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Abstract

Fine grained video action analysis often requires reli-

able detection and tracking of various interacting object-

s and human body parts, denoted as Interactional Objec-

t Parsing. However, most of the previous methods based

on either independent or joint object detection might suffer

from high model complexity and challenging image content,

e.g., illumination/pose/appearance/scale variation, motion,

and occlusion etc. In this work, we propose an end-to-end

system based on recurrent neural network to perform frame

by frame interactional object parsing, which can alleviate

the difficulty through an incremental/progressive manner.

Our key innovation is that: instead of jointly outputting al-

l object detections at once, for each frame we use a set of

long-short term memory (LSTM) nodes to incrementally re-

fine the detections. After passing through each LSTM node,

more object detections are consolidated and thus more con-

textual information could be utilized to localize more diffi-

cult objects. The object parsing results are further utilized

to form object specific action representation for fine grained

action detection. Extensive experiments on two benchmark

fine grained activity datasets demonstrate that our proposed

algorithm achieves better interacting object detection per-

formance, which in turn boosts the action recognition per-

formance over the state-of-the-art.

1. Introduction

Fine-grained action analysis has been an emerging re-

search direction during recent years [22, 14, 20, 18, 37, 36].

The major task of fine-grained interaction action analysis

is to detect the interacting objects or human body parts for

each video frame (in the rest of the paper, we will simply

use the term objects to denote both interactional objects and

human body parts). However, detecting and tracking the ob-

jects under interaction (also denoted as interactional object

parsing) in fine-grained action videos is very challenging

due to frequent occlussion/self-occlusion, change of object

scale/orientation/appearance, and fast object or background

motion, etc.

Early methods detect and track each of the interact-

ing objects independently. For example, some work-

s [3, 27, 15] only attempt to detect and track hands in in-

teraction videos, without consideration of the relationship

between the hands and the objects being manipulated. In

some contextual object recognition works [17, 7, 33, 11],

hands and objects are detected using different methods in-

dependently, and the detections are further fused via prob-

abilistic graphical models for high level inference, e.g., ac-

tion detection or joint object and action recognition. With

RGB-Depth data, Lei et al. [14] proposed a system to per-

form fine-grained kitchen activity recognition. Different ob-

jects are detected independently. Obviously, this method is

not able to utilize rich contextual information among var-

ious objects during interaction, e.g., hands and objects, to

improve the joint detection performance.

Geometrical contextual information among objects,

body parts and body poses could be jointly explored to

enhance both object and action recognition performance.

Packer et al. [20] presented a joint model for objects, hu-

man poses and motion features to recognize complex, fine-

grained human actions in cooking action sequences. Kop-

pula et al. [12] jointly detected manipulation activities and

object affordances. These works require 3D skeleton data

which are not easy to obtain in practice. Ni et al. [18] re-

cently proposed a joint hand and object tracking framework

called interaction tracking, which is based on the observa-

tion that there exists rich contextual information between

the interaction status and the occurrence of mutual occlu-

sion. Their method outperforms prior art.

However, joint object detection framework still has two

issues. First, joint object detection frameworks are usual-

ly based on tree-like graphical models, for example, de-

formable part-based models [5, 32], And-Or graph model-

s [38, 16], probabilistic graphical models [20, 18]. These

models usually can only handle the binary contextual rela-

tionship between objects. While a large portion of actions

involve high order interaction, e.g., hand, knife, and chop-

ping board for the action cutting, simply considering the
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mutual geometrical relationship between objects is insuffi-

cient to guarantee good object parsing performance. It is

infeasible for these algorithms to model higher order con-

textual relationship due to the high computational complex-

ity nature of these algorithms. Therefore, we need a flex-

ible way to model high order contextual information for

better detection of interactional objects. Second, during

fine grained interaction there exist frequent occlusion/self-

occlusion and object appearance/scale/orientation change,

which make the interactional object parsing problem very

challenging. Therefore, it is very hard to guarantee the per-

formance of joint object detection [18]. One key observa-

tion is that during interaction, some objects might be ”eas-

ier” to detect than others. For example, during the chop-

ping action, the chopping board and the hand is often easier

to detect than the knife (which is often occluded). If we

can confidently identify some ”easy” objects first, it would

be very helpful for us to further use the contextual infor-

mation to seek other related and more ”difficult” objects.

In other words, an easy-to-difficult progressive/incremental

detection approach might be more preferable for interac-

tional object parsing. Moreover, the detection order should

be varying according to different interaction scenarios.

Inspired by the recent success of recurrent neural net-

works (RNN) [6] (especially application of the long-

short term memory network (LSTM) [8] in people detec-

tion [26]), we propose an end-to-end system based on recur-

rent neural network to perform frame by frame interactional

object parsing, which can alleviate the above mentioned dif-

ficulty through a progressive/incremental detection manner.

For each frame, expressive image features from the state-

of-the-art deep convolutional models (e.g., VGG-19 [25])

are input to our proposed interactional object parsing net-

work. Instead of jointly outputting all object detections at

once, for each frame, we use a set of LSTM nodes to pro-

gressively/incrementally refine the detections. After pass-

ing through each LSTM node, more object detections are

consolidated and thus more contextual information could

be utilized to determine more difficult object detections. By

applying the proposed network, all detection and contextu-

al information up to the current nodes could be maximally

explored to generating a better detection in the next pro-

cessing LSTM node. Therefore, ”easy” objects have high-

er probability to be confidently detected and confirmed in

the early LSTM nodes of the network. Based on the con-

textual information between these already ”discovered” ob-

jects with the uncertain ones, the later LSTM nodes could

better identify the ”more difficult” objects (e.g., those oc-

cluded ones during interaction, or those have large appear-

ance/scale/orientation variation). The detection results of

the current frame are also input to the LSTM network asso-

ciated with the next frame to facilitate inter-frame tracking.

The object parsing results are further used to compute

object specific motion representations for fine grained ac-

tion detection. We perform extensive experiments on t-

wo benchmark fine grained activity datasets. The results

demonstrate that our proposed algorithm achieves better in-

teracting object detection performance, which in turn boosts

the action recognition performance over the state-of-the-art.

The rest of this paper is organized as follows. We enu-

merate some related works in Section 2. The details of our

progressive interactional object parsing network along with

the detailed implementation and training procedure are de-

scribed in Section 3. We demonstrate experimental settings

and results in Section 5. Conclusions are given in Section 6.

2. Related Works

Fine-grained Action Analysis. Although general ac-

tion recognition has a rich literature [19, 13, 23, 30, 35],

fine-grained action analysis is a relatively new research di-

rection. Rohrbach et al. [22] provided a large-scale fine-

grained cooking action dataset with several baseline result-

s. Their dataset has been the most important and chal-

lenging benchmark test-bed for evaluating fine-grained ac-

tion recognition/detection algorithms. Several works [14,

20] utilized RGB-depth information for fine-grained action

recognition; however, relying depth channel is a limitation

for realistic application. Zhou et al. [37, 36] proposed a se-

ries of works on fine-grained action analysis which focus on

modeling local contextual information between motion and

object of interest. The work mostly related to ours is by Ni.

et al. [18], where their focus is also object parsing/tracking

in fine-grained action video.

Recurrent Neural Networks and LSTM. Recurren-

t neural networks especially the long-short term memory

models [8] have achieved great success in a large variety

of applications including temporal modeling such as nat-

ural language processing [24] and speech recognition [6],

and non-temporal modeling such as image caption genera-

tion [10, 29].

Several works have been proposed to model action image

sequences using RNN/LSTM models. Veeriah et al. [28]

proposed a differential gating scheme for the LSTM neural

network (termed as differential Recurrent Neural Network

(dRNN)), which emphasizes on the change in information

gain caused by the salient motions between the successive

frames. Donahue et al. [4] developed a novel recurrent con-

volutional architecture for large-scale visual learning. They

applied this model on several tasks including benchmark

video recognition, image description, and video narration.

Wu et al. [34] extracted spatial and the short-term motion

features by two Convolutional Neural Networks (CNN) to

further model longer-term temporal clues. The two types of

CNN-based features are further combined in a regularized

feature fusion network for video event classification. The

above works mostly focus on modeling temporal dependen-
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cies for action recognition; in contrast, our work focuses on

progressive refinement of the interactional object detection

within each video frame, i.e., the LSTM model applied to

our problem is not focused on temporal modeling, rather, it

is applied for sequencing the detection process in an easy-

to-difficult manner. In this sense, the most related work to

ours is by Stewart and Andriluka al. [26], where LSTM net-

work is applied for sequencing the human detection prob-

lem. Namely, for each frame, their model sequentially out-

puts the detection bounding boxes by exploring the contex-

tual information between bounding boxes. Their algorithm,

however, is designed for detecting only a single type of ob-

ject (with many instances in the image). In contrast, our

algorithm handles different types of objects simultaneous-

ly, based on our developed sequential detection refinement

algorithm.

3. Interactional Object Parsing Network

Motivation. The task of interactional object parsing is

to infer at each frame the bounding boxes for various inter-

acting objects and human parts. To this end, we propose

an interactional object detection network which progres-

sively/incrementally outputs/refines the bounding boxes for

various interactional objects at each frame. In other word-

s, instead of confirming the localizations of all the object

bounding boxes simultaneously at each frame, the image

frame is input to a recurrent neural network and that net-

work progressively refines the object detection results node-

by-node until all detected object bounding boxes cannot be

improved further (e.g., when the detection confidence is be-

low some threshold). Through this progressive detection

scheme, objects that are ”easy” to detect (e.g., without oc-

clusion, with little deformation etc.) could be identified and

consolidated in the early output nodes of the recurrent neu-

ral network. The detections which are ”consolidated” from

early nodes of the recurrent network could provide contex-

tual information, which help to detect more ”difficult” ob-

jects (e.g., those occluded or deformed ones) in later output

nodes of the network. For instance, during a frying action,

the hand and the fry pan might be detected much easier and

their confirmed positions could help to locate the position

of the ladder, which is most probably occluded by hand and

difficult to localize.

Network Architecture. We begin with notations. The

number of interesting objects (including human body parts,

e.g., hands) is denoted as M . At each frame, our parsing

network outputs a concatenated vector B, which is com-

posed of M object bounding boxes with detection confi-

dence scores B = (b1;b2; · · · ;bM ). Here each bm =
(pm; cm) is composed of four dimensional bounding box

parameters pm indicating the relative x-y coordinates and

height, width of the bounding box for object m, as well

as the corresponding detection confidence score cm. High-

er value of the confidence score indicates higher probabil-

ity that the detected bounding box matches the target ob-

ject. Figure 1 overviews our proposed end-to-end interac-

tional object parsing network. Each frame image is input

to a VGG-19 [25] CNN model for extracting image rep-

resentation. As the original image frame size is usually

640 × 480 × 3, we first re-scale it to 320 × 240 × 3 and

we crop the center 224 × 224 × 3 region for processing.

Note that in fine grained action, the human subject along

with the objects being manipulated are always in the image

center. The Conv5 layer (D = w × h × 512-dimensional,

w and h denote the receptive field size) is used as the image

level representation. We denote this feature as CNN fea-

ture x. We use the VGG-19 network architecture and its

ImageNet pre-trained model due to its discriminative capa-

bility in image classification task. Note that each pixel in

the Conv5 map has the receptive field size typically smaller

than that of any object of interest. Namely, the resolution

of the Conv5 CNN feature map x is sufficient for object lo-

calization. The D-dimensional CNN image representation

is further input to a recurrent network structure with H L-

STM nodes (in this work, H is larger than M , i.e., to allow

sufficient number of iterative refinement steps). Each LST-

M takes the D-dimensional CNN image representation and

the object parsing status C(l−1) vector from the last LSTM

node and outputs the detection vector B(l) for the current

LSTM node (we use l to index the LSTM node). We set

the dimensionality of LSTM cell status vector C(l) as 512.

In other words, at each frame t, our LSTM network gener-

ates a sequence of gradually refined object parsing vectors,

i.e., B
(1)
t ,B

(2)
t , · · · ,B

(H)
t . Inter-frame tracking is natural-

ly handled by inputting the cell status of the last LSTM n-

ode (l = H) of the current frame t to the first LSTM node

(l = 1) of the next frame t + 1. This interactional objec-

t parsing process for frame t could be mathematically ex-

pressed as:

il = σ
(
Wixt + Uih

(l−1)
t + bi

)
,

fl = σ
(
Wfxt + Ufh

(l−1)
t + bf

)
,

ol = σ
(
Woxt + Uoh

(l−1)
t + bo

)
,

C̃
(l)
t = tanh

(
Wcxt + Uch

(l−1)
t + bc

)
,

C
(l)
t = il ∗ C̃

(l)
t + fl ∗ C̃

(l−1)
t ,

h
(l)
t = ol ∗ tanh(C

(l)
t ),

B
(l)
t = softmax(Wh

(l)
t + b). (1)

Here il, fl, ol and C(l) denote the input gate, forget gate,

output gate, and cell status of the LSTM node l, respective-

ly. Note that for each frame, the image CNN feature xt is

input to all LSTM nodes. Through this recursive architec-

ture, image features and contextual information (e.g., early

consolidated detections) could be jointly explored to gradu-
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ally detect more and more ”difficult” objects.

Cost Function. To facilitate our idea of progressive re-

finement of interactional object detections, we introduce a

partial matching cost, mathematically defined as follows:

ℓpartial(B,G, r) =
∑

m∈N

ℓc(cm, c′m)

+
∑

m∈P
∧

O(r)

ℓc(cm, c′m)

+ λ
∑

m∈P
∧

O(r)

‖pm − p′
m‖22. (2)

The cost function for a frame is expressed as:

ℓ(B,G) =
H∑

r=1

ℓpartial(B,G, r). (3)

Here G is the corresponding ground-truth parsing results,

i.e., G = (g1;g2; · · · ;gM ) and gm = (p′
m; c′m). N and P

denote the un-matched (according to the invisible object en-

tities in the ground-truth G, namely c′m = 0) and matched

(according to the visible object entities in the ground-truth

G, namely c′m = 1) subset of detection bounding boxes

from B. ℓc(y,y
′) = −

∑
i yi log(y

′
i)− (1− yi) log(1− y′i)

is the cross-entropy cost. O(r) is the set of first r elements

from the ordered matching list from the subset P . To order

the matching list, we define an ordering based on the bound-

ing box overlapping between ground-truths and predictions

(IoU ). The last term is a displacement between the predict-

ed bounding boxes’ positions with the ground-truth ones.

λ is a balance factor which is decided by cross-validation

using a validation set. During network training, after each

round of object bounding box prediction generation, we per-

form predicted bounding box matching and ordering with

the ground-truth and proceed to further optimize the net-

work model parameters. For testing, we take the last step

prediction B
(H)
t for frame t to be the confirmed object pars-

ing result. Bounding boxes with low confidence values are

discarded.

The working mechanism of our network is well reflect-

ed by our designed cost function. For the first iteration

(l = r = 1), the cost function only attempts to mini-

mize the displacement between the top matched prediction

bounding box O(1) to its corresponding ground-truth. The

philosophy is that in the first step, we only need to detect

the easiest object. When the iteration index increases, our

cost function requires that more predicted bounding boxes

should match their corresponding ground-truths. For every

next iteration, we add one more object in the must-match list

until all detections have been considered. Through this way,

the challenging interactional object parsing problem is de-

composed into a series of sub-problems with increasing dif-

ficulty level. As more and more object detections have been

confirmed, we have more confidence to detect more difficult

object based on its contextual relationship with previously

detected objects. Once more object information gathered

in the path, previous difficult object could also become not

that difficult to detect. Note that for the predicted bounding

boxes which do not have a match in the ground-truth, i.e.,

occluded part/object, our cost function can directly penal-

ize this erroneous detections based on the first cross-entropy

term (to minimize the confidence score associated with that

object).

Discussions. Note that our formulation of progressively

object detection scheme is different from the scheme pro-

posed in the work [26]. In [26], only one type of object is

considered. Therefore, after each round of prediction during

model training, candidate object bounding boxes should be

matched to the ground-truth bounding boxes through a bi-

partite graph matching algorithm. In contrast, for our prob-

lem, different types of objects are involved and we have a

fixed object indexing scheme, i.e., each bm in B is a fixed

entity (hand, oil box, knife, etc). In other words, bm could

be only matched to its corresponding ground-truth gm, i.e.,

hand prediction matched to hand ground-truth. Moreover,

the working mechanism of our network and the one pro-

posed in [26] is different. The purpose of [26] is to sequen-

tially output all object detections at some receptive field,

one at each iteration; in contrast, our purpose is to gradu-

ally refine the entire object parsing vector B. In each step,

some bounding boxes (might be more than one) in B could

be refined (refinement is performed on the entire vector B).

Second, previous interactional object parsing method

cannot well handle the scenario when some parts are oc-

cluded. For example, as revealed by the work [18], objects

and body parts tracking easily gets failed when occlusion is

serious. In contrast, since our model naturally handles the

occlusion problem. Specifically, our method confirms ob-

ject/part localizations from a sequential manner with a non-

fixed order: simple objects could be consolidated first, dif-

ficult objects could be consolidated later, and those totally

occluded ones could be explicitly decided as non-detection.

Model Training Details We use the open source pack-

age Caffe [9] (for the image feature learning part) and NLP-

Caffe [1] (modified, for the LSTM part, similar to the us-

age in [26]) and train the proposed network using stochastic

gradient descent (SGD) and back propagation through time

(BPTT). The CNN feature (VGG-19) model is initialized

by the ImageNet pre-trained model. The parameters of the

LSTM part are randomly initialized in the range [−1, 1].
Both the CNN part and LSTM part are jointly trained. The

temporal batch size is set as 32. We use an equal learn-

ing rate for all layers. The learning rate is initialized at 0.1
(the momentum is set as 0.8) and it is adjusted manually

by dividing 10 when the validation error rate stops decreas-

ing with the current learning rate. The network converges
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Figure 1. Overview of the proposed progressive interactional object parsing method based on LSTM network. We note that for the first

iteration B
(1)
t

(output from the first LSTM node), the inferred position for hand is accurate (since it is easy to detect hand); however,

the other two objects (ham and knife) is NOT accurately localized (this is because of the occlusion, illumination variation and less-

discriminative appearance of these objects). After several iterations (B
(2)
t

and B
(3)
t

) the refined locations of these objects are getting more

accurate, thanks to the proposed progressively refinement scheme. In this example, H = M = 3.

roughly with 30 epochs, and each epoch contains 10000 it-

erations. It takes around 10 days on one NVIDIA Tesla K40
GPU. During testing, parsing each frame requires around 2
seconds.

4. Fine-grained Action Detection

We develop a fine-grained action detection method based

on the interactional parsing results. A video is divided uni-

formly by overlapped segments of length 30, 60, 90 frames

(detection windows). Temporal overlappings are of 10,

20 and 30 frames. Within each video, we pool the mo-

tion features within each parsed body part/object to achieve

part/object specific motion representation, similar to the

scheme used in [18]. It has been widely proved in previ-

ous works that this type of object-specific motion feature

pooling method can significantly outperform global mo-

tion pooling method. This is because object/body part cen-

tric motion pooling is less ambiguous than global pooling

method.

The local motion features we use are the improved dense

motion trajectories [31]. For each trajectory, we extract his-

togram of oriented gradient (HoG), motion boundary his-

togram (MBH), histogram of optical flow (HoF) and trajec-

tory shape (TS) descriptors as in [30]. We perform PCA

to reduce the dimension of each descriptor by half. These

features are encoded using improved Fisher vector with the

number of clusters K = 128. We also apply a second PCA

to reduce the overall Fisher vector encoding by a factor of

0.1 (i.e., keep around 90% energy). Assume that the dimen-

sionality of Fisher vector is d, number of objects of interest

is M , then a video segment i is represented by a d × M

dimensional vector xi. We then use linear SVM learned on

this segment level representation to detect the action label

of every video segment. The inferred labels are averaged

over three detection window scales.

5. Experiments

Our experiments are focused on two parts. On the

one hand, we compare our fine-grained interactional objec-

t parsing result to that of the state-of-the-art object track-

ing algorithms. On the other hand, we show the fine-

grained action detection performance based on our pro-

posed framework. Similar to the work [18], all experiments

are performed on two challenging interaction-intensive fine-

grained action benchmarks as follows.

1) ICPR 2012 Kitchen Scene Context based Gesture

Recognition dataset (KSCGR) [2]. There are five candi-

date cooking menus cooked by five different actors. Each of

the videos are from 5 to 10 minutes long containing 9, 000
to 18, 000 frames. The dataset contains eight types of cook-

ing motions such as baking, boiling, breaking, etc. Follow-

ing [18], the objects of interest (which we parse) are fry pan,

oil bottle, salt bottle, bowl, knife, spoon, chopstick, spatula,

chopping board, egg and ham. For KSCGR dataset, the e-
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valuation metric of action detection is the mean recognition

F -score over all action categories.

2) MPII Fine-grained Kitchen Activity Dataset (MPI-

I) [22]. It contains 65 different cooking activities, such as

cut slices, pour spice, etc., recorded from 12 participants.

In total there are 44 videos with a total length of more than

8 hours or 881, 755 frames. The dataset contains a total of

5, 609 annotations of 65 activity categories. Following [18],

the objects that we parse are bottle, bowl, bread, charg-

er, electric range, cup, cupboard, chopping board, dough,

drawer, egg, lid, food wrapper, knife, pan, slicer, plate, pot,

blender, seasoning bottle, bottle rack, juicers, tin, tin open-

er and towel. For MPII dataset, we follow experimental

configuration and evaluation metric defined by the dataset

developer [22]. In brief, leave-one-person-out cross valida-

tion is used.

For object/body part annotations, we obtained from the

authors of [18] around 20000 frames of annotations from

the training data. These annotations are used to train all

comparing detectors/trackers.

5.1. Results on Interactional Object Parsing

We use the same annotated testing sequences as in [18]

on the testing set of KSCGR to evaluate the interactional

object parsing performance. These sequences are manually

annotated with object positions (bounding boxes). Accord-

ing to [18], these selected testing sequences are represen-

tative sequences which contain all types of human object

interactions with frequent occlusions. It is a good test bed

for evaluating our interactional object parsing algorithm as

well as other object tracking algorithms.

The proposed interactional object parsing method is

compared with the state-of-the-art tracker specifically de-

signed for fine-grained action detection (IAT) [18] (which

jointly tracks hand and objects). According to [18], we use

the same measuring metrics as follows:

1. Average Distance Error (Err.): the average distance be-

tween the center of the identified bounding box and the

center of the ground-truth bounding box;

2. Precision (Prec.): the average percentage of frames for

which the overlap between the identified bounding box

and the ground-truth bounding box is at least 50 per-

cent.

Table 1 compares the measurements averaged over al-

l target objects and over all frames in the video sequence.

Figure 2 shows several examples of the tracked/parsed re-

sults using IAT and our algorithm, for qualitative compar-

ison. To reveal the working mechanism of our progres-

sive object parsing refinement algorithm, Figure 3 plots the

change of object localization error with respect to the num-

ber of LSTM iteration steps. In the meantime, in Figure 4

Sequence
IAT Ours

Err. Prec. Err. Prec.

baking (3786) 28.9 0.56 24.5 0.60

boiling (3320) 25.5 0.59 25.0 0.61

breaking (299) 20.4 0.64 17.3 0.72

cutting (1373) 24.8 0.66 20.1 0.70

mixing (705) 17.9 0.68 17.4 0.69

peeling (3241) 30.1 0.62 28.9 0.64

seasoning (303) 12.3 0.69 13.9 0.66

turning (3402) 15.4 0.71 15.0 0.73
Table 1. Comparisons of the object localization performances of

various object parsing or tracking methods. Numbers of frames

are indicated in brackets.

we also show several examples of the refinement process of

our interactional object parsing algorithm.

We make several key observations from the results in Ta-

ble 1 and Figure 2, 3, 4. First, our interactional object pars-

ing method outperforms prior art (although the IAT track-

er also performs quite well in most of the cases). This is

because that progressively refining the interactional object

detection results can break the difficult parsing task down

to easier steps. Quantitatively, Figure 3 shows that the av-

erage object localization (parsing) error decreases when the

refinement process goes deeper. We also note from Fig-

ure 4 that easy object such as hand is first localized and

then the hand position provides rich contextual information

to localize other interacting objects such bowl, knife and

chopsticks, i.e., following an easy-to-difficult manner. Sec-

ond, we note that for some action sequences such as cut-

ting, our method outperforms the IAT significantly (see Ta-

ble 1). This is because that it is usually not easy to local-

ize the knife when it is partly occluded by the operating

hand, i.e., the knife’s color feature often confuses with the

background. In contrast, our algorithm first localizes the

hand and then uses the contextual information to localize

the knife, therefore the parsing accuracy is higher. This

could be also observed from the 8-th and 10-th examples

in Figure 2. We see that for the IAT tracker, when the object

knife and chopstick are occluded, it easily gets lost during

tracking. In contrast, since our algorithm well models the

contextual information between hand and the operated ob-

jects, this issue could be alleviated. Third, in some cases

when there exist ambiguous objects, both the IAT algorith-

m and our proposed algorithm could fail. For example, our

algorithm also mistakes fry pan handler as spoon in the last

example of Figure 2. This is because the appearances of

both objects are quite similar and their spatial relationships

with respect to hand are also similar during certain action.

We also compare our algorithm with the R-CNN and fast

R-CNN algorithms in our off-line experiment. Results show

that R-CNN and fast R-CNN perform worse than our pro-

posed method, provided that all the experimental settings
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hand spoon knife chopstick spatula board 

1 2 3 4 

5 6 7 8 

9 10 11 12 

Figure 2. Twelve examples of the interactional object parsing results of our method (solid line bounding boxes) and the IAT method (dashed

line bounding boxes).

hand bowl knife chopstick spatula board 

l=2 

l=3 

l=1 

Figure 4. Four examples of the progressive interactional object parsing refinement process of our algorithm. Each column corresponds to

a frame for parsing. From top to down, it shows the refinement process, i.e., l = 1, 2, 3. Note that hand is always easily localized first and

other objects which have interaction with hands will obtain more and more precise localization after several LSTM iterations.

are the same. This is due to two reasons: 1) R-CNN based

methods do not consider contextual information between

objects; 2) Some objects in the fine-grained video are too

small or of strange aspect ratio so that R-CNN based meth-

ods can not well handle it; in contrast, our proposed method

uses a progressive easy-to-difficult detection scheme so that

it can deal with these difficult cases. Also, our off-line ex-

periment shows that jointly applying LSTM on consecutive

frames (tracking) performs better than simply applying L-

STM on individual frames.
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Figure 3. Illustration of the interactional object parsing error de-

creasing procedure using our iterative refinement method.

Method Doman and

Kuai [2]

IDT-

IFV-

SVM

IAT-

Action [18]

Ours

Mean F-score 0.74 0.76 0.79 0.84

Table 2. Detection performance (mean F-score for all classes)

comparisons for KSCGR dataset.

Approach Prec. Recall AP

Rohrbach et al. [22] 19.8 40.2 45.0

IDT-IFV-SVM 24.5 46.8 50.7

IAT-Action [18] 28.6 48.2 54.3

Ours 34.8 51.7 58.9

Table 3. Detection performance comparisons for MPII dataset.

5.2. Results on Finegrained Action Detection

We apply the object-centric motion feature pooling in-

troduced in Section 4 for action detection on the two bench-

mark fine-grained action datasets. We compare our algo-

rithm with the state-of-the-art algorithms on fine-grained

action detection. The comparing algorithms include: 1) the

baseline globally pooled Fisher vector representation with

linear SVM detector (the parameters of motion feature de-

scriptors, Fisher vector construction [21] and temporal slid-

ing window are exactly the same as our proposed algorithm,

denoted as IDT-IFV-SVM); and 2) the multiple-granularity

based fine-grained action detection algorithm (denoted as

IAT-Action) [18]. On the KSCGR dataset, we also com-

pare our method to the best reported result in the contest by

Doman and Kuai [2]. Comparison results are shown in Ta-

ble 2. Detection mean F-scores are reported on the KSCGR

dataset. On the MPII dataset, we also compare our method

to the best reported result in [22] by Rohrbach et al. Multi-

class precision (Pr) and recall (Rc). The mean value of s-

ingle class average precision (AP) are reported in Table 3.

We note that using the object-centric motion pooling

method based action detection framework (including ours

and IAT-Action) boosts the detection performances, com-

pared with using the traditional global pooling scheme. This

demonstrates that the object and body part parsing algorith-

m is precise enough to achieve high performance object-

centric motion feature pooling and representation. More-

over, our proposed fine-grained action detection framework

also outperforms the state-of-the-art IAT-Action method on

both benchmarks. This is because our algorithm performs

better object parsing and the pooled action representation is

therefore more discriminative.

6. Conclusions

In this work, we proposed a novel progressive interac-

tional object parsing method based on the recurrent neural

network (LSTM), for the application of fine-grained action

analysis. Experiments on two benchmark datasets demon-

strated good parsing accuracy of our algorithm compared

with prior art. Based on the good parsing results, we al-

so achieved the state-of-the-art fine-grained action detection

performances on those benchmarks.
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