
for more realistic HCI applications, we investigated how the
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Figure 5. Flowchart of the 2ND-BEST strategy.

trained model transferred to data from the actual gesture sce-
nario. As Iturrate et al. [6] showed, transfer between different
tasks may result in performance degradation as characteris-
tics of the ErrP patterns, for example onset latency, change.
Therefore, we recorded the Gesture-ErrP corpus, which con-
tains data from 11 participants performing the gesture task
while wearing the EEG headset. Feedback was presented in
the form of a pictogram symbolizing the selected class. It
was presented on a fixed position (to avoid systematic eye
movement artifacts) as a large, high-contrast overlay and par-
ticipants were instructed to pay attention to the feedback to
improve the recognition accuracy. This procedure was chosen
to increase the likelihood and timing precision of the gener-
ated ErrP, as participants will not miss feedback or perceive
it with a delay. We then evaluated the system trained on the
BCI-ErrP corpus on the new data set. Using 60 calibration
trials, we achieved an accuracy of 78.3%, corresponding to
an F-score of 0.69, a precision of 0.72 and a recall of 0.67.
This result shows that recognition of ErrPs in the presented
real-life gesture scenario is feasible with limited calibration
time. While those values are a bit lower than the values as-
sumed for the self-correcting interface, it is known from Putze
et al. [12] that accuracy can be improved by adding additional
calibration trials.

Simulation-based Evaluation of Recovery Strategies
Using the described setup for the gesture task, we recorded
IMU data of a total of 20 sessions from 20 participants. All
participants were university students or employees. During
the experiments, participants first performed a number of
training trials and then three blocks with 35 trials each. Be-
tween two blocks was a pause of several minutes for the par-
ticipant to rest. This is the Gesture-Sim corpus which we use
to evaluate the baseline gesture classifier and to simulate the
effects of different recovery strategies.

First, we describe the gesture classification performance in
more detail. Inspecting the average confidence values yielded
by the gesture classifier, we see a difference of 0.84 vs. 0.64
for the correct and the incorrect results, respectively. The
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Figure 6. Histogram of ranks of the correct gesture class within the
recognition results. Ranks are ordered by assigned probability (only for
originally misclassified trials).

confidence values are indistinguishable for practical purposes
with an average p of 0.158 (two-sided t-test on each fold).
This result indicates that the confidence value alone is not
reliable enough to detect errors on its own. An additional
knowledge source, like the proposed EEG-based ErrP detec-
tion, is necessary to reliably identify errors. For all misclas-
sified trials, Figure 6 shows a histogram of the position of
the correct label within the recognition results for the corre-
sponding trial sorted by probability. We see that of all wrong
classification results, in 52.2% of the cases, the second best
estimate is the correct one. This indicates that we can suc-
cessfully pursue a 2ND-BEST strategy.

In the following, we evaluate the different recovery strate-
gies for their impact on recognition accuracy of the gesture
recognizer and the associated costs in the form of additional
gestures. We do this in simulation, where we use the actual
results from the gesture recognizer for each trial but simu-
late the ErrP classification and recovery strategy, including
any additional gesture classifications during recovery. This
method gives us the opportunity to evaluate a large number
of recovery strategies with different parameters to study and
compare their effects.

To quantify the effect of the different recovery strategies, we
define the corrected recognition accuracy to be the fraction of
correctly identified gestures after applying the effects of any
recovery behavior of the system. Corrected recognition accu-
racy takes into account the error of the gesture recognizer as
well as both types of errors of the ErrP classifier (false posi-
tives and false negatives). See the appendix for the equation
used to calculate corrected recognition accuracy.

We also assess the costs of each correction strategy to mea-
sure system efficiency. As a metric, we calculate the costs of
a correction as the average number of additional user inputs
(gestures or key presses) necessary to perform the correc-
tion. As performing a gesture and receiving the correspond-
ing feedback is the most complex operation in our scenario,
this cost measure is highly correlated to task execution time.
For REPROMPT, this amounts to one gesture for each de-
tected error, including false alarms. Those costs are reduced
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Metric Definition
Corrected accuracy Gesture accuracy after application of correc-

tion behavior.
Correction costs Number of additional gestures for applica-

tion of correction behavior.
Cost benefit ratio Ratio of difference between corrected accu-

racy and accuracy and correction costs.
Table 2. Overview of employed evaluation metrics.

for 2ND-BEST which in favorable cases corrects errors with-
out any additional costs for the user. For MANUAL, we have no
false alarms but additional costs for triggering the correction.
We favorably assume that the signal to trigger manual correc-
tion is always issued correctly by the user. Correction costs
can be estimated in cross-validation by counting the number
of (automatically or manually triggered) reprompts.

Simulation Results
To assess the performance of the different strategies using
the above metrics, we performed a block-wise leave-one-out
crossvalidation of the gesture recognition system and calcu-
lated a number of statistics on errors and confidence values.
The crossvalidation simulates online recognition, i.e., nor-
malization parameters for each trial are only calculated from
the data previous to this trial in chronological order. For each
fold, we evaluate the gesture classifier on the testing block
and estimate corrected recognition accuracy for the different
correction strategies. Table 3 summarizes the results, aver-
aged across all folds. We see that for all correction strategies,
the corrected accuracy exceeds the baseline accuracy (i.e.,
NONE) and therefore improves the overall performance of
the gesture classifier. As expected, MANUAL yields the high-
est improvement, followed by REPROMPT. Still, 2ND-BEST
ranks only 3.1 to 9.9% worse than REPROMPT (depending
on the selected threshold, see below) and provides a statis-
tically significant improvement over NONE (block-wise one-
sided paired t-test, t = 4.38, p = 0.002). A caveat is that
while 2ND-BEST fixes a number of erroneously classified
gestures, it also reacts to a number of false positives with no
chance of recovery (in contrast to REPROMPT which can still
generate a valid final result in case of a false positive). To
some degree, this is mitigated by the confidence threshold t
applied to the second best result: With T = 0, the corrected
accuracy of 2ND-BEST is 71%, i.e., below the raw accuracy
of NONE. Using a confidence threshold of 0.7, the strategy
suggested the second best result for 53% of all error trials.
This yields a tuning parameter with which the designer can
select between different trade-offs between accuracy and cor-
rection costs: Table 3 lists results for three different parameter
settings to demonstrate this.

Strategy Corr. Accuracy Corr. Costs
NONE 77.0% 0
MANUAL 93.0% 0.46
REPROMPT 86.8% 0.34
ROW-COL-REPROMPT 76.4% 0.34
SELECTIVE-REPROMPT 88.1% 0.34
2ND-BEST (T=0.5) 78.2% 0.14
2ND-BEST (T=0.7) 81.4% 0.19
2ND-BEST (T=0.9) 84.1% 0.27

Table 3. Performance measures of different error correction strategies.

It is surprisingly difficult to beat the simple 2ND-BEST strat-
egy (and its special case REPROMPT) in terms of corrected
accuracy. We explored a number of other strategies that use
elaborate mechanisms to improve the recovery process. For
example, the ROW-COL-REPROMPT strategy tries to esti-
mate the correct row or column (by identifying the row or
column with the highest cumulative confidence after remov-
ing the first best result) from the initial gesture and only re-
prompts this reduced set. Indeed, corrected accuracy of the
gesture recognizer rises to 88% when only the one missing
dimension (i.e., row or column) has to be estimated from the
reprompt. However, errors in the automatic selection of the
correct row or column, which inevitably prevent a successful
correction, lead to a non-competitive corrected accuracy of
76.4%, which is worse than NONE. An alternative which per-
forms better is SELECTIVE-REPROMPT. It also limits the
number of reprompted items, but selects the three best classes
from the initial gesture input, including the one marked as in-
correct by the ErrP detector. This leads to a corrected accu-
racy of 88.1%, reducing the number of errors by 9.8% rela-
tive to REPROMPT. However, we achieve this error reduction
only by re-arranging those items into one row3. Thus, we pay
for this benefit by the fact that we are required to re-arrange
the matrix for the reprompt (e.g., moving the three candidates
to a joint row) to actually benefit from a simplified pointing
and classification task. Informal user tests showed that this is
highly confusing to users.

Generalizing Simulation Results
Up to this point, we analyzed the benefit of error recovery
using the empirically determined gesture recognition accu-
racy of 77.0% (on average) yielded by the employed gesture
recognizer. Similarly, we used performance values for the
ErrP classifier which were plausible for the system described
in [12]. However, the benefit of error recovery depends on
the performance of both components, gesture recognition and
ErrP detection: A very high gesture recognition accuracy de-
mands a high ErrP classification accuracy. Otherwise, nearly
all detected errors will be false alarms. In case of rather low
gesture recognition accuracy, even an ErrP detector with com-
parably low accuracy can lead to substantial benefits. For this
reason, we analyze the system for different performance lev-
els of gesture recognizer and ErrP classifier in Figure 7. For
every configuration, we calculate the benefit cost ratio, which
is the ratio of absolute improvement of correction accuracy to
the corresponding correction costs. See the appendix for how
to calculate benefit cost ratio.

We can make a number of noteworthy observations: Unsur-
prisingly, the benefit-cost ratio increased with performance
of the ErrP classifier for a fixed accuracy of the gesture
recognizer. In contrast, benefit-cost ratio did not develop
monotonously for a fixed ErrP classification accuracy. This is
because for very low gesture recognition accuracy, the costs
of frequent reprompts are high, regardless of ErrP classifica-
tion performance; for very high gesture recognition accuracy,
the ErrP classifier has to be very precise to actually detect
3other options like simply discarding the other items or training
new models with a-priori probabilities from the original trial lead
to worse recognition accuracy.
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Figure 7. Benefit-cost ratio of REPROMPT over NONE for different per-
formance levels of gesture recognizer and ErrP classifier.

the few misclassified gestures. Highest benefit-cost ratio can
be achieved for gesture recognizers in the accuracy range of
70% to 85%. This is an encouraging result as this is a plausi-
ble range for many real-world gesture recognition tasks. Fig-
ure 7 can be used to decide whether the application of a self-
correcting interface is beneficial for a concrete gesture recog-
nizer and a concrete available ErrP classification accuracy.

In the previous analysis, we treated precision and recall iden-
tically. Relaxing this constraint enables the trade-off between
precision and recall as an additional design parameter: As
false positives and missed errors are not symmetrical in their
influence on the performance of a recovery strategy, we now
look at the impact of different precision/recall values of the
ErrP classifier. For example, it may be favorable to tune the
classifier towards a higher precision at the cost of reduced
recall, to avoid false alarms which might invalidate correct
gesture inputs. In [12], Putze et al. showed that it was pos-
sible to achieve a precision of 0.96 by modifying the class
balance of training data. Simultaneously, this step reduced
recall to 0.76. While this resulted in a slightly lower F-Score
of 0.84 compared to the optimal system, it is the number of
false positives (which depends on the precision of the clas-
sifier) that causes the most trouble for automatic recovery;
this is especially true for 2ND-BEST, which cannot recover
successfully in case of a false positive. To investigate the im-
pact of the trade-off between both performance metrics, we
adjusted precision and recall of the ErrP detector by +0.1
and −0.1, respectively. As a consequence, relative corrected
recognition accuracy improved by 3.5% for REPROMPT and
6.3% for 2ND-BEST. The overall ranking of recovery strate-
gies stayed the same, although the gap to the MANUAL strat-
egy was reduced, as it did not benefit from the adjustment.

User Satisfaction of Recovery Strategies
The results up to this point indicate that is is possible to de-
velop a self-correcting interface that significantly improves
the accuracy of the employed gesture recognizer. However,
usability of such a system does not only depend on efficiency
and effectiveness and we still have to investigate whether
users will accept the different correction strategies. In [7]

Jameson systematically analyzed a number of undesired side-
effects of introducing such an adaptive interface. He dis-
cussed the cause and the effects and ways to remedy them.
For application, the most relevant side-effects are “Inadequate
Control over Interaction Style” and “Inadequate Predictabil-
ity and Comprehensibility”, as the user has no control over
when a correction is triggered and has no way to predict when
an error is detected. Another important aspect is “Imperfect
System Performance” (of the ErrP classifier), which may lead
to negative user experience when a correct interpretation is
discarded. To investigate whether those challenges affect user
satisfaction, we recorded the Recovery-Study corpus, a user
study in which we compared REPROMPT and 2ND-BEST
(with T = 0.7) to the MANUAL correction strategy. This
strategy selection allowed a comparison of recovery strategies
with different levels of autonomy. After a training phase with
the gesture recognizer, each participant performed 35 trials
for each of the three strategies in random order and filled out a
usability questionnaire. Averaged across all participants, raw
recognition accuracy was 76.2%. Table 4 describes the actual
performance of the different correction strategies. Compared
to the simulation results, we can conclude that in simulation
we made satisfactory predictions on accuracy and correction
costs. Table 5 summarizes the items of the questionnaire and
the results. Items were presented with a 5-point Likert-scale,
with 1 indicating no agreement and 5 indicating the highest
possible agreement. In the following, we analyze the corre-
sponding questionnaire responses. Given the limited sample
size, not all results are significant, but the tendencies give a
good impression on the perception of the different strategies.

Strategy Corr. Accuracy Corr. Costs
MANUAL 91.7% 0.52
REPROMPT 84.0% 0.37
2ND-BEST (T=0.7) 79.7% 0.18

Table 4. Performance measures of the different error correction strate-
gies for the Recovery-Study corpus.

Questionnaire Item R
E
P
R
O
M
P
T

2
N
D
-
B
E
S
T

M
A
N
U
A
L

felt supported 3.6 3 3.1
system reacts proactively 4.4* 3.5* 2.1
errors corrected reliably 3.1 3.2 2.6
system strenuous 2.9 2.4 2.8
correction tedious 3.0 2.4* 3.5
system predictable 3.4 3.1 2.5
system impedes user 2.5 2.4 2.9
system confusing 2.2* 2.9 3.0
system intuitive 4.6* 4.3 4.1
user has control 4.0* 3.4 3.3
felt observed 1.3 1.8 1.8
pleasant experience 3.3 3.7 3.0

Table 5. Subjective evaluation of correction strategies. 1 = strong rejec-
tion, 5 = strong agreement. An asterisk denotes a significant difference
(two-sided, paired t-test, α = 0.05) between MANUAL and the respective
automatic strategy.

We see that users are not daunted by the self-correcting in-
terfaces. By tendency, the self-correcting systems are eval-
uated more positively compared to the system with man-
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ual correction regarding all presented questionnaire items.
However, there was a difference between REPROMPT and
2ND-BEST in which items they more distinctively differed
from MANUAL. Due to the reduced number of manual inter-
ventions necessary, automatic correction by the 2ND-BEST
strategy was perceived as less strenuous, less tedious and
more pleasant than manual correction. Comparing both au-
tomatic strategies regarding ease-of-use, users preferred the
REPROMPT strategy. REPROMPT was evaluated as the least
confusing, most predictable, most intuitive strategy. For
REPROMPT, there also was a stronger perception of pro-
active behavior compared to both other strategies. The rea-
son we see for this difference between both self-correction
strategies is that 2ND-BEST provided the more complex be-
havior as it adds new elements to the interaction flow, while
REPROMPT only repeats elements which are already famil-
iar to the user. Both behaviors also differ in their handling
of false positives. While reprompting a user after presented
feedback can be interpreted as a confirmation of an unreliable
classification, the 2ND-BEST behavior explicitly discards the
initial classification result and gives the user no opportunity
to counter this behavior.

Interestingly, REPROMPT and 2ND-BEST were both per-
ceived as (slightly) more reliable in terms of error correction
than MANUAL (3.1 and 3.2 vs. 2.6). This result is in contrast
to the higher corrected accuracy of MANUAL. Based on post-
hoc interviews with the participants, we postulate that this is
because participants did not attribute the high corrected ac-
curacy of MANUAL to the system, but to their own additional
effort to report errors.

CONCLUSION
In this paper, we showed that it is possible to improve accu-
racy of a gesture recognizer using ErrP classification to en-
able pro-active recovery from recognition errors. We dis-
cussed all components necessary for an end-to-end error-
aware interface and evaluated different recovery strategies,
looking at both objective and subjective evaluation metrics.
We showed that an error-aware interface can achieve cor-
rected recognition accuracy close to manual correction, while
maintaining much lower correction costs. We compared
different recovery strategies, showing a trade-off between
achieved corrected accuracy and recovery costs as well as dif-
ferences in subjective assessment between strategies.

In this paper, we did not only report results for one specific
self-correcting gesture recognizer but for a whole family of
recognizers with different (gesture and ErrP) accuracy levels
and correction strategies. In the discussion of related work we
argued that the concrete design of error recovery strategies
depends on the employed modalities and recognizers. The
methods that we employed in this paper enable us to assess
the benefit of different strategies in different situations: The
simulation-based evaluation of recovery strategies can be eas-
ily extended to other strategies and recognizers. In addition to
the simulation, the user study in the Recovery-Study showed a
number of general criteria (e.g., intuitiveness, perceived per-
formance, control) by which different recovery strategies can
be evaluated for user satisfaction. When transferring the re-

sults of this paper to another modality or domain, one may
have to adjust the recovery strategies and consequently the
evaluation of Equation 1. Another aspect that needs to be
adapted to new application areas is the employed cost model.
It may require adjustments as requesting additional user in-
put may be more or less costly (e.g., finger flicks vs. full-
arm movements) or measured on a completely different scale
(e.g., time, as some gestures take longer to perform than oth-
ers) than in this paper. This may also change the user prefer-
ence for different recovery strategies.

One limitation of the described approach is that it relies on
time-locked evaluation of EEG data relative to feedback pre-
sentation. This works well for situations were the system can
give instantaneous feedback in an unambiguous way, for ex-
ample global feedback on a graphical user interface. Detec-
tion of error states becomes more challenging when feedback
is given more locally, is not obviously erroneous or is spread-
ing across longer periods of time. In such cases, the ErrP clas-
sification has to rely on additional information sources (e.g.,
eye tracking to estimate when a presented feedback was per-
ceived) or become less reliant on temporal alignment (e.g.,
by using methods by Marathe et al. [10]). Another limita-
tion is induced by the fundamental challenges of BCIs: Long
setup time, low signal-to-noise ratio, requirement for addi-
tional equipment. Those challenges may restrict the applica-
bility to scenarios in which such characteristics are accept-
able and are outweighed by the benefits of the error correc-
tion. Finally, the work needs to be extended to a full end-to-
end system. Such a system would feature additional interac-
tions between the different components, for example potential
changes in ErrP patterns in reaction to system error recovery.

APPENDIX
This appendix gives the equations for the calculation of cor-
rected accuracy and benefit cost ratio when employing dif-
ferent correction strategies. The corrected accuracy can be
calculated as follows:

â =a · (1− pcor) + a · pcor · aFP

+ (1− a) · pincor · aTP
(1)

In Equation 1, pcor is the probability of detecting an ErrP if
the gesture input was classified correctly (i.e., the false posi-
tive rate of the ErrP classifier) and pincorr is the probability
of detecting an ErrP if the gesture input was classified in-
correctly (i.e., the precision of the ErrP classifier). a is the
raw accuracy of the gesture recognizer and can be estimated
during crossvalidation. aTP and aFP are the probabilities
of a successful recovery when an ErrP was identified cor-
rectly (i.e., true positive) or incorrectly (i.e., false positive)
for the initial gesture input. For REPROMPT, we simply have
a = aTP = aFP , as every detected ErrP leads to an addi-
tional unmodified gesture trial. For a pure 2ND-BEST strat-
egy (i.e., T = 0), we have aTP = p2ND and aFP = 0,
where p2ND is the probability that the second best estimate is
correct, given the first one was already excluded. p2ND can
be estimated from the histogram in Figure 6 as the fraction

9



of second best results of all wrongly classified gesture trials
(52.2% in our case). For 2ND-BEST with T > 0, we have:

aTP = P (c2ND ≤ T ) · a + P (c2ND > T ) · p2ND

aFP = P (c2ND ≤ T ) · a (2)

In Equation 2, c2ND is the re-normalized confidence of the
second best recognition result (i.e., the probability mass of
the first best recognition result is distributed proportionally
across the other results). Again, the necessary probabilities
can be estimated from the histogram in Figure 6 by counting
only the trials with high confidence.

To quantify the efficiency of a correction strategy, we define
the benefit cost ratio b as the ratio between absolute improve-
ment in accuracy â − a and the correction costs c. b can be
interpreted as the expected improvement in gesture recogni-
tion accuracy per necessary additional gesture. To simplify
the analysis, we set q = pcor = 1 − pincorr, i.e., we used
identical values for precision and recall of the ErrP classifier.
Using the definition of b, c and q in Equation 1, we can cal-
culate the benefit-cost ratio as follows:

b =
â− a

c
=

(2q − 1)(a− a2)

a(1− q) + (1− a)q
(3)
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3. Ferrez, P. W., and José del R. Millan. Error-related EEG
potentials generated during simulated brain computer
interaction. IEEE Transactions on Biomedical
Engineering 55, 3 (2008), 923–929.

4. Förster, K., Biasiucci, A., Chavarriaga, R., Millan, J.
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