
Gradual Union Types

Complete Definition and Proofs

Technical Report TR/DCC-2017-1
University of Chile

June 2017

Mat́ıas Toro and Éric Tanter

PLEIAD Laboratory
Computer Science Department (DCC)

University of Chile

Abstract. This report presents the complete definitions and proofs of
GTFL⊕, a gradual language that combines both gradual unions and
the traditional, totally-unknown type. Gradual union types combine the
benefits of both tagged and untagged unions, with added static flexibil-
ity backed by runtime checks. Compared to a standard gradually-typed
language with only the totally-unknown type ?, the resulting design is
stricter, allowing more blatantly wrong programs to be statically re-
jected. We also present a correct compilation scheme to GTFL⊕⇒, an
internal language with support to threesomes, a space-efficient represen-
tation for casts.

Table of Contents

1 Overview . 2
2 The Static Language: STFL . 2
3 GTFL⊕: Definitions . 7

3.1 Meaning of Gradual Unions . 7
3.1.1 Step 1: The Classic Interpretation . 7
3.1.2 Step 2: The Classic Set Interpretation 9
3.1.3 Step 3: The Union Interpretation . 9
3.1.4 Step 4: The Stratified Interpretation . 10

3.2 Static Semantics of GTFL⊕ . 11
3.2.1 Consistent Predicates and Functions . 11
3.2.2 Inductive definitions . 14
3.2.3 Examples of type derivations . 15

3.3 Dynamic Semantics of GTFL⊕ . 15
4 Properties of GTFL⊕ . 17

4.1 Static Gradual Guarantee . 17
4.2 Type Safety . 22

4.3 Dynamic Gradual Guarantee . 25
5 Compiling GTFL⊕ to Threesomes . 29

5.1 Intermediate language: GTFL⊕⇒ . 29
5.2 Cast Insertion . 30
5.3 Correctness of the Translational Semantics 33

1 Overview

In this document we present the full definitions and proofs of the static language
STFL, the gradual language GTFL⊕ and the intermediate language GTFL⊕⇒.
Section 2 presents the full definition and proofs of the static language STFL: the
static semantics, the dynamic semantics and its properties. Section 3 presents
the full definition and proofs of GTFL⊕: the Galois connections are presented
in Section 3.1 , the static semantics in Section 3.2, and the dynamic semantics
in Section 3.3 Section 4 presents properties of GTFL⊕ and their proofs: the
static gradual guarantee in Section 4.1, type safety in Section 4.2 and finally the
dynamic gradual guarantee in Section 4.3. Section 5 presents the full definition
and proofs of the compilation of GTFL⊕ to a threesome calculus. First we present
the intermediate language GTFL⊕⇒ in Section 5.1. Section 5.2 presents the cast
insertion rules, and Section 5.3 presents the full formalization of the correctness
of the translational semantics.

2 The Static Language: STFL

In this section we present the full definition of STFL. Figure 1 presents the
syntax and type system, and Figure 2 presents the dynamic semantics. The rest
of this section present the type safety proof of STFL.

Lemma 1 (Substitution). If Γ, x : T1 ` t : T and Γ ` v : T ′1 such that
T ′1 = T1, then Γ ` [v/x]t : T ′ such that T ′ = T .

Proof. By induction on the derivation of Γ, x : T1 ` t : T .

Proposition 1 (−→ is well defined). If Γ ` t : T , t −→ t′ then,
Γ ` t′ : T ′, where T ′ = T .

Proof. Case (T+). Then t = b1 + b2 and

(T+)

(T+)
D1

Γ ` n1 : T1
(T+)

D2

Γ ` n2 : T2 T1 = Int T2 = Int

Γ ` n1 + n2 : Int

Then
n1 + n2 −→ (n1 J+K n2)

But Γ ` (n1 J+K n2) : Int and the result holds.

T ∈ Type, x ∈ Var, t ∈ Term, Γ ∈ Var
fin
⇀ Type

T ::= Bool | Int | T → T (types)
v ::= n | b | (λx : T.t) (values)
t ::= v | x | t t | t+ t | if t then t else t | t :: T (terms)

(Tx)
x : T ∈ Γ
Γ ` x : T

(Tb)
Γ ` b : Bool

(Tn)
Γ ` n : Int

(Tλ)
Γ, x : T1 ` t : T2

Γ ;Σ ` (λx : T1.t) : T1 → T2

(T::)
Γ ` t : T T = T1

Γ ` (t :: T1) : T1

(Tapp)

Γ ` t1 : T1

Γ ` t2 : T2 T2 = dom(T1)

Γ ` t1 t2 : cod(T1)
(T+)

Γ ` t1 : T1 Γ ` t2 : T2

T1 = Int T2 = Int

Γ ` t1 + t2 : Int

(Tif)
Γ ` t1 : T1 T1 = Bool Γ ` t2 : T2 Γ ` t3 : T3

Γ ` if t1 then t2 else t3 : equate(T2, T3)

dom : Type⇀ Type
dom(T1 → T2) = T1

dom(T) undefined o.w.

cod : Type⇀ Type
cod(T1 → T2) = T2

cod(T) undefined o.w.

equate : Type2 ⇀ Type
equate(T, T) = T
equate(T1, T2) undefined o.w.

Fig. 1. STFL: Syntax and Type System

Case (Tapp). Then t = (λx : T11.t1) v, suppose Γ ` (λx : T11.t1) : T1, and
dom(T1) = T11 and cod(T1) = T12. Therefore

(Tapp)

(Tλ)

D1

Γ, x : T11 ` t : T12
Γ ` (λx : T11.t1) : T11 −→ T12
D2

Γ ` v : T2 T2 = T11

Γ ` (λx : T11.t1) v : T12

Then
(λx : T11.t1) v −→ [v/x]t1

By Lemma 1, Γ ` [v/x]t1 : T ′12, where T ′12 = T12, and the result holds.

Case (Tif-true). Then t = if true then t1 else t2 and

(Sif)

D0

Γ ` true : Bool

D1

Γ ` t1 : T1

D2

Γ ` t2 : T2
Γ ` if true then t1 else t2 : equate(T1, T2)

Then if
if true then t1 else t2 −→ t1

v ::= n | λx.t | true | false | v :: T (values)
f ::= � + t | v + � | � t | v � | � :: T (frames)

if � then t else t

t −→ t Notions of Reduction

n1 + n2 −→ n3 where n3 = n1 J+K n2

(λx.t) v −→ ([v/x]t)

if true then t1 else t2 −→ t1

if false then t1 else t2 −→ t2
v :: T −→ v

t 7−→ t Reduction

t1 −→ t2
t1 7−→ t2

t1 7−→ t2
f [t1] 7−→ f [t2]

Fig. 2. STFL: Dynamic Semantics

But
D1

Γ ` t1 : T1

and by definition of the equate operator, T1 = equate(T1, T2) and the result
holds.

Case (Tif-false). Analogous to case (if-true).

Case (T::). Then t = v :: T and

(T::)

D
Γ ` v : T1 T1 = T

Γ ` v :: T : T

Then
v :: T −→ v

But T1 = T and the result holds.

Proposition 2 (Canonical forms). Consider a value v such that · ` v : T .
Then:

1. If T = Bool then v = b for some b.
2. If T = Int then v = n for some n.
3. If T = T1 −→ T2 then v = (λx : T1.t2) for some t2.

Proof. By inspection of the type derivation rules.

Lemma 2. Consider frame f , and term t1, such as Γ ` t1 : T1 and Γ ` f [t1] :
T . Consider term t′1, such that Γ ` t′1 : T ′1 and T ′1 = T1. Then Γ ` f [t′1] : T ′

such that T ′ = T .

Proof. By induction on the derivation of f [t1].

Case (� t). Then f = � t2, f [t1] = t1 t2 and

(Tapp)
Γ ` t1 : T1 Γ ` t2 : T2 T2 = dom(T1)

Γ ` t1 t2 : cod(T1)

then f [t′1] = t′1 t2. But as T ′1 = T1 then cod(T ′1) = cod(T1) and dom(T1) =
dom(T ′1). Therefore

(Tapp)
Γ ` t1 : T ′1 Γ ` t2 : T2 T2 = dom(T ′1)

Γ ` t′1 t2 : cod(T ′1)

and the result holds.

Case (v �,� + t, v + �, if � then t else t). Analogous to (� t)

Proposition 3 (7−→ is well defined). If Γ ` t : T , t 7−→ t′ then, Γ ` t′ : T ′,
where T ′ = T .

Proof. By induction on the structure of a derivation of t 7−→ t′.

Case (−→). Then t −→ t′. By well-definedeness of −→ (Prop 1),
Γ ` t′ : T ′, where T ′ = T , and the result holds immediately.

Case (f�). Then t = f [t1], Γ ` t1 : T1 and t1 −→ t2. By induction hypothesis
Γ ` t2 : T2 where T2 = T1. By Lemma 2, Γ ` f [t2] : T ′ such that T ′ = T , and
the result holds immediatly.

Proposition 4 (Safety). If Γ ` t : T , then one of the following is true:

– t is a value v;
– t 7−→ t′, and Γ ` t′ : T ′ where T ′ = T ,

Proof. By induction on the structure of t.

Case (Tb, Tn, Tλ, Tl). t is a value.

Case (T+). Then t = t1 + t2 and

(T+)
Γ ` t1 : T1 Γ ` t2 : T2 T1 = Int T2 = Int

Γ ` t1 + t2 : Int

By induction hypotheses, one of the following holds:

1. t1 is a value. Then by induction on t2 one of the following holds:

(a) t2 is a value. Then by Canonical Forms (Lemma 2)

(R→)
t −→ t′

t 7−→ t′

and by Prop 1, Γ ` t′ : T ′, where T ′ = T , and therefore the result holds.
(b) t2 7−→ t′2. Then by induction hypothesis, Γ ` t2 : T ′2, where T ′2 = T2.

Then by (Tf), using f = v + �, t 7−→ t1 + t′2 and by Lemma 2, Γ `
t1 + t′2 : Int and the result holds.

2. t1 7−→ t′1. Then by induction hypotheses, Γ ′ ` t′1 : Int. Then by (Tf), using
f = � + t2, t 7−→ t′1 + t2 and by Lemma 2, Γ ` t′1 + t2 : Int and the result
holds.

Case (Sapp). Then t = t1 t2, T = T12 and

(Tapp)
Γ ` t1 : T1 Γ ` t2 : T2 T2 = dom(T1)

Γ ` t1 t2 : cod(T1)

By induction hypotheses, one of the following holds:

1. t1 is a value. Then by Canonical Forms (Lemma 2), and induction on t2 one
of the following holds:
(a) t2 is a value. Then by Canonical Forms (Lemma 2)

(R→)
t −→ t′

t 7−→ t′

and by Prop 1 Γ ` t′ : T ′, where T ′ = T , and therefore the result holds.
(b) t2 7−→ t′2. Then by induction hypothesis, Γ ` t2 : T ′2, where T ′2 = T2.

Then by (Tf), using f = v �, t 7−→ t1 t
′
2 and by Lemma 2, Γ ` t1 t′2 : T ′12

where T ′12 = cod(T1) and the result holds.
2. t1 7−→ t′1. Then by induction hypotheses, Γ ′ ` t′1 : T ′11 −→ T ′12 where
T ′11 −→ T ′12 = T1, . Then by (Tf), using f = � t2, t 7−→ t′1 t2 and by
Lemma 2, Γ ` t′1 t2 : T ′12 where T ′12 = cod(T1) and the result holds.

Case (Tif). Then t = if t1 then t2 else t3 and

(Tif)
Γ ` t1 : T1 T1 = Bool Γ ` t2 : T2 Γ ` t3 : T3

Γ ` if t1 then t2 else t3 : equate(T2, T3)

By induction hypotheses, one of the following holds:

1. t1 is a value. Then by Canonical Forms (Lemma 2)

(R→)
t −→ t′

t 7−→ t′

and by Prop 1, Γ ` t′ : T ′, where T ′ = T , and therefore the result holds.
2. t1 7−→ t′1. Then by induction hypothesis, Γ ` t′1 : T ′1, where T ′1 = T1.

Therefore T ′1 = Bool. Then by (Tf), using f = if � then t else t, t 7−→
if t′1 then t2 else t3 and by Lemma 2, Γ ` if t′1 then t2 else t3 : T ′ where
T ′ = equate(T2, T3) and the result holds.

Case (T::). Then t = t1 :: T2 and

(T::)
Γ ` t1 : T1 T1 = T2

Γ ` t1 :: T2 : T2

By induction hypotheses, one of the following holds:

1. t1 is a value. Then

(R→)
t −→ t′

t 7−→ t′

and by Prop 1, Γ ` t′ : T ′, where T ′ = T , and therefore the result holds.
2. t1 7−→ t′1. Then by induction hypothesis, Γ ` t′1 : T ′1, where T ′1 = T1. Then

by (Tf), using f = � :: T , t 7−→ t′1 :: T2, but Γ ` t′1 :: T2 : T2 and the result
holds.

3 GTFL⊕: Definitions

Section 3.1 presents the Galois connections along its soundness and optimality
proofs. Section 3.2 presents the static semantics of GTFL⊕. Finally, Section 3.3
presents the dynamic semantics of GTFL⊕.

3.1 Meaning of Gradual Unions

This section presents the different steps taken to derive the Galois connection.
Section 3.1.1 presents the classic interpretation which interprets the unknown
type ?. Section 3.1.2 presents the powerset lifting of the classic interpretation.
Section 3.1.3 presents the union interpretation which add support for gradual
unions among gradual types that include the unknown type. Finally in Sec-
tion 3.1.4 we combine the classic set interpretation and the union interpretation,
named the stratified interpretation.

3.1.1 Step 1: The Classic Interpretation We start by presenting the Ga-
lois connection for gradual types made up with the (nullary constructor) ?, here
denoted GType.

G ∈ GType

G ::= ? | Bool | Int | G→ G

The meaning of these gradual types is standard, and defined through con-
cretization by Garcia et al. [2] as follows:

Definition 1 (GType Concretization). γ? : GType→ P(Type)

γ?(Int) = { Int } γ?(Bool) = {Bool } γ?(?) = Type

γ?(G1 → G2) = {T1 → T2 | T1 ∈ γ?(G1) ∧ T2 ∈ γ?(G2) }

Definition 2 (GType Precision). G1 is less imprecise than G2, notation G1 v G2,
if and only if γ?(G1) ⊆ γ?(G2).

Definition 3 (GType Abstraction). α? : P(Type) ⇀ GType

α?({T }) = T α?(˚�T1 → T2) = α?(ÛT1)→ α?(ÛT2) α?(∅) = undefined

α?(ÛT) = ? otherwise

Proposition 5 (α? is Sound and Optimal). If ÛT is not empty, then

(a) ÛT ⊆ γ?(α?(ÛT)). (b) ÛT ⊆ γ?(G)⇒ α?(ÛT) v G.

Proof. We proceed by induction on the structure of U . Let us start by proving
a).

Case ({ Int }). Then α?({ Int }) = Int. But γ?(Int) = { Int } and the result holds.

Case ({Bool }). Analogous to case { Int }.

Case (ÛT1 ı→ ÛT2). Then α?(ÛT1 ı→ ÛT2) = α?(ÛT1) → α?(ÛT2). But by definition of

γ?, γ?(α?(ÛT1) → α?(ÛT2)) = γ?(α?(ÛT1)) ı→ γ?(α?(ÛT2)). By induction hypotheses,ÛT1 ⊆ γ?(α?(ÛT1)) and ÛT2 ⊆ γ?(α?(ÛT2)), therefore ÛT1 ı→ ÛT2 ⊆ γ?(α?(ÛT1)→ α?(ÛT2))
and the result holds.

Case (∅). This case cannot happen because α? is restricted to non-empty sets
of gradual intermediate types.

Case (ÛT). Then α?(ÛT) = ? and threfore γ?(α?(ÛT)) = Type, but ÛT ⊆ Type and
the result holds.

Now let us prove b).

Case (Int). Trivial because γ?(Int) = { Int }, and α⊕({ Int }) = Int.

Case (Bool). Analogous to case Int.

Case (G1 → G2). We have to prove that γ?(α?(ÛT)) ⊆ γ?(G1 → G2). But

we know that ÛT ⊆ γ?(G1 → G2) = γ?(G1)ı→γ?(G2), therefore ÛT has the
form {Ti1 → Ti2 }, for some {Ti1 } ⊆ γ?(G1) and {Ti2 } ⊆ γ?(G2). But by
definition of α?, α?({Ti1 → Ti2 }) = α?({Ti1 }) → α?({Ti2 }) and therefore
γ?(α?({Ti1 }) → α?({Ti2 })) = γ?(α?({Ti1 }))ı→γ?α?({Ti2 }). But by induction
hypotheses γ?(α?({Ti1 })) ⊆ γ?(G1) and γ?(α?({Ti2 })) ⊆ γ?(G2) and the result
holds.

Case (?). Then we have to prove that γ?(α?(ÛT)) ⊆ γ?(?) = Type, but this is
always true and the result holds immediately.

3.1.2 Step 2: The Classic Set Interpretation The powerset lifting of γ?,
denoted Ùγ?, is simply the piecewise application of γ?:

Definition 4 (Pfin(GType) Concretization). Ùγ? : Pfin(GType)→ Pfin(P(Type))Ùγ?(ÛG) = { γ?(G) | G ∈ ÛG }
Similarly, the powerset lifting of the abstraction function α?, denoted ıα?, is

the union of the piecewise application of α?:

Definition 5 (Pfin(GType) Abstraction). Ùα? : Pfin(P(Type)) ⇀ Pfin(GType)Ùα?(∅) = undefined Ùα?(
ÙÙT) =

⋃ÛT∈ÛÛT α?(ÛT)

Proposition 6 (Ùα? is Sound and Optimal). If
ÙÙT is not empty, then

a)
ÙÙT ⊆ Ùγ?(Ùα?(

ÙÙT)). b)
ÙÙT ⊆ Ùγ?(ÛG)⇒ Ùα?(

ÙÙT) v ÛG.
Proof. We start proving a). By definition of ıα?, ıα?(

ÙÙT) =
⋃ÛT∈ÛÛT α?(ÛT). And by

definition of Ùγ?, Ùγ?(ıα?(
ÙÙT)) = { γ?(α?(ÛT)) | ÛT ∈ ÙÙT }. We have to prove that ∀ ÛT ∈ÙÙT, ∃ ÛT ′ ∈ Ùγ?(ıα?(

ÙÙT)) such that ÛT ⊆ ÛT ′. But we now that α? is sound therefore

∀ ÛT ∈ ÙÙT, ÛT ⊆ γ?(α?(ÛT)), and the result holds immediately.

Now we prove b). We know that ∀ ÛT ∈ ÙÙT, ∃ ÛT ′ ∈ Ùγ?(ÙG) such that ÛT ⊆ ÛT ′. We

have to prove that Ùγ?(ıα?(
ÙÙT)) ⊆ Ùγ?(ÙG). But Ùγ?(ıα?(

ÙÙT)) = { γ?(α?(ÛT)) | ÛT ∈ ÙÙT }.
But as α? is optimal, ∀ non empty ÛT , if ÛT ⊆ G then γ?(α?(ÛT)) ⊆ γ?(G). Then

we know that ∀ ÛT ∈ ÙÙT, γ?(α?(ÛT)) ⊆ ÛT ′, but ÛT ′ ∈ γ?(ÙG) and the result holds.

3.1.3 Step 3: The Union Interpretation Now that we have defined the
meaning of gradual types formed with the unknown type ?, as well as the meaning
of gradual types formed with gradual unions ⊕, we turn to defining the meaning
of gradual types in GTFL⊕, which combine both constructors, denoted UType:

U ∈ UType

U ::= ? | U ⊕ U | Bool | Int | U → U (gradual types)

We define a Galois connection between UType and Pfin(GType) as follows:

Definition 6 (UType Concretization). γ⊕ : UType→ Pfin(GType)

γ⊕(Int) = { Int } γ⊕(Bool) = {Bool } γ⊕(?) = { ? }

γ⊕(U1 → U2) = {T1 → T2 | T1 ∈ γ⊕(U1) ∧ T2 ∈ γ⊕(U2) }

γ⊕(U1 ⊕ U2) = γ⊕(U1) ∪ γ⊕(U2)

Definition 7 (UType Abstraction). α⊕ : Pfin(GType) ⇀ UType

α⊕(ÛG) = ⊕ÛG if ÛG 6= ∅
Proposition 7 (α⊕ is Sound and Optimal). If ÛG is not empty, then

a) ÛG ⊆ γ⊕(α⊕(ÛG)). b) ÛG ⊆ γ⊕(U)⇒ α⊕(ÛG) v U.

Proof. We proceed by induction on the structure of U . Let us start by proving
a).

Case ({ Int }). Then α⊕({ Int }) = Int. But γ⊕(Int) = { Int } and the result holds.

Case ({Bool }). Analogous to case { Int }.

Case ({ ? }). Analogous to case { Int }.

Case (∅). This case cannot happen because α⊕ is restricted to non-empty sets
of gradual intermediate types.

Case (ÛT1 ∪ ÛT2). Then α⊕(ÛT1 ∪ ÛT2) = α⊕(ÛT1)⊕ α⊕(ÛT2). But by definition of γ⊕,

γ⊕(α⊕(ÛT1) ⊕ α⊕(ÛT2)) = γ⊕(α⊕(ÛT1)) ∪ γ⊕(α⊕(ÛT2)). By induction hypotheses,ÛT1 ⊆ γ⊕(α⊕(ÛT1)) and ÛT2 ⊆ γ⊕(α⊕(ÛT2)), therefore ÛT1∪ ÛT2 ⊆ γ⊕(α⊕(ÛT1)⊕α⊕(ÛT2))
and the result holds.

Now let us prove b).

Case (Int). Trivial because γ⊕(Int) = { Int }, and α⊕({ Int }) = Int.

Case (Bool). Analogous to case Int.

Case (?). Analogous to case ?.

Case (U1 → U2). We have to prove that γ⊕(α⊕(ÙG)) ⊆ γ⊕(U1 → U2). But

γ⊕(α⊕(ÙG)) = γ⊕(⊕ÙG) = ÙG and the result follows.

Case (U1 ⊕ U2). Then γ⊕(U1 ⊕ U2) = γ⊕(U1) ∪ γ⊕(U2) and G = G1 ∪ G2 for
some G1 and G2 such that G1 ⊆ γ⊕(U1) and G2 ⊆ γ⊕(U2). By definition of α⊕,
α⊕(G) = α⊕(G1) ∪ α⊕(G2). By induction hypotheses, γ⊕(α⊕(G1)) ⊆ γ⊕(U1)
and γ⊕(α⊕(G2)) ⊆ γ⊕(U2), therefore as γ⊕(G) = γ⊕(α⊕(G1)) ∪ γ⊕(α⊕(G2)),
then γ⊕(G) ⊆ γ⊕(U1) ∪ γ⊕(U2) = γ⊕(U) and the result holds.

3.1.4 Step 4: The Stratified Interpretation We can now compose the two
Galois connections in order to define a stratified interpretation for UType in
terms of sets of sets of static types.

Definition 8 (Concretization). γ : UType→ Pfin(P(Type)), γ = Ùγ? ◦ γ⊕
Definition 9 (Abstraction). α : Pfin(P(Type)) ⇀ UType, α = α⊕ ◦ Ùα?

U ∈ UType, x ∈ Var, t̃ ∈ UTerm, Γ ∈ Var
fin
⇀ UType

U ::= U ⊕ U | Int | Bool | U → U (types)

v ::= n | true | false | (λx : U.t̃) (values)

t̃ ::= v | x | t̃ t̃ | t̃+ t̃ | if t̃ then t̃ else t̃ | t̃ :: U (terms)

(Ux)
x : U ∈ Γ
Γ ` x : U

(Ub)
Γ ` b : Bool

(Un)
Γ ` n : Int

(Uλ)
Γ, x : U1 ` t̃ : U2

Γ ` (λx : U1.t̃) : U1 → U2

(U::)
Γ ` t̃ : U U ∼ U1

Γ ` (t̃ :: U1) : U1

(Uapp)

Γ ` t̃1 : U1

Γ ` t̃2 : U2 U2 ∼fidom(U1)

Γ ` t̃1 t̃2 : ›cod(U1)
(U+)

Γ ` t̃1 : U1 Γ ` t̃2 : U2

U1 ∼ Int U2 ∼ Int

Γ ` t̃1 + t̃2 : Int

(U if)
Γ ` t̃1 : U1 U1 ∼ Bool Γ ` t̃2 : U2 Γ ` t̃3 : U3

Γ ` if t̃1 then t̃2 else t̃3 : U2 u U3fidom : UType⇀ UTypefidom(U) = α(d̄om(γ(U)))

›cod : UType⇀ UType›cod(U) = α(ĉod(γ(U)))

Fig. 3. GTFL⊕: Syntax and Type System

Because the composition of two Galois connection is a Galois connection, the
stratified interpretation 〈γ, α〉 is a Galois connection.

Proposition 8 (α is Sound and Optimal). If
ÙÙT is not empty, then

a)
ÙÙT ⊆ γ(α(

ÙÙT)). b)
ÙÙT ⊆ γ(U)⇒ α(

ÙÙT) v U.

Proof. By propositions 7 and 6 and composition of sound and optimal abstrac-
tions.

3.2 Static Semantics of GTFL⊕

This section presents the full static semantics of GTFL⊕ in Figure 3. Sec-
tion 3.2.1, formally justifies the compositional lifting of predicates and functions.
Section 3.2.2 presents the inductive definitions. Finally, Section 3.2.3 presents
some type derivations examples.

3.2.1 Consistent Predicates and Functions We can base our liftings of
predicates and types on inclusion and pointwise application that are extended
to sets of sets.

Definition 10 (Predicate Lifting). P̃ (U1, U2) ⇐⇒ ∃T1 Û∈ γ(U1), T2 Û∈ γ(U2), P (T1, T2)

where Û∈ is the existential lifting of ∈ to powersets: T Û∈ ÙÙT ⇐⇒ ∃ÛT ∈ ÙÙT, T ∈ ÛT
Equivalently: P̃ (U1, U2) ⇐⇒ ∃ÛT1 ∈ γ(U1),∃ÛT2 ∈ γ(U2),∃T1 ∈ ÛT1, ∃T2 ∈ ÛT2, P (T1, T2)

The lifting of a predicate can also be defined in terms of each of the composed
interpretations:

The lifting of a type function f uses the pointwise application of f to all

elements of each subset of a powerset, which we note
ÙÙf .

Definition 11 (Function Lifting). f̃ = α ◦ ÙÙf ◦ γ
Definition 12 (Consistency). U1 ∼ U2 if and only if ∃ÛT1 ∈ γ(U1),∃T1 ∈ ÛT1, ∃ÛT2 ∈
γ(U2),∃T2 ∈ ÛT2, T1 = T2.

Proposition 9. P̃ (U1, U2) ⇐⇒ ∃G1 ∈ γ⊕(U1), ∃G2 ∈ γ⊕(U2), P̃?(G1, G2)

where P̃? is the predicate P lifted with γ?.

Proof. By definition of lifting predicates, ‹P (U1, U2) = ∃ ÛT1 ∈ γ(U1),∃T1 ∈ÛT1,∃ ÛT2 ∈ γ(U2),∃T2 ∈ ÛT2.P (T1, T2).

If we unfold ‹P?(G1, G2), then ∃G1 ∈ γ⊕(U1),∃G2 ∈ γ⊕(U2), ‹P?(G1, G2) ⇐⇒
∃G1 ∈ γ⊕(U1),∃G2 ∈ γ⊕(U2),∃T1 ∈ γ?(G1),∃T2 ∈ γ?(G2).P (T1, T2).

We start with direction⇒. As γ = Ùγ?◦γ⊕, then γ(U1) = Ùγ?(ÙG1) and γ(U2) =Ùγ?(ÙG2). As ÛT1 ∈ Ùγ?(ÙG1) then ÛT1 = γ?(G
′
1) for some G′1 ∈ ÙG1, and also ÛT2 ∈Ùγ?(ÙG2) then ÛT2 = γ?(G

′
2) for some G′2 ∈ ÙG2. Then we can always choose G1 = G′1

and G2 = G′2 and the result holds.
Then we prove direction ⇐. As G1 ∈ γ⊕(U1) and T1 ∈ γ?(G1), then its easy

to see that T1 ∈ (Ùγ? ◦γ⊕)(U1) as we know that G1 ∈ γ⊕(U1) and (Ùγ? ◦γ⊕)(U1) =⋃
G∈γ⊕(U1)

γ?(G). Analogous T2 ∈ (Ùγ? ◦ γ⊕)(U2), but γ = Ùγ? ◦ γ⊕ and the result

holds.

Proposition 10. U1 ∼ U2 ⇐⇒ ∃G1 ∈ γ⊕(U1), ∃G2 ∈ γ⊕(U2), G1 ∼? G2 where ∼? is
the classic consistency operator defined in [2].

Proof. Direct by proposition 9.

When a function f receives more than one argument, then the lifting is the
pointwise application of f to every combinations of elements of each set of each
powerset. Formally:

Definition 13 (Lifting of type functions). Let f : Typen ⇀ Type, then f̃ :
UTypen ⇀ UType is defined as:

f̃(U1, ..., U2) = α
(⋃
G1∈γ⊕(U1)

. . .
⋃

Gn∈γ⊕(Un)

⋃
T1∈γ?(G1)

. . .
⋃

Tn∈γ?(Gn)

f(T1, ..., Tn)
)

f̃(U1, ..., U2) = α
(
{{ f(T1, ..., Tn) | T1 ∈ γ?(G1), ..., Tn ∈ γ?(Gn) } |

G1 ∈ γ⊕(U1), ..., Gn ∈ γ⊕(Un)}
)

Note that we can also define the lifting of a function using its intermediate
lifting:

Proposition 11. Let f̃ : UTypen ⇀ UType and f̃? : UTypen ⇀ UType then,

f̃(U1, ..., U2) ⇐⇒

αn⊕ ◦
Ù‹f? ◦ γn⊕(U1, ..., Un) ≡ αn⊕

(
{ f̃?(G1, ..., Gn) | G1 ∈ γ⊕(U1), ..., Gn ∈ γ⊕(Un) }

)
where

Ù‹f? is the pointwise application of f̃?, and f̃? is the lifting of f in the
intermediate abstraction.

Proof. For simplicity, we will prove it for a function that receives one argument,
the general case is analogous.

f̃(U) = α ◦ ÙÙf ◦ γ(U)

= α⊕ ◦ Ùα? ◦
ÙÙf ◦Ùγ? ◦ γ⊕(U)

= α⊕ ◦ Ùα? ◦
ÙÙf ◦Ùγ?({G | G ∈ γ⊕(U)})

= α⊕ ◦ Ùα? ◦
ÙÙf({{T | T ∈ γ?(G) } | G ∈ γ⊕(U)})

= α⊕ ◦ Ùα?({{ f(T) | T ∈ γ?(G) } | G ∈ γ⊕(U)})
= α⊕({α?({ f(T) | T ∈ γ?(G) }) | G ∈ γ⊕(U)})

= α⊕({f̃(G) | G ∈ γ⊕(U)})

= α⊕ ◦ Ù‹f? ◦ γ⊕(U)

Proposition 12. Let F : Type ⇀ Type be a partial function, and define the
predicate P (T1, T2) ≡ T1 = F (T2). Then ‹P (U1, U2) implies U1 ∼ ‹F (U2).

Proof. Suppose ‹P (U1, U2). Then T1 = F (T2) for some

T1 ∈ ÛT1, ÛT1 ∈ γ(U1) and T2 ∈ ÛT2, ÛT2 ∈ γ(U2). Therefore F (T2) ∈ ÛTF , ÛTF ∈ ÙÙF (γ(U2))

and by Prop 8
ÙÙF (γ(U2)) ⊆ γ(α(

ÙÙF (γ(U2)))). But ‹F (U2) = α(
ÙÙF (γ(U2))), so

F (T2) ∈ ÛTF , ÛTF ∈ γ(α(
ÙÙF (γ(U2)))) = γ(‹F (U2)). Then by definition of consis-

tency, we can choose (T1, F (T2)) ∈ (ÛT1, ÛTF), (ÛT1, ÛTF),∈ γ(U1, ‹F (U2)) such that

T1 = F (T2), therefore U1 ∼ ‹F (U2).

Proposition 13. Let P (T1, T2) ≡ T1 = dom(T2). Then

U1 ∼fidom(U2) implies ‹P (U1, U2).

Proof. Suppose U1 ∼ fidom(U2). Then exists T1 ∈ ÛT1, ÛT1 ∈ γ(U1) and T2 ∈ÛT2, ÛT2 ∈ γ(fidom(U2)) such that T1 = T2, which implies that ∃T ′2 ∈ ÛT ′2, ÛT ′2 ∈
γ(G2), such that T2 = dom(T ′2), which is by definition ‹P (U1, U2).

Proposition 14. Let P (T1, T2) ≡ T1 = dom(T2). Then U1 ∼ fidom(U2) if and

only if ‹P (U1, U2).

Proof. Direct consequence of Prop. 12 and 13.

3.2.2 Inductive definitions This section presents inductive definitions of
some of the metafunctions presented in the paper.

Proposition 15.

U ∼ U1

U ∼ U1 ⊕ U2

U ∼ U2

U ∼ U1 ⊕ U2

U1 ∼ U
U1 ⊕ U2 ∼ U

U2 ∼ U
U1 ⊕ U2 ∼ U

U ∼ U ? ∼ U U ∼ ?

U21 ∼ U11 U12 ∼ U22

U11 → U12 ∼ U21 → U22

Proof. Straightforward from the definition of consistency.

Definition 14 (Gradual Meet). Let u : UType⇀ UType be defined as:

1. U u U = U
2. ? u U = U u ? = U

3. Uu(U1⊕U2) = (U1⊕U2)uU =

U u U1 if U u U2 is undefined

U u U2 if U u U1 is undefined

(U u U1)⊕ (U u U2) otherwise

.

4. (U11 → U12) u (U21 → U22) = (U11 u U21)→ (U12 u U22)
5. U1 u U2 is undefined otherwise.

Definition 15 (Equate lifting).‡equate(U1, U2) = U1 u U2 = α
(
{ÛT1 ∩ ÛT2 | ÛT1 ∈ γ(U1), ÛT2 ∈ γ(U2)}

)
=

α⊕
(
{‡equate?(G1, G2) | G1 ∈ γ⊕(U1), G2 ∈ γ⊕(U2)}

)
where ‡equate? is the lifting of the equate function in the intermediate ab-

straction (defined in [2]).

Proposition 16. u = α ◦˙̇equate ◦ γ
Proof. Direct using induction and the definition of meet as intersection of sets
of sets.

Proposition 17.

U v U ? v U
U1 v U3 U2 v U4

U1 → U2 v U3 → U4

U1 v U2 U1 v U3

U1 v U2 ⊕ U3

U1 v U3

U1 ⊕ U2 v U3

U2 v U3

U1 ⊕ U2 v U3

Proof. Direct using induction and the definition of the concretization function.

x : Int ` x : Int⊕ Bool x : Int ` 1 : Int Int⊕ Bool ∼ Int Int ∼ Int

x : Int ` (x+ 1) : Int

· ` (λx : Int.(x+ 1)) : (Int⊕ Bool)→ Int

x : Int ` x : Int⊕ Bool x : Int ` 1 : Int
Int⊕ Bool ∼ Int Int ∼ Int

x : Int ` (x+ 1) : Int

· ` (λx : Int.(x+ 1)) : (Int⊕ Bool)→ Int · ` 1 : Int Int ∼ Int⊕ Bool

((λx : Int.(x+ 1))1) : Int

x : Int ` x : Int⊕ Bool x : Int ` 1 : Int
Int⊕ Bool ∼ Int Int ∼ Int

x : Int ` (x+ 1) : Int

· ` (λx : Int.(x+ 1)) : (Int⊕ Bool)→ Int · ` true : Bool Bool ∼ Int⊕ Bool

((λx : Int.(x+ 1))true) : Int

x : Bool ` 1 : Int Int ∼ Int⊕ Bool

(x : Bool ` 1 :: Int⊕ Bool) : Int⊕ Bool

x : Bool ` false : Bool Bool ∼ Int⊕ Bool

(x : Bool ` false :: Int⊕ Bool) : Int⊕ Bool
x : Bool ` x : Bool Bool ∼ Bool Int⊕ Bool ∼ Int⊕ Bool Int⊕ Bool ∼ Int⊕ Bool

x : Bool ` (if x then (1 :: Int⊕ Bool) else (false :: Int⊕ Bool)) : Int⊕ Bool

· ` (λx : Bool.(if x then (1 :: Int⊕ Bool) else (false :: Int⊕ Bool))) : Bool→ (Int⊕ Bool)

Fig. 4. Examples of intrinsic type derivations

3.2.3 Examples of type derivations In this section we present some type
derivations examples in Figure 4.

3.3 Dynamic Semantics of GTFL⊕

One of the salient features of the AGT methodology is that it provides a di-
rect dynamic semantics for gradual programs [2], instead of the typical trans-
lational semantics through an intermediate cast calculus [5]. The key idea is to
apply proof reduction on gradual typing derivations [3]; by the Curry-Howard
correspondence, this gives a notion of relation for gradual terms. We call such
semantics the reference semantics.

The main insight of AGT is that gradual typing derivations need to be aug-
mented with evidence to support consistent judgments. Evidence reflects the
justification of why a given consistent judgment holds. Therefore, the dynamic

semantics mirrors the type preservation argument of the static language, combin-
ing evidences at each reduction step in order to determine whether the program
can reduce or should halt with a runtime error.

A consistency judgment U1 ∼ U2 is supported by an evidence ε that denotes
the most precise knowledge about U1 and U2 gained by knowing that they are
related by consistency. It is written ε ` U1 ∼ U2. In the case of consistency,
which is symmetric (as opposed to, say, consistent subtyping), evidence boils
down to a single gradual type , i.e. ε ∈ UType, which is precisely the least
upper bound of both types, i.e. U1 u U2 [2]. For instance, Int ` Int⊕ Bool ∼ Int.

Consider the simple program: (λx : Int ⊕ Bool.x + 1) true. It is a well-typed
gradual program, and its typing derivation includes two consistent judgments:
Bool ∼ Int ⊕ Bool to accept passing true as argument, and Int ⊕ Bool ∼ Int to
accept using x in the addition. When simplifying the typing derivation itself
(replacing the use of the x hypothesis with the typing derivation of the argu-
ment) it becomes necessary to combine the two consistent judgments in order
to justify the reduction. In general, in the safety proof of the static language,
this corresponds to a use of the fact that type equality is transitive. Here, tran-
sitivity demands that the respective evidences for the consistent judgments can
be combined. In the example, Int and Bool cannot be combined (their meet is
undefined), therefore the program halts with error.

To formalize this approach while avoiding writing down reduction rules on
actual (bi-dimensional) derivation trees, Garcia et al. adopt intrinsic terms [1],
which are a flat notation that is isomorphic to typing derivations. Specifically,
the typing derivation for the judgment Γ ` t̃ : U is represented by an intrinsic
term ť ∈ TermU . (The reversed hat on ť is meant to suggest the derivation tree.)

To illustrate how intrinsic terms are formed, consider addition and ascription:

ť1 ∈ TermU1 ε1 ` U1 ∼ Int ť2 ∈ TermU2 ε2 ` U2 ∼ Int

ε1ť1 + ε2ť2 ∈ TermInt

ť ∈ TermU ε ` U ∼ U ′

εť :: U ′ ∈ TermU ′

The rules describe how a derivation tree for a compound expression is formed
from the sub-derivations of the subterms together with the evidences that sup-
port the consistency judgments. Note how the involved evidences show up in the
term representation. The syntax of intrinsic terms follows the same pattern as
that illustrated with addition and ascription. Also, intrinsic values v̌ can either
be simple values ǔ or ascribed values εǔ :: U . With this notational device, the
reduction rules on derivation trees can be written as reduction rules on intrinsic
terms, possibly failing with an error when combining evidences, for instance:

ε1(ε2v̌ :: U) −→c

®
(ε2 ◦= ε1)v

error if (ε2 ◦= ε1) is not defined

(IUx)
xU ∈ TermU

(IUb)
bBool ∈ TermBool

(IUn)
nInt ∈ TermInt

(IUλ)
tU2 ∈ TermU2

(λxU1 .tU2) ∈ TermU1→U2

(IU::)
tU1 ∈ TermU1 ε ` U1 ∼ U

εtU1 :: U ∈ TermU

(IUapp)
tU1 ∈ TermU1 ε1 ` U1 ∼ U11 → U12 tU2 ∈ TermU2 ε2 ` U2 ∼ U11

(ε1t
U1) @U11→U12 (ε2t

U2) ∈ TermU12

(IU+)
tU1 ∈ TermU1 ε1 ` U1 ∼ Int tU2 ∈ TermU2 ε2 ` U2 ∼ Int

ε1t
U1 + ε2t

U2 ∈ TermInt

(IU if)

tU1 ∈ TermU1 ε1 ` U1 ∼ Bool U = (U2 u U3)
tU2 ∈ TermU2 ε2 ` U2 ∼ U tU3 ∈ TermU3 ε3 ` U3 ∼ U

if ε1t
U1 then ε2t

U2 else ε3t
U3 ∈ TermU

Fig. 5. Gradual Intrinsic Terms for GTFL⊕

The definition of consistent transitivity for a type predicate P , ◦P , is given by
the abstract interpretation framework [2]; in particular, for type equality, ◦=
corresponds to the meet of gradual types u.

Notice that for convenience, from this point forward we use the notation
tU ∈ TermU to refer to an intrinsic term ť ∈ TermU , u to refer to an ǔ, v to
refer to an v̌, and finally we sometimes omit the type notation in tU when the
type is not important in that context. Figure 5 presents the gradual intrinsic
terms of GTFL⊕. Figures 6 and 7 present some intrinsic type derivations of the
examples presented in Section 3.2.3. Figure 8 presents the syntax and notions of
reductions. Figure 9 presents the intrinsic reduction of GTFL⊕.

4 Properties of GTFL⊕

This section presents the proof of the static gradual guarantee in Section 2.
Section 4.2 presents the proof of type safety. Finally, Section 4.3 presents the
proof of the dynamic gradual guarantee.

4.1 Static Gradual Guarantee

Proposition 18 (Equivalence for fully-annotated terms).
For any t ∈ Term, . `S t : T if and only if . ` t : T

Proof. By induction over the typing derivations. The proof is trivial because
static types are given singleton meanings via concretization.

x ∈ TermInt⊕Bool 1 ∈ TermInt 〈Int〉 ` Int⊕ Bool ∼ Int 〈Int〉 ` Int ∼ Int

(〈Int〉x+ 〈Int〉1) ∈ TermInt

(λx.(〈Int〉x+ 〈Int〉1)) ∈ Term(Int⊕Bool)→Int

x ∈ TermInt⊕Bool 1 ∈ TermInt

〈Int〉 ` Int⊕ Bool ∼ Int 〈Int〉 ` Int ∼ Int

(〈Int〉x+ 〈Int〉1) ∈ TermInt

(λx.(〈Int〉x+ 〈Int〉1)) ∈ Term(Int⊕Bool)→Int 1 ∈ TermInt

〈(Int⊕ Bool)→ Int〉 ` (Int⊕ Bool)→ Int ∼ (Int⊕ Bool)→ Int 〈Int〉 ` Int ∼ Int⊕ Bool

(〈(Int⊕ Bool)→ Int〉(λx.(〈Int〉x+ 〈Int〉1))@(Int⊕Bool)→Int〈Int〉1) ∈ TermInt

x ∈ TermInt⊕Bool 1 ∈ TermInt

〈Int〉 ` Int⊕ Bool ∼ Int 〈Int〉 ` Int ∼ Int

(〈Int〉x+ 〈Int〉1) ∈ TermInt

(λx.(〈Int〉x+ 〈Int〉1)) ∈ Term(Int⊕Bool)→Int true ∈ TermBool

〈(Int⊕ Bool)→ Int〉 ` (Int⊕ Bool)→ Int ∼ (Int⊕ Bool)→ Int
〈Bool〉 ` Bool ∼ Int⊕ Bool

(〈(Int⊕ Bool)→ Int〉(λx.(〈Int〉x+ 〈Int〉1))@(Int⊕Bool)→Int〈Bool〉true) ∈ TermInt

Fig. 6. Examples of intrinsic type derivations (part 1)

Definition 16 (Term precision).

(Px)
x v x (Pb)

b v b
(Pn)

n v n

(Pλ)
t̃ v t̃′ U1 v U ′1

(λx : U1.t̃) v (λx : U ′1.t̃′)
(P+)

t̃1 v t̃′1 t̃2 v t̃′2
t̃1 + t̃2 v t̃′1 + t̃′2

(Papp)
t̃1 v t̃′1 t̃2 v t̃′2
t̃1 t̃2 v t̃′1 t̃′2

(Pif)
t̃ v t̃ t̃1 v t̃′1 t̃2 v t̃′2

if t̃ then t̃1 else t̃2 v if t̃′ then t̃′1 else t̃′2

(P::)
t̃ v t̃′ U v U ′

t̃ :: U v t̃′ :: U ′

Definition 17 (Type environment precision).

. v .
Γ v Γ ′ U v U ′

Γ, x : U v Γ ′, x : U ′

Lemma 3. If Γ ` t̃ : U and Γ v Γ ′, then Γ ′ ` t̃ : U ′ for some U v U ′.

Proof. Simple induction on typing derivations.

Lemma 4. If U1 ∼ U2 and U1 v U ′1 and U2 v U ′2 then U ′1 ∼ U ′2.

1 ∈ TermInt 〈Int〉 ` Int ∼ Int⊕ Bool

(〈Int〉1 :: Int⊕ Bool) ∈ TermInt⊕Bool

false ∈ TermBool 〈Bool〉 ` Bool ∼ Int⊕ Bool

(〈Bool〉false :: Int⊕ Bool) ∈ TermInt⊕Bool

x ∈ TermBool 〈Bool〉 ` Bool ∼ Bool
〈Int⊕ Bool〉 ` Int⊕ Bool ∼ Int⊕ Bool 〈Int⊕ Bool〉 ` Int⊕ Bool ∼ Int⊕ Bool

if 〈Bool〉x then 〈Int⊕ Bool〉(〈Int〉1 :: Int⊕ Bool)
else 〈Int⊕ Bool〉(〈Bool〉false :: Int⊕ Bool)) ∈ TermInt⊕Bool

(λx.if 〈Bool〉x then 〈Int⊕ Bool〉(〈Int〉1 :: Int⊕ Bool)
else 〈Int⊕ Bool〉(〈Bool〉false :: Int⊕ Bool)) ∈ TermBool→(Int⊕Bool)

Fig. 7. Examples of intrinsic type derivations (part 2)

Proof. By definition of ∼, there exists 〈T1, T2〉 ∈ 〈 ÛT1, ÛT2〉 ∈ γ2(U1, U2) such that
T1 = T2. U1 v U ′1 and U2 v U ′2 mean that γ(U1) ⊆ γ(U ′1) and γ(U2) ⊆ γ(U ′2),

therefore 〈T1, T2〉 ∈ 〈 ÛT1, ÛT2〉 ∈ γ2(U ′1, U
′
2).

Proposition 19 (Static gradual guarantee). If . ` t̃1 : U1 and t̃1 v t̃2, then
. ` t̃2 : U2, for some U2 such that U1 v U2.

Proof. We prove the property on opens terms instead of closed terms: If Γ ` t̃1 :
U1 and t̃1 v t̃2 then Γ ` t̃2 : U2 and U1 v U2.

The proof proceed by induction on the typing derivation.

Case (Ux, Ub). Trivial by definition of v using (Px), (Pb) respectively.

Case (Uλ). Then t̃1 = (λx : U1.t̃) and U1 = U ′1 → U ′2. By (Uλ) we know that:

(Uλ)
Γ, x : U ′1 ` t̃ : U ′2

Γ ` (λx : U ′1.t̃) : U ′1 → U ′2
(1)

Consider t̃2 such that t̃1 v t̃2. By definition of term precision t̃2 must have the
form t̃2 = (λx : U ′′1 .t̃

′)′ and therefore

(Uλ)
t̃ v t̃′ U ′1 v U ′′1

(λx : U ′1.t̃) v (λx : U ′′1 .t̃
′)

(2)

Using induction hypotheses on the premise of 1, Γ, x : U ′1 ` t̃′ : U ′′2 with U ′2 v U ′′2 .

By Lemma 3, Γ, x : U ′′1 ` t̃′ : U ′′′2 where U ′′2 v U ′′′2 . Then we can use rule (Uλ)
to derive:

(Uλ)
Γ, x : U ′′1 ; . ` t̃′ : U ′′′2

Γ ` (λx : U ′1.t̃
′) : U ′′1 → U ′′′2

Where U2 v U ′′2 . Using the premise of 2 and the definition of type precision we
can infer that

U ′1 → U ′2 v U ′′1 → U ′′′2

and the result holds.

ε ∈ Evidence, et ∈ EvTerm, ev ∈ EvValue, t ∈ Term∗,
v ∈ Value, u ∈ SimpleValue, g ∈ EvFrame, f ∈ TmFrame
et ::= εt
ev ::= εu
u ::= x | n | b | λx.t
v ::= u | εu :: U
g ::= � + et | ev + � | � @U et | ev @U � | � :: U | if � then et else et
f ::= g[ε�]

Notions of Reduction

−→: TermU × (TermU ∪ { error })
−→c: EvTerm× (EvTerm ∪ { error })

ε1n1 + ε2n2 −→ n3 where n3 = n1 J+K n2

ε1(λxU11 .t) @U1−→U2 ε2u −→
®

icod(ε1)([(ε2 ◦= idom(ε1))u :: U11)/xU11]t) :: U2

error if not defined

if ε1b then ε2t
U2 else ε3t

U3 −→
®
ε2t

U2 :: U2 u U3 b = true

ε3t
U3 :: U2 u U3 b = false

ε1(ε2v :: U) −→c

®
(ε2 ◦= ε1)v

error if not defined

Fig. 8. Syntax and notions of Reduction

Case (U+). Then t̃1 = ‹t′1 + ‹t′2 and U1 = Int. By (U+) we know that:

(T+)
Γ ` t̃1 : U1 Γ ` t̃2 : U2 U1 ∼ Int U2 ∼ Int

Γ ` t̃1 + t̃2 : Int
(3)

Consider t̃2 such that t̃1 v t̃2. By definition of term precision t̃2 must have the
form t̃2 = ‹t′′1 + ‹t′′2 and therefore

(P+)
‹t′1 v ‹t′′1 ‹t′2 v ‹t′′2‹t′1 + ‹t′2 v ‹t′′1 + ‹t′′2 (4)

Using induction hypotheses on the premises of 3, Γ ` ‹t′′1 : U ′1 and Γ ` ‹t′′2 : U ′2,
where U1 v U ′1 and U2 v U ′2. By Lemma 4, U ′1 ∼ Int and U ′2 ∼ Int. Therefore we
can use rule (U+) to derive:

(T+)
Γ ` ‹t′1 : U ′1 Γ ` ‹t′2 : U ′2 U ′1 ∼ Int U ′2 ∼ Int

Γ ` ‹t′1 + ‹t′2 : Int

and the result holds.

7−→: TermU × (TermU ∪ { error }) Reduction

(R−→)
tU −→ r r ∈ (TermU ∪ { error })

tU 7−→ r
(Rg)

et −→c et ′

g[et] 7−→ g[et′]

(Rgerr)
et −→c error

g[et] 7−→ error
(Rf)

tU1 7−→ tU2

f [tU1] 7−→ f [tU2]
(Rferr)

tU1 7−→ error

f [tU1] 7−→ error

Fig. 9. Intrinsic Reduction

Case (Uapp). Then t̃1 = ‹t′1 ‹t′2 and U1 = U12. By (Uapp) we know that:

(Uapp)
Γ ` ‹t′1 : U ′1 Γ ` ‹t′2 : U ′2 U ′2 ∼fidom(U ′1)

Γ ` ‹t′1 ‹t′2 : c̃od(U ′1)
(5)

Consider t̃2 such that t̃1 v t̃2. By definition of term precision t̃2 must have the
form t̃2 = ‹t′′1 ‹t′′2 and therefore

(Papp)
‹t′1 v ‹t′′1 ‹t′2 v ‹t′′2‹t′1 ‹t′2 v ‹t′′1 ‹t′′2 (6)

Using induction hypotheses on the premises of 5, Γ ` ‹t′′1 : U ′′1 and Γ ` ‹t′′2 : U ′′2 ,
where U ′1 v U ′′1 and U ′2 v U ′′2 . By definition precision (Def. 2) and the definition

of fidom, fidom(U ′1) vfidom(U ′′1) and, therefore by Lemma 4, U ′′2 ∼fidom(U ′′1). Also,

by the previous argument c̃od(U ′1) v c̃od(U ′′1) Then we can use rule (Uapp) to
derive:

(Uapp)
Γ ` ‹t′′1 : U ′′1 Γ ` ‹t′′2 : U ′′2 U ′′2 ∼fidom(U ′′1)

Γ ` ‹t′′1 ‹t′′2 : c̃od(U ′′1)

and the result holds.

Case (U if). Then t̃1 = if ‹t′1 then ‹t′2 else ‹t′3 and U1 = (U ′2uU ′3). By (U if) we know
that:

(U if)
Γ ` ‹t′1 : U ′1 Γ ` ‹t′2 : U ′2 Γ ` ‹t′3 : U ′3

Γ ` if ‹t′1 then ‹t′2 else ‹t′3 : (U ′2 u U ′3)
(7)

Consider t̃2 such that t̃1 v t̃2. By definition of term precision t̃2 must have the

form t̃2 = if ‹t′′1 then ‹t′′2 else ‹t′′3 and therefore

(Pif)
‹t′1 v ‹t′′1 ‹t′1 v ‹t′′1 ‹t′2 v ‹t′′2

if ‹t′1 then ‹t′2 else ‹t′3 v if ‹t′′1 then ‹t′′2 else ‹t′′3 (8)

Then we can use induction hypotheses on the premises of 7 and derive:

(U if)
Γ ` ‹t′′1 : U ′′1 Γ ` ‹t′′2 : U ′′2 Γ ` ‹t′′3 : U ′′3

Γ ` if ‹t′′1 then ‹t′′2 else ‹t′′3 : (U ′′2 u U ′′3)

Where U ′1 v U ′′1 and U ′2 v U ′′2 . Using the definition of type precision (Def. 2) we
can infer that

(U ′1 u U ′2) v (U ′′1 u U ′′2)

and the result holds.

Case (U ::). Then t̃1 = t̃ :: U1. By (U ::) we know that:

(U ::)
Γ ` t̃ : U ′1 U ′1 ∼ U1

Γ ` t̃ :: U ′1 : U1

(9)

Consider t̃2 such that t̃1 v t̃2. By definition of term precision t̃2 must have the
form t̃2 = t̃′ :: U2 and therefore

(P::)
t̃ v t̃′ U1 v U2

t̃ :: U1 v t̃′ :: U2

(10)

Using induction hypotheses on the premises of 9, Γ ` t̃′ : U ′2 where U ′1 v U ′2. We
can use rule (U ::) and Lemma 4 to derive:

(U ::)
Γ ` t̃′ : U ′2 U ′2 ∼ U2

Γ ` t̃′ :: U2 : U2

Where U1 v U2 and the result holds.

4.2 Type Safety

In this section we present the proof of type safety for GTFL⊕.

Lemma 5 (Canonical forms). Consider a value v ∈ TermU . Then either
v = u, or v = εu :: U with u ∈ TermU ′ and ε ` U ′ ∼ U . Furthermore:

1. If U = Bool then either v = b or v = εb :: Bool with b ∈ TermBool.
2. If U = Int then either v = n or v = εn :: Int with n ∈ TermInt.
3. If U = U1 → U2 then either v = (λxU1 .tU2) with tU2 ∈ TermU2

or v =
ε(λxU

′
1 .tU

′
2) :: U1 → U2 with tU

′
2 ∈ TermU ′2 and ε ` U ′1 → U ′2 ∼ U1 → U2.

Proof. By direct inspection of the formation rules of gradual intrinsic terms
(Figure 5).

Lemma 6 (Substitution). If tU ∈ TermU and v ∈ TermU1
,then [v/xU1]tU ∈

TermU .

Proof. By induction on the derivation of tU .

Proposition 20 (→ is well defined). If tU → r, then r ∈ ConfigU ∪
{ error }.

Proof. By induction on the structure of a derivation of tU → r, considering the
last rule used in the derivation.

Case (IU⊕). Then tU = ε1n1 + ε2n2. Then

(IU+)
n1 ∈ TermInt ε1 ` Int ∼ Int n2 ∈ TermInt ε2 ` Int ∼ Int

ε1n1 + ε2n2 ∈ TermInt

Therefore
ε1n1 + ε2n2 → n3 where n3 = n1 J+K n2

But n3 ∈ TermInt and the result holds.

Case (IUapp). Then tU = ε1(λxU11 .tU12
1) @U1→U2 (ε2u) and U = U2. Then

(Iapp)

D1

tU12
1 ∈ TermU12

(λxU11 .tU12
1) ∈ TermU11→U12

D2

u ∈ TermU ′2 ε2 ` U ′2 ∼ U1

ε1 ` U11 → U12 ∼ U1 → U2

ε1(λxU11 .tU12
1) @U1→U2 ε2u ∈ TermU2

If ε′ = (ε2 ◦= idom(ε1)) is not defined, then tU → error, and then the result
hold immediately. Suppose that consistent transitivity does hold, then

ε1(λxU11 .tU12
1)@U1→U2 ε2u ∈ TermU2 → icod(ε1)([(ε′u :: U11)/xU11]t) :: U2

As ε2 ` U ′2 ∼ U1 and by inversion lemma idom(ε1) ` U1 ∼ U11, then ε′ `
U ′2 ∼ U11. Therefore ε′u :: U11 ∈ TermU11

, and by Lemma 6, t′U12 = [(ε′u ::
U11)/xU11]tU12 ∈ TermU12

.
Then

(IU ::)
t′U12 ∈ TermU12 icod(ε1) ` U12 ∼ U2

icod(ε1)t′U12 :: U2 ∈ TermU2

and the result holds.

Case (IU if-true). Then tU = if ε1b then ε2t
U2 else ε3t

U3 , U = U2 u U3 and

(IU if)

b ∈ TermU1
ε1 ` U1 ∼ Bool U = (U2 u U3)

tU2 ∈ TermU2
ε2 ` U2 ∼ U

tU3 ∈ TermU3
ε3 ` U3 ∼ U

if ε1b then ε2t
U2 else ε3t

U3 ∈ TermU

Therefore
if ε1b then ε2t

U2 else ε3t
U3 → ε2t

U2 :: U2 u U3

But

(IU::)
tU2 ∈ TermU2

ε ` U2 ∼ U2 u U3

ε2t
U2 :: U2 u U3 ∈ TermU2uU3

and the result holds.

Case (IU if-false). Analogous to case (if-true).

Proposition 21 (7−→ is well defined). If tU 7−→ r, then r ∈ ConfigU ∪
{ error }.

Proof. By induction on the structure of a derivation of tU 7−→ r.

Case (R→). tU → r. By well-definedness of → (Prop 20), r ∈ ConfigU ∪
{ error }.

Case (Rf). tU = f [tU
′

1], f [tU
′
] ∈ TermU , tU

′

1 7−→ tU
′

2 , tU
′ ∈ TermU ′ , and

f : TermU ′ → TermU . By induction hypothesis, tU
′

2 ∈ TermU ′ , so f [tU
′

2] ∈
TermU .

Case (Rferr, Rgerr). r = error.

Case (Rg). tU = g[et], g[tU
′
] ∈ TermU , and g : EvTerm → TermU , and

et →c et ′. Then there exists Ue, Ux such that et = εet
Ue
e and εe ` Ue ∼ Ux.

Also, te = εvv :: Ue, with v ∈ TermUv
and εv ` Uv ∼ Ue.

We know that εc = εv ◦= εe is defined, and et = εete →c εcv = et ′. By definition
of ◦= we have εc ` Uv ∼ Ux, so g[et ′] ∈ TermU .

Now we can establish type safety: programs do not get stuck, though they
may terminate with cast errors. Also the store of a program is well typed.

Proposition 22 (Type Safety). If tU ∈ TermU then either tU is a value v;
tU 7−→ error; or tU 7−→ t′U for some term t′U ∈ TermU .

Proof. By induction on the structure of tU .

Case (Iu,In, Ib, Ix, Iλ). tU is a value.

Case (I::). tU = ε1t
U1 :: U2, and

(I::)
tU1 ∈ TermU1

ε1 ` U1 ∼ U2

ε1t
U1 :: U2 ∈ TermU2

By induction hypothesis on tU1 , one of the following holds:

1. tU1 is a value, in which case tU is also a value.
2. tU1 7−→ r1 for some r1 ∈ TermU1

∪ { error }. Hence tU 7−→ r for some
r ∈ ConfigU ∪ { error } by Prop 21 and either (Rf), or (Rferr).

Case (IU if). tU = if ε1t
U1 then ε2t

U2 else ε3t
U3 and

(IU if)

tU1 ∈ TermU1 ε1 ` U1 ∼ Bool U = (U2 u U3)
tU2 ∈ TermU2 ε2 ` U2 ∼ U
tU3 ∈ TermU3

ε3 ` U3 ∼ U
if ε1t

U1 then ε2t
U2 else ε3t

U3 ∈ TermU

By induction hypothesis on tU1 , one of the following holds:

1. tU1 is a value u, then by (R→), tU 7−→ r and r ∈ ConfigU ∪ { error } by
Prop 21.

2. tU1 is an ascribed value v, then, ε1t
U1 →c et ′ for some et ′ ∈ EvTerm ∪

{ error }. Hence tU 7−→ r for some r ∈ ConfigU ∪{ error } by Prop 21 and
either (Rg), or (Rgerr).

3. tU1 7−→ r1 for some r1 ∈ TermU1
∪ { error }. Hence tU 7−→ r for some

r ∈ ConfigU ∪ { error } by Prop 21 and either (Rf), or (Rferr).

Case (IUapp). tU = (ε1t
U1) @U11→U12 (ε2t

U2)

(IUapp)

tU1 ∈ TermU1
ε1 ` U1 ∼ U11 → U12

tU2 ∈ TermU2 ε2 ` U2 ∼ U11

(ε1t
U1) @U11→U12 (ε2t

U2) ∈ TermU12

By induction hypothesis on tU1 , one of the following holds:

1. tU1 is a value (λxU
′
11 .tU

′
12) (by canonical forms Lemma 5), posing U1 = U ′11 →

U ′12.
Then by induction hypothesis on tU2 , one of the following holds:
(a) tU2 is a value u, then by (R→), tU 7−→ r and r ∈ ConfigU ∪ { error }

by Prop 21.
(b) tU2 is an ascribed value v, then, ε2t

U2 →c et ′ for some et ′ ∈ EvTerm ∪
{ error }. Hence tU 7−→ r for some r ∈ ConfigU ∪ { error } by Prop 21
and either (Rg), or (Rgerr).

(c) tU2 7−→ r2 for some r2 ∈ ConfigU2
∪{ error }. Hence tU 7−→ r for some

r ∈ ConfigU ∪ { error } by Prop 21 and either (Rf), or (Rferr).
2. tU1 is an ascribed value v, then, ε1t

U1 →c et ′ for some et ′ ∈ EvTerm ∪
{ error }. Hence tU 7−→ r for some r ∈ ConfigU ∪{ error } by Prop 21 and
either (Rg), or (Rgerr).

3. tU1 7−→ r1 for some r1 ∈ ConfigU1
∪ { error }. Hence tU 7−→ r for some

r ∈ ConfigU ∪ { error } by Prop 21 and either (Rf), or (Rferr).

Case (IU+). Similar case to (IUapp)

4.3 Dynamic Gradual Guarantee

In this section we present the proof the Dynamic Gradual Guarantee for GTFL⊕.

Ω ∪ {xU1 v xU2 } ` xU1 v xU2 Ω ` b v b Ω ` n v n

U11 v U12 Ω ∪ {xU11 v xU12 } ` tU12 v tU22

Ω ` (λxU11 .tU12) v (λxU21 .tU22)

Ω ` tU11 v tU21

U12 v U22 ε1 v ε2

(ε1t
U11 :: U12) v (ε2t

U21 :: U22)

Ω ` tU11 v tU21 Ω ` tU12 v tU22

ε11 v ε21 ε12 v ε22

U1 v U2

Ω ` ε11t
U11 @U1 ε12t

U12 v
ε21t

U21 @U2 ε22t
U22

Ω ` tU11 v tU21 ε11 v ε21

Ω ` tU12 v tU23 ε12 v ε22

Ω ` tU13 v tU23 ε13 v ε23

Ω ` if ε11t
U11 then ε12t

U12 else ε13t
U13 v

if ε21t
U21 then ε22t

U22 else ε23t
U23

Ω ` tU11 v tU21 Ω ` tU12 v tU22

ε11 v ε21 ε12 v ε22

Ω ` (ε11t
U11 + ε12t

U12) v (ε21t
U21 + ε22t

U22)

Fig. 10. Intrinsic term precision

Definition 18 (Intrinsic term precision). Let

Ω ∈ P(Var∗ ×Var∗) be defined as Ω ::= {xUi1 v xUi2 } We define an ordering
relation (· ` · v ·) ∈ (P(Var∗ ×Var∗)×Term∗ ×Term∗ shown in Figure 10.

Definition 19 (Well Formedness of Ω). We say that Ω is well formed iff
∀ {xGi1 v xGi2 } ∈ Ω.Gi1 v Gi2

Before proving the gradual guarantee, we first establish some auxiliary prop-
erties of precision. For the following propositions, we assume Well Formedness
of Ω (Definition 19).

Proposition 23. If Ω ` tU1 v tU2 for some Ω ∈ P(Var∗ ×Var∗), then U1 v
U2.

Proof. Straightforward induction on Ω ` tU1 v tU2 , since the corresponding
precision on types is systematically a premise (either directly or transitively).

Proposition 24. Let g1, g2 ∈ EvFrame such that g[ε11t
U1
1] ∈ TermU ′1 , g[ε21t

U2
1] ∈

TermU ′2 , with U ′1 v U ′2 . Then if g1[ε11t
U1
1] v g2[ε21t

U2
1], ε12 v ε22 and tU1

2 v t
U2
2 ,

then g1[ε12t
U1
2] v g2[ε22t

U2
2]

Proof. We proceed by case analysis on gi.

Case (� @U et). Then for i ∈ { 1, 2 } gi must have the form � @U ′′i ε′it
U ′i for

some U ′′i , ε
′
i and tU

′
i . As g1[ε11t

U1
1] v g2[ε21t

U2
1] then by vAPP ε1 v ε2, ε

′
1 v ε′2,

U ′′1 v U ′′2 and tU
′
1 v tU ′2 .

As ε12 v ε22 and tU1
2 v tU2

2 , then by vAPP ε12t
U1
2 @U ′′1 ε′1t

U ′1 v ε22t
U2
2 @U ′′2

ε′2t
U ′2 , and the result holds.

Case (�+et , ev +�, ev @U �,� :: U, if � then et else et). Straightforward using
similar argument to the previous case.

Proposition 25. Let g1, g2 ∈ EvFrame such that g1[ε1t
U1] ∈ TermU ′1 , g2[ε2t

U2] ∈
TermU ′2 , with U ′1 v U ′2 . Then if g1[ε1t

U1] v g2[ε2t
U2] then tU1 v tU2 and

ε1 v ε2.

Proof. We proceed by case analysis on gi.

Case (� @U et). Then there must exist some U ′′i , ε
′
i and tU

′
i such that g[ε1t

U1] =

ε1t
U1 @U ′′1 ε′1t

U ′1 and g[ε2t
U2] = ε2t

U2 @U ′′2 ε′2t
U ′2 . Then by the hypothesis and the

premises of (vAPP), tU1 v tU2 and ε1 v ε2, and the result holds immediately.

Case (�+et , ev +�, ev @U �,� :: U, if � then et else et). Straightforward using
similar argument to the previous case.

Proposition 26. Let f1, f2 ∈ EvFrame such that f1[tU1
1] ∈ TermU ′1 , f2[tU2

1] ∈
TermU ′2 , with U ′1 v U ′2 . Then if f1[tU1

1] v f2[tU2
1] and tU1

2 v t
U2
2 , then f1[tU1

1] v
f2[tU2

1]

Proof. Suppose fi[t
U1
1] = gi[εit

Ui
1]. We know that g1[ε1t

U1
1] ∈ TermU ′1 , g2[ε2t

U2
1] ∈

TermU ′2 and U ′1 v U ′2. Therefore if g1[ε1t
U1
1] v g1[ε1t

U2
1], by Prop 25, ε1 v ε2.

Finally by Prop 24 we conclude that g1[ε1t
U1
2] v g1[ε1t

U2
2].

Proposition 27. Let f1, f2 ∈ EvFrame such that f1[tU1] ∈ TermU ′1 , f2[tU2] ∈
TermU ′2 , with U ′1 v U ′2 . Then if f1[tU1] v f2[tU2] then tU1 v tU2 .

Proof. Suppose fi[t
U1] = gi[εit

Ui
1]. We know that g1[ε1t

U1
1] ∈ TermU ′1 , g2[ε2t

U2
1] ∈

TermU ′2 and U ′1 v U ′2. Therefore if g1[ε1t
U1
1] v g[ε2t

U2
1], then using Prop 25 we

conclude that tU1 v tU2 .

Proposition 28 (Substitution preserves precision). If Ω∪{xU3 v xU4} `
tU1 v tU2 and Ω ` tU3 v tU4 , then Ω ` [tU3/xU3]tU1 v [tU4/xU4]tU2 .

Proof. By induction on the derivation of tU1 v tU2 , and case analysis of the last
rule used in the derivation. All cases follow either trivially (no premises) or by
the induction hypotheses.

Proposition 29 (Monotone precision for ◦=). If ε1 v ε2 and ε3 v ε4 then
ε1 ◦= ε3 v ε2 ◦= ε4.

Proof. By definition of consistent transitivity for = and the definition of preci-
sion.

Proposition 30. If U11 v U12 and U21 v U22 then U11 u U21 v U12 u U22.

Proof. By induction on the type derivation of the types and meet.

Proposition 31 (Dynamic guarantee for −→). Suppose Ω ` tU1
1 v tU2

1 . If
tU1
1 −→ tU1

2 then tU2
1 −→ tU2

2 , where Ω′ ` tU1
2 v t

U2
2 for some Ω′ ⊇ Ω.

Proof. By induction on the structure of tU1
1 v tU2

1 . For simplicity we omit the
Ω ` notation on precision relations when it is not relevant for the argument.

Case (−→ +). We know that tU1
1 = (ε11(n1) + ε12(n2)) then by (v+) tU2

1 =
(ε21(n1) + ε22(n2)) for some ε21, ε22 such that ε11 v ε21 and ε12 v ε22 .
If tU1

1 −→ n3 where n3 = (n1 J⊕K n2), then tU2
1 −→ n′3 where n′3 = (n1 J⊕K n2)

. But n3 = n′3 and therefore tU1
2 v t

U2
2 and the result holds.

Case (−→app). We know that
tU1
1 = ε11(λxU11 .tU12) @U1−→U2 ε12u then by (vapp) tU2

1 must have the form

tU2
1 = ε21(λxU21 .tU22) @U3−→U4 ε22u2 for some ε21, x

U21 , tU22 , U3, U4, ε22 and u2.
Let us pose ε1 = ε12 ◦= idom(ε11). Then
tU1
1 −→ icod(ε11)t′1 :: U2 with t′1 = [(ε1u1 :: U11)/xU11]tU12 .

Also, let us pose ε2 = ε22 ◦= idom(ε21) . Then
tU2
1 −→ icod(ε21)t′2 :: U4 with t′2 = [(ε2u2 :: U21)/xU21]tU22 .

As Ω ` tU1
1 v tU2

1 , then u1 v u2, ε12 v ε22 and idom(ε11) v idom(ε21) as well,
then by Prop 29 ε1 v ε2. Then ε1u1 :: U11 v ε2u2 :: U21 by (v::).
We also know by (vAPP) and (vλ) that Ω ∪ {xU21 v xU21} ` tU12 v tU22 . By
Substitution preserves precision (Prop 28) t′1 v t′2, therefore icod(ε11)t′1 :: U2 v
icod(ε21)t′2 :: U4 by (v::). Then tU1

2 v t
U2
2 .

Case (−→if-true). tU1
1 = if ε11true then ε12t

U12 else ε13t
U13 then by (vif) tU2

1

has the form tU2
1 = if ε21true then ε22t

U22 else ε23t
U23 for some ε21, ε22, t

U22, ε23,
and tU32 . Then tU1

1 −→ ε12t
U12 :: (U12 u U13), and tU2

1 −→ ε22t
U22 :: (U22 u U23).

Using the fact that tU1
1 v t

U2
2 we know that ε12 v ε22, tU12 v tU22 and by Prop 23,

U12 v U22 and U13 v U23. Therefore by Prop 30 (U12uU13) v (U22uU23). Then
using (v::), t

U1
2 v t

U2
2 .

Case (−→if-false). Same as case −→if-true, using the fact that ε13 v ε23 and
tU13 v tU23 .

Proposition 32 (Dynamic guarantee). Suppose tU1
1 v tU2

1 . If tU1
1 7−→ tU1

2

then tU2
1 7−→ tU2

2 where tU1
2 v t

U2
2 .

Proof. We prove the following property instead: Suppose Ω ` tU1
1 v tU2

1 . If
tU1
1 7−→ tU1

2 then tU2
1 7−→ tU2

2 where Ω′ ` tU1
2 v t

U2
2 , for some Ω′ ⊇ Ω.

By induction on the structure of a derivation of tU1
1 v tU2

1 . For simplicity
we omit the Ω ` notation on precision relations when it is not relevant for the
argument.

Case (R−→). Ω ` tU1
1 v tU2

1 , tU1
1 −→ tU1

2 . By dynamic guarantee of −→
(Prop 31), tU2

1 −→ tU2
1 where Ω′ ` tU1

2 v tU2
2 , for some Ω′ ⊇ Ω. And the

result holds immediately.

Case (Rf). tU1
1 = f1[t

U ′1
1], tU2

1 = f2[t
U ′2
1]. We know that Ω ` f1[t

U ′1
1] v f2[t

U ′2
1].

By using Prop 23, U ′1 v U ′2. By Prop 27, we also know that Ω ` tU
′
1

1 v t
U ′2
1 . By

induction hypothesis, t
U ′1
1 7−→ t

U ′1
2 , t

U ′2
1 7−→ t

U ′2
2 , Ω′ ` tU

′
1

2 v t
U ′2
2 for some Ω′ ⊇ Ω.

Then by Prop 26 then Ω′ ` f1[t
U ′1
2] v f2[t

U ′2
2] and the result holds.

Case (Rg). tU1
1 = g1[et1], tU2

1 = g2[et2], where Ω ` g1[et1] v g2[et2]. Also
et1 −→c et ′1 and et2 −→c et ′2.
Then there exists U1, ε11, ε12 and v1 such that et1 = ε11(ε12v1 :: U1). Also there
exists U2, ε21, ε22 and v2 such that et2 = ε21(ε22v2 :: U2). By Prop 25, ε11 v ε21,
and by (v::) ε12 v ε22, v1 v v2 and U1 v U2. Then as et1 −→c (ε12◦= ε11)v1 and
et2 −→c (ε22 ◦= ε21)v2 then, by Prop 29 we know that ε12 ◦= ε11 v ε22 ◦= ε21.
Then using this information, and the fact that v1 v v2, by Prop 24, it follows
that Ω ` g1[et ′1] v g1[et ′2].

5 Compiling GTFL⊕ to Threesomes

This section presents the translational semantics of GTFL⊕. Section 5.1 presents
the intermediate language. Section 5.2 presents the cast insertion rules, and
Section 5.3 presents the full formalization of the correctness of the translational
semantics.

5.1 Intermediate language: GTFL⊕⇒

Figure 11 presents the syntax of GTFL⊕⇒. Figure 12 presents the full type system
of GTFL⊕⇒.

Figure 13 presents the full dynamic semantics of GTFL⊕⇒. Applications of
a non-casted function are standard. The reduction rule for additions and con-
ditionals use the rval metafunction, which strips away the surrounding cast, if
any, to access the underlying value. The reduction of the application of a casted
function is standard, splitting the function cast into a cast on the argument and
a cast on the result. Two threesomes that coincide on their source/target types
are combined by meeting their middle types. If the meet is undefined then the
term steps to error. Otherwise both casts are merged to a new cast where the
middle type is now the meet between the middle types. Note that new casts
are introduced using the following cast metafunction, which avoids producing
useless threesomes:

T ∈ Type, x ∈ Var, t ∈ Term, Γ ∈ Var
fin
⇀ Type

T ::= Bool | Int | T → T (types)
u ::= n | b | (λx : U.t) (simple values)

v ::= u | 〈U U⇐= U〉u (values)

t ::= v | x | t t | t+ t | if t then t else t | t :: T | 〈U U⇐= U〉t (terms)

Fig. 11. Syntax of the intermediate language

(ITx)
x : U ∈ Γ
Γ ì x : U

(ITb)
Γ ì b : Bool

(ITn)
Γ ì n : Int

(ITλ)
Γ, x : U1 ì t : U2

Γ ì (λx : U1.t) : U1 → U2

(ITapp)
Γ ì t1 : U1 Γ ì t2 : fidom(U1)

Γ ì t1 t2 : ›cod(U1)

(IT〈〉)

Γ ì t : U1 U1 ∼ U2

U1 ∼ U3 U3 ∼ U2

Γ ì 〈U2
U3⇐= U1〉t : U2

(IT+)
Γ ì t1 : Int Γ ì t2 : Int

Γ ì t1 + t2 : Int

(ITif)
Γ ì t1 : Bool Γ ì t2 : U2 Γ ì t3 : U2

Γ ì if t1 then t2 else t3 : U2

Fig. 12. GTFL⊕⇒: Type system for the intermediate language

〈〈U2
U3⇐= U1〉〉t =

®
t if U1 = U2 = U3

〈U2
U3⇐= U1〉t otherwise

5.2 Cast Insertion

We now briefly describe the cast insertion translation from a GTFL⊕ term t̃
to a GTFL⊕⇒ term t. The cast insertion rules are presented in Figure 14. Cast
insertion rules use twosomes to ease readability; a twosome 〈U2 ⇐ U1〉t is equal

to 〈〈U2
U1uU2⇐==== U1〉〉t: the initial middle type is the meet of both ends [4]. Note

that useless casts are not introduced by translation due to the use of the cast
metafunction.

The key idea of the transformation is to insert casts in places where con-
sistency is used to justify the typing derivation. For instance, if a term t̃ of
type Int ⊕ Bool is used where an Int is required, the translation inserts a cast
〈Int ⇐ Int ⊕ Bool〉t, where t is the recursive translation of t̃. This cast plays

u ::= true | false | n | λx.t
v ::= u | 〈U U⇐= U〉u (values)

f ::= � + t | v + � | � t | v � | 〈U U⇐= U〉� | if � then t else t (frames)

t −→ t Notions of Reduction

n3 = rval(v1) J+K rval(v2)

v1 + v2 −→ n3
(λx.t) v −→ [v/x]t

if v then t1 else t2 −→®
t2 if rval(v) = true

t3 if rval(v) = false

〈U21 → U22
U3⇐= U11 → U12〉u v −→

〈〈U22
icod(U3)⇐===== U12〉〉(u 〈〈U11

idom(U3)⇐===== U21〉〉v)

〈U3
U32⇐== U2〉〈U2

U21⇐== U1〉v −→
®
〈〈U3

U32uU21⇐===== U1〉〉v
error if U32 u U21 is undefined

t 7−→ t Reduction

t1 −→ t2
t1 7−→ t2

t1 7−→ t2
f [t1] 7−→ f [t2] f [error] 7−→ error

Fig. 13. GTFL⊕⇒: Dynamic Semantics of GTFL⊕⇒

the role of the implicit projection from the gradual union type. Dually, when
a term of type Int is used where a gradual union is expected, the transla-
tion adds a cast that performs the implicit injection to the gradual union,
e.g. 〈Int ⊕ Bool ⇐ Int〉10. Note that a value with a cast that loses precision
is like a tagged value in tagged union type systems; the difference again is that
the “tag” is inserted implicitly.

Rule (C::) may insert a cast from the type of the body to the ascribed type.
Rule (Capp) may insert two casts. By declaring that the resulting type of the

application is c̃od(U1) and that the argument is consistent with fidom(U1), we
are implicitly assuming that U1 is consistent with some function type, which
justifies the cast on t1. The second cast on t2 comes from the consistent judgment

U2 ∼fidom(U1). Rule (C+) is similar.

(Cx)
x : U ∈ Γ

Γ ` x⇒ x : U
(Cb)

Γ ` b⇒ b : Bool
(Cn)

Γ ` n⇒ n : Int

(Cλ)
Γ, x : U1 ` t̃⇒ t′ : U2

Γ ` (λx : U1.t̃)⇒ (λx : U1.t
′) : U1 → U2

(C::)
Γ ` t̃⇒ t′ : U U ∼ U1

Γ ` (t̃ :: U1)⇒ 〈U1 ⇐ U〉t′ : U1

(Capp)
Γ ` t̃1 ⇒ t′1 : U1 Γ ` t̃2 ⇒ t′2 : U2 U2 ∼fidom(U1)

Γ ` t̃1 t̃2 ⇒

〈fidom(U1)→›cod(U1)⇐ U1〉t′1 〈fidom(U1)⇐ U2〉t′2 : ›cod(U1)

(C+)
Γ ` t̃1 ⇒ t′1 : U1 Γ ` t̃2 ⇒ t′2 : U2 U1 ∼ Int U2 ∼ Int

Γ ` t̃1 + t̃2 ⇒ 〈Int⇐ U1〉t′1 + 〈Int⇐ U2〉t′2 : Int

(Cif)
Γ ` t̃1 ⇒ t′1 : U1 U1 ∼ Bool Γ ` t̃2 ⇒ t′2 : U2 Γ ` t̃3 ⇒ t′3 : U3

Γ ` if t̃1 then t̃2 else t̃3 ⇒
if 〈Bool⇐ U1〉t′1 then 〈U2 u U3 ⇐ U2〉t′2 else 〈U2 u U3 ⇐ U3〉t′3 : U2 u U3

Fig. 14. Cast insertion rules

(b1, b2) ∈ UkJBoolK ⇐⇒ b1 ∈ TermBool ∧ b2 : Bool ∧ b1 = b2

(n1, n2) ∈ UkJIntK ⇐⇒ n1 ∈ TermInt ∧ n2 : Int ∧ n1 = n2

(ǔ1, u2) ∈ UkJU1 → U2K ⇐⇒ ǔ1 ∈ TermU1→U2 ∧ u2 : U1 → U2∧
∀U ′ = U ′′1 → U ′′2 , ε1 ` U1 → U2 ∼ U ′′1 → U ′′2 , and
ε2 ` U ′1 ∼ U ′′1 , we have: ∀j ≤ k, (v̌1, v2) ∈ VjJU ′1K,
(ε1ǔ1 @U′ ε2v̌1, 〈U ′

ε1⇐= U1 → U2〉u2 〈U ′′1
ε2⇐= U ′1〉v2) ∈ TjJU ′′2 K

(εǔ1 :: U, u2) ∈ VkJUK ⇐⇒ εǔ1 :: U ∈ TermU ∧ ε = U ∧ (ǔ1, u2) ∈ UkJUK

(εǔ1 :: U, 〈U ε⇐= U ′〉u2) ∈ VkJUK ⇐⇒ εǔ1 :: U ∈ TermU ∧ (ǔ1, u2) ∈ Uk−1JU ′K
(ǔ1, u2) ∈ VkJUK ⇐⇒ (ǔ1, u2) ∈ UkJUK
(ť1, t2) ∈ TkJUK ⇐⇒ ť1 ∈ TermU∧ ` t2 : U ∧ ∀j < k

(ť1 −→j v̌1 ⇒ (t2 −→∗ v2 ∧ (v̌1, v2) ∈ Vk−jJUK))∧
(t2 −→j v2 ⇒ (ť1 −→∗ v̌1 ∧ (v̌1, v2) ∈ Vk−jJUK))∧
(ť1 −→j error⇒ t2 −→∗ error)∧
(ť2 −→j error⇒ t1 −→∗ error)

Fig. 15. Logical relations between intrinsic terms and cast calculus terms.

5.3 Correctness of the Translational Semantics

This section present all the definitions and properties used to prove the correct-
ness of translational semantics.

One of the novelty of this work is to establish that the translational semantics
of the gradual language enjoys both type safety and the gradual guarantees,
without relying on the usual proof techniques. The typical approach is to prove
type safety of a gradual language by first establishing type safety of the target
cast calculus and second proving that the cast insertion translation preserves
typing. Proving the gradual guarantees is a separate effort [6].

Here, we instead directly establish that the translation semantics is equiva-
lent to the reference semantics derived with AGT. Because the reference seman-
tics describes a type-safe gradual language that satisfies the gradual guarantees,
so does the translational semantics. We establish the equivalence between the
semantics using step-indexed: logical relations. We use step-indexed logical rela-
tions so the relation is well-founded: the definition without indexes may contain
some vicious cycles in presence of gradual unions. Equivalence between two terms
is acknowledged when either both evaluate to the same value, or both lead to
an error.

Figure 15 presents the logical relations between simple values, values and
computations, which are defined mutually recursively. The logical relations are
defined for pairs composed of an intrinsic term ť, which denotes the typing
derivation for a GTFL⊕ term t̃, and a GTFL⊕⇒ term t. For simplicity, we write
t : U for · ì t : U .

A pair of simple values (ǔ1, u2) are related for k steps at type U , notation
(ǔ1, u2) ∈ UkJUK, if they both have the same type U and, if U is either Bool

or Int, then the values are also equal. If the simple values are functions, then
they are related if their application to related arguments , for j ≤ k steps, yields
related computations, as explained below. Note that the relation between simple
values need not consider the case of gradual types, as no literal values have
gradual types.

A pair of values (v̌1, v2) are related for k steps at type U , notation (v̌1, v2) ∈
VkJUK, if both have the same type and their underlying simple values are related.
One important point to notice is that we may only relate an ascribed value
εǔ1 :: U to a simple value u2 if we do not learn anything new from the ascription,
i.e. both the type of ǔ1 and the evidence ε are U . This corresponds to the
case where the reference semantics carries useless evidence—recall that the cast
insertion translation does not insert useless casts. Additionally, an ascribed value
εǔ1 :: U is related to a casted value if the evidence and ascription correspond to
the threesome. More precisely, the evidence ε must be exactly the middle type of
the threesome, and the source and target types of the threesome must correspond
to the type of ǔ1 and the ascribed type U , respectively. Finally, in order to reason
about the underlying simple values, the ascription and cast must be eliminated
by combining them with an evidence and a cast respectively. Because of this
extra step, the underlying simple values must be related for k− 1 steps instead.

A pair of terms (ť1, t2) are related computations for k steps at type U , nota-
tion (ť1, t2) ∈ TkJUK, if both terms have the same type U , then either both terms
reduce to related values at type U , or both terms reduce to an error. Formally,
for any j < k, if the evaluation of the intrinsic term ť1 terminates in a value v1
at least in j steps, then the compiled term t2 also reduces to a value v2, and the
resulting values are related values for k − j steps at type U . Analogously, if the
evaluation of the compiled term t2 reduces to a value v2 at least in j steps, then
the intrinsic term ť1 also reduces to a related value v1. Finally, if either term
reduces to an error in at least j steps, then the other also reduces to an error.
Note that this last condition is only required because we do not assume type
safety of GTFL⊕⇒.

Armed with these logical relations we can state the notion of semantic equiv-
alence between a GTFL⊕ intrinsic term and a GTFL⊕⇒ term.

Definition 20 (Semantic equivalence). Let ť ∈ TermU , Γ = FV (ť) and
a GTFL⊕⇒ term t such that Γ ì t : U . We say that ť and t are semantically
equivalent, notation ť ≈ t : U , if and only if for any k ≥ 0, (σ1, σ2) ∈ GkJΓ K, we
have (σ1(ť), σ2(t)) ∈ TkJUK.

The definition of semantic equivalence appeals to the notion of related substi-
tutions. Two substitutions σ1 and σ2 are related for k steps at type environment
Γ , notation (σ1, σ2) ∈ GkJΓ K, if they map each variable in Γ to related values
(full definition in 5.3).

Note that we write ť instead of tU when it is clear from the context that it
is an intrinsic term. Also note that t : U ≡ · ì t : U .

Definition 21. Let σ be a substitution and Γ a type substitution. We say that
substitution σ satisfy environment Γ , written σ |= Γ , if and only if dom(σ) =
dom(Γ).

Definition 22 (Related substitutions). Let σ1 be a substitution function
from intrinsic variables to intrinsic values, and let σ2 be a substitution func-
tion from variables to values from the intermediate language. Then we define
related substitution as follows:

(σ1, σ2) ∈ GkJΓ K⇐⇒ σi |= Γ ∧ ∀x ∈ Γ.(σ1(xΓ (x)), σ2(x)) ∈ VkJΓ (x)K

Lemma 7 (Reduction preserves relations). Consider Γ ` t̃ : U , tU ∈
TermU and Γ ` t̃⇒ t : U . Consider k, j > 0, if tU −→j t′U and t −→j t′, then
we have (tU , t) ∈ TkJUK if and only if (t′U , t′) ∈ Tk−jJUK

Proof. The ⇒ direction relies on the determinism of the reduction relation and
the definition of related computations. The ⇐ direction follows direct from the
definition of (tU , t) ∈ TkJUK and transitivity of −→.

Lemma 8. If (t̃1, t2) ∈ TkJUK then if ε ` U ∼ U ′, then (εt̃1 :: U ′, 〈U ′ ε⇐= U〉t2) ∈
Tk+1JU ′K

Proof. If either term reduce to an error then the lemma trivially holds. If either
one of the term reduce to a value, then it holds by definition of related values
and Lemma 7

Lemma 9. Consider k > 0. If (t̃1, t2) ∈ TkJUK then (t̃1, t2) ∈ Tk−1JUK

Proof. Trivial by definition of related computations, as (t̃1, t2) ∈ TkJUK is a
stronger property than (t̃1, t2) ∈ Tk−1JUK.

Finally, semantic equivalence between the reference and the translational
semantics says that given a well-typed term t̃ from the gradual source language,
its corresponding intrinsic term ť is semantically equivalent to the cast calculus
term t obtained after the cast insertion translation.

Proposition 33 (Equivalence of reference and translational semantics).
If Γ ` t̃ : U , represented as the intrinsic term ť ∈ TermU , and Γ ` t̃ ⇒ t : U ,

then ť ≈ t : U .

We open the proposition to prove this instead:

If Γ ` t̃ : U , tU ∈ TermU , Γ ` t̃ ⇒ t : U , then ∀k ≥ 0, (σ1, σ2) ∈ GkJΓ K,
(σ1(tU), σ2(t)) ∈ TkJΓ K.

Proof. By induction on the type derivation of t̃.

Case (Ub). Then t̃ = b and therefore:

(Ub)
Γ ` b : Bool

where U = Bool. Then the corresponding intrinsic term is:

(IUb)
b ∈ TermBool

and the type derivation of the compiled term is:

(ITb)
Γ ì b : Bool

But σ1(b) = b, σ2(b) = b, and b = b and the result holds immediately.

Case (Un). Then t̃ = n and therefore:

(Un)
Γ ` n : Int

where U = Int. Then the corresponding intrinsic term is:

(IUn)
n ∈ TermInt

and the type derivation of the compiled term is:

(ITn)
Γ ì n : Int

But σ1(n) = n, σ2(n) = n, and n = n and the result holds immediately.

Case (Ux). Then t̃ = x and therefore:

(Ux)
x : U ∈ Γ
Γ ` x : U

Then the corresponding intrinsic term is:

(IUx)
xU ∈ TermU

and the type derivation of the compiled term is:

(ITx)
x : U ∈ Γ
Γ ì x : U

As (σ1, σ2) ∈ GkJΓ K and x ∈ dom(Γ), then (xU , x) ∈ VkJUK and the result holds
immediately.

Case (Uλ). Then t̃ = (λx : U1.t̃2) and therefore:

(Uλ)
Γ, x : U1 ` t̃2 : U2

Γ ` (λx : U1.t̃2) : U1 → U2

where U = U1 → U2. Then the corresponding intrinsic term is:

(IUλ)
tU2
2 ∈ TermU2

(λxU1 .tU2
2) ∈ TermU1→U2

and the type derivation of the compiled term is:

(ITλ)
Γ, x : U1 ì t̃

′
2 : U2

Γ ì (λx : U1.t̃2) : U1 → U2

where Γ, x : U1 ` t̃2 ⇒ t′2 : U2. Consider j ≤ k, U ′ = U ′′1 → U ′′2 , ε1 ` U1 → U2 ∼
U ′′1 → U ′′2 , ε2 ` U ′1 ∼ U ′′1 , v̌

′
1, and v′2, such that (v̌′1, v

′
2) ∈ VjJU ′1K. We have to

prove that:

(ε1(λxU1 .σ1(tU2
2))@U ′ε2v̌

′
1, 〈U ′

ε1⇐= U1 → U2〉(λx : U1.σ2(t2)) 〈U ′′1
ε2⇐= U ′1〉v′2) ∈ TjJU ′′2 K

Then we proceed depending on the structure of (v̌′1, v
′
2), but ultimately we

converge to analogous cases where the argument are just related simple values.

1. If (v̌′1, v
′
2) = (ǔ′1, u

′
2) ∈ VkJU ′1K, then (ǔ′1, u

′
2) ∈ UkJU ′1K. Therefore

〈U ′ ε1⇐= U1 → U2〉(λx : U1.σ2(t2)) 〈U ′′1
ε2⇐= U ′1〉u′2

−→〈U ′′2
icod(ε1)⇐===== U2〉(λx : U1.σ2(t2)) 〈U1

idom(ε1)⇐===== U ′′1 〉〈U ′′1
ε2⇐= U ′1〉u′2)

(a) If ε2 ◦= idom(ε1) is not defined, then
ε1(λxU1 .σ1(tU2

2)) @U ′ ε2ǔ
′
1 −→ error. But by definition of consistent

transitivity ε2 u idom(ε1) = ∅ and therefore

〈U ′ ε1⇐= U1 → U2〉(λx : U1.σ2(t2)) 〈U ′′1
ε2⇐= U ′1〉u′2 −→2 error and the re-

sult holds.
(b) If ε′ = ε2 ◦= idom(ε1) is defined, then

ε1(λxU1 .σ1(tU2
2)) @U ′ ε2ǔ

′
1

−→icod(ε1)([ε′ǔ′1 :: U1/x
U1]σ1(tU2

2)) :: U ′′2

=icod(ε1)(σ1[xU1 7→ ε′ǔ′1 :: U1](tU2
2)) :: U ′′2

and, let us suppose than ¬(U ′1 = U ′′1 = ε′) (the other case is similar
modulo one step of evaluation)

〈U ′ ε1⇐= U1 → U2〉(λx : U1.σ2(t2)) 〈U ′′1
ε2⇐= U ′1〉u′2

−→2〈U ′′2
icod(ε1)⇐===== U2〉[〈U1

ε′⇐= U ′1〉u′2/x]σ2(t2)

=〈U ′′2
icod(ε1)⇐===== U2〉σ2[x 7→ 〈U1

ε′⇐= U ′1〉u′2](t2)

As (ǔ′1, u
′
2) ∈ UjJU ′1K then by definition of related values,

(ε′ǔ′1 :: U1, 〈U1
ε′⇐= U ′1〉u′2) ∈ Vj+1JUK, then by Lemma 9 (ε′ǔ′1 :: U1, 〈U1

ε′⇐= U ′1〉u′2) ∈ VjJUK.
Therefore by definition of related substitutions, (σ1[xU1 7→ ε′ǔ′1 :: U1], σ2[x 7→
〈U1

ε′⇐= U ′1〉u′2]) ∈ GjJΓ, x : U1K. Then by induction hypothesis on pair

(tT2
2 , Γ, x : U1 ` t̃2 : U2),

((σ1[xU1 7→ ε′ǔ′1 :: U1](tU2
2)), σ2[x 7→ 〈U1

ε′⇐= U ′1〉u′2](t2)) ∈ TjJU2K

and the result holds by Lemma 9, and backward preservation of the
relations (Lemma 7).

2. If (v̌′1, v
′
2) = (εǔ′1 :: U ′1, u

′
2) ∈ VjJU ′1K, then ε = U ′1 and (ǔ′1, u

′
2) ∈ UjJU ′1K.

Then ε′2 = ε◦=ε2 is defined because U ′1 ∼ U ′′1 , and therefore: ε1(λxU1 .σ1(tU2
2))@U ′

ε2v̌
′
1 −→ ε1(λxU1 .σ1(tU2

2)) @U ′ ε′2ǔ
′
1. Then we proceed analogous to (1) and

the result holds.
3. If (v̌′1, v

′
2) = (εǔ′1 :: U ′1, 〈U ′1

ε⇐= U ′〉u′2) ∈ VjJU ′1K, then (ǔ′1, u
′
2) ∈ UjJU ′K, for

some U ′ such that ε ` U ′ ∼ U ′1.
(a) If ε ◦= ε2 is not defined then ε u ε2 = ∅,

ε1(λxU1 .σ1(tU2
2)) @U ′ ε2εǔ

′
1 :: U ′1 −→ error and

〈U ′ ε1⇐= U1 → U2〉(λx : U1.σ2(t2)) 〈U ′′1
ε2⇐= U ′1〉〈U ′1

ε⇐= U ′〉u′2 −→ error, and
the result holds.

(b) If ε′2 = ε ◦= ε2 is defined then

ε1(λxU1 .σ1(tU2
2)) @U ′ ε2εǔ

′
1 :: U ′1 −→ ε1(λxU1 .σ1(tU2

2)) @U ′ ε′2ǔ
′
1

and

〈U ′ ε1⇐= U1 → U2〉(λx : U1.σ2(t2)) 〈U ′′1
ε2⇐= U ′1〉〈U ′1

ε⇐= U ′〉u′2 −→

〈U ′ ε1⇐= U1 → U2〉(λx : U1.σ2(t2)) 〈U ′′1
ε′2⇐= U ′〉u′2

and we proceed analogous to (1) and the result holds.

Case (U ::). Then t̃ = t1 :: U and therefore:

(U ::)
Γ ` t1 : U ′ U ′ ∼ U

Γ ` t1 :: U : U

Then the corresponding non ascribed intrinsic term is:

(IU ::)
tU
′

1 ∈ TermU′ ε ` U ′ ∼ U
εtU
′

1 :: U ∈ TermU

Let us assume U ′ 6= U (the other case is analogous). The type derivation of
the compiled term is:

(IT<>)
Γ ì t

′
1 : U ′

Γ ì 〈U
ε⇐= U ′〉t′1

Then we have to prove that

(εσ1(tU
′

1) :: U, 〈U ε⇐= U ′〉σ2(t′1)) ∈ TkJUK

By induction hypotheses on t̃1 (σ1(tU
′

1), σ2(t′1)) ∈ TkJU ′K. If either term re-
duces to an error in less than k steps, then the result holds immediately. The
interesting case if they reduce to related values in less than k steps. Then suppose
σ1(tU1) −→j v̌1, σ2(t′1) −→∗ v′1, where j < k (v̌1, v

′
1) ∈ Vk−jJU1K.

Let us assume v̌1 = ǔ1 then v′1 = u′1 (if they are ascribed values, then the
argument is similar modulo one extra step of evaluation, where a runtime error
may be produced).

εσ1(tU
′

1) :: U −→j εǔ1 :: U

and
〈U ε⇐= U ′〉σ2(t′1) −→j 〈U ε⇐= U ′〉u′1

We need to prove that

(εǔ1 :: U, 〈U ε⇐= U ′〉u′1) ∈ Vk−jJUK

but (v̌1, v
′
1) ∈ Vk−jJU1K and by Lemma 9, (v̌1, v

′
1) ∈ Vk−j−1JU1K, and the result

holds by backward preservation lemma.

Case (Uapp). Then t̃ = t̃1 t̃2 and therefore:

(Uapp)
Γ ` t̃1 : U1 Γ ` t̃2 : U2 U2 ∼fidom(U1)

Γ ` t̃1 t̃2 : ›cod(U1)

and U = c̃od(U1). Then the corresponding intrinsic term is:

(IUapp)
tU1 ∈ TermU1 ε1 ` U1 ∼ U11 → U12 tU2 ∈ TermU2 ε2 ` U2 ∼ U11

(ε1t
U1) @U11→U12 (ε2t

U2) ∈ TermU12

where U11 = fidom(U1) and U12 = c̃od(U1).
We proceed assuming that the compilation always inserts casts (the other

cases are similar because then the evidences are equal to the types in the judg-
ment. Therefore the next combinations of those evidences are redundant and
never fails). Then suppose U1 6= U11 → U12 and U2 6= U11. As ε1 = U1 u U11 →
U12, and ε2 = U2 u U11, the type derivation of the compiled term is:

(ITapp)
Γ ì t

′
1 : U1 Γ ì t

′
2 : U11

Γ ì 〈U11 → U12
ε1⇐= U1〉t′1 〈U11

ε2⇐= U2〉t′2 : U12)

Then we have to prove that

((ε1σ1(tU1))@U11→U12(ε2σ1(tU2)), 〈U11 → U12
ε1⇐= U1〉σ2(t′1) 〈U11

ε2⇐= U2〉σ2(t′2)) ∈ TkJU12K

By induction hypotheses on t̃1 and t̃2 (σ1(tU1), σ2(t′1)) ∈ TkJU1K and (σ1(tU2), σ2(t′2)) ∈
TkJU2K. If either term reduces to an error in less than k steps, then the result
holds immediately. The interesting case if they reduce to related values in less
than k steps. Then suppose σ1(tU1) −→j v̌1, σ1(tU2) −→j v̌2, σ2(t′1) −→∗ v′1,
σ2(t′2) −→∗ v′2, where j < k (v̌1, v

′
1) ∈ Vk−jJU1K and (v̌2, v

′
2) ∈ Vk−jJU2K. If

v̌1 = ǔ1 then v′1 = u′1, by canonical forms the simple values must be lambdas
and the proof follows from Case(Uλ). If v̌1 = ε′1ǔ1 :: U1 and ǔ1 ∈ TermU ′1 , then

suppose v′1 = 〈U1
ε′1⇐= U ′1〉u′1 (the other case is similar but the evidence combi-

nation never fails). Also (ǔ1, u
′
1) ∈ Uk−j−1JU ′1K. Suppose ε′1 ◦= ε1 is not defined

(which is equivalent to ε′1 u ε1 = ∅), therefore

(ε1ε
′
1ǔ1 :: U1) @U11→U12 (ε2v̌2) −→ error⇐⇒

〈U11 → U12
ε1⇐= U1〉〈U1

ε′1⇐= U ′1〉u′1 〈U11
ε2⇐= U2〉v′2 −→ error

and the result follows. Suppose ε′′1 = ε′1 ◦= ε1 is defined. Then

(ε1ε
′
1ǔ1 :: U1) @U11→U12 (ε2v̌2) −→

(ε′′1 ǔ1) @U11→U12 (ε2v̌2) ⇒

〈U11 → U12
ε1⇐= U1〉〈U1

ε′1⇐= U ′1〉u′1 〈U11
ε2⇐= U2〉v′2 −→

〈U11 → U12
ε′′1⇐= U ′1〉u′1 〈U11

ε2⇐= U2〉v′2

which is exactly the definition of related functions and then the result holds by
backward preservation of the relations (Lemma 7) and Lemma 9.

Case (U if). Then t̃ = t̃1 t̃2 and therefore:

(U if)
Γ ` t̃1 : U1 U1 ∼ Bool Γ ` t̃2 : U2 Γ ` t̃3 : U3

Γ ` if t̃1 then t̃2 else t̃3 : U2 u U3

and U = U2 u U3. Then the corresponding intrinsic term is:

(IU if)

tU1 ∈ TermU1 ε1 ` U1 ∼ Bool U = (U2 u U3)
tU2 ∈ TermU2 ε2 ` U2 ∼ U tU3 ∈ TermU3 ε3 ` U3 ∼ U

if ε1t
U1 then ε2t

U2 else ε3t
U3 ∈ TermU

We proceed assuming that the compilation always inserts casts (the other
cases are similar because then the evidences are equal to the types in the judg-
ment. Therefore the next combinations of those evidences are redundant and
never fails). Then suppose U1 6= U11 → U12 and U2 6= U11. As ε1 = U1 u U11 →
U12, and ε2 = U2 u U11, the type derivation of the compiled term is:

(Cif)
Γ ì t̃

′
1 : U1 U1 ∼ Bool Γ ì t̃

′
2 : U2 Γ ì t̃

′
3 : U3

if 〈Bool ε1⇐= U1〉t′1 then 〈U2 u U3
ε2⇐= U2〉t′2 else 〈U2 u U3

ε3⇐= U3〉t′3 : U2 u U3

where Γ ` t̃1 ⇒ t̃′1 : U1, Γ ` t̃2 ⇒ t̃′2 : U2, and Γ ` t̃3 ⇒ t̃′3 : U3.
But by definition of substitution, σ1(tU) = if ε1σ1(tU1) then else ε2σ1(tU2)ε3σ1(tU3)

and σ2(t′) = if 〈Bool ε1⇐= U1〉σ2(t′1) then 〈U2 u U3
ε2⇐= U2〉σ2(t′2) else 〈U2 u U3

ε3⇐=
U3〉σ2(t′3).

By induction hypotheses on t̃1, t̃2 and t̃3, (σ1(tU1), σ2(t′1)) ∈ TkJU1K and
(σ1(tU2), σ2(t′2)) ∈ TkJU2K and (σ1(tU3), σ2(t′3)) ∈ TkJU3K If either σ1(tU1) or
σ2(t′1) term reduces to an error then the result holds immediately. The interest-
ing case is when they reduce to related values. Then suppose σ1(tU1) −→j v̌1,
σ2(t′1) −→j v′1, where (v̌1, v

′
1) ∈ Vk−jJU1K and (v̌2, v

′
2) ∈ Vk−jJU2K.

1. If v̌1 = ǔ1 then v′1 = u′1, by canonical forms ui must be booleans bBool

and b. Suppose that b = true (the other case is analogous). Then tU −→j

ε2σ1(tU2) :: U2uU3 and t′ −→j 〈U2uU3
ε2⇐= U2〉σ2(t′2). Then as (σ1(tU2), σ2(t′2)) ∈

TkJU2K and Lemma 8, Lemma 9 and backward preservation of the relation
the result holds.

2. If v̌1 = ε′1ǔ1 :: U1 and ǔ1 ∈ TermU ′1 , then suppose v′1 = 〈U1
ε′1⇐= U ′1〉u′1

(the other case is similar but the evidence combination never fails). Also
(ǔ1, u

′
1) ∈ Uk−jJU ′1K. Suppose ε′1 ◦= ε1 is not defined (which is equivalent to

ε′1 u ε1 = ∅), therefore

if ε1ε
′
1ǔ1 :: U1 then ε2σ1(tU2) else ε3σ1(tU3) −→ error⇐⇒

if 〈Bool ε1⇐= U1〉〈U1
ε′1⇐= U ′1〉u′1 then ... else ... −→ error

and the result follows. Suppose ε′′1 = ε′1 ◦= ε1 is defined. Then

if ε1ε
′
1ǔ1 :: U1 then ε2σ1(tU2) else ε3σ1(tU3) −→
if ε′′1 ǔ1 then ε2σ1(tU2) else ε3σ1(tU3) ⇒

if 〈Bool ε1⇐= U1〉〈U1
ε′1⇐= U ′1〉u′1 then ... else ... −→

if 〈Bool ε
′′
1⇐= U ′1〉u′1 then ... else ...

Then as (ǔ1, u
′
1) ∈ Uk−jJU ′1K we proceed analogous to (1) and the result

holds.

Case (U+). Similar to the (Uapp) and (U if) case.

References

[1] A. Church. A formulation of the simple theory of types. J. Symbolic Logic, 5(2):56–
68, 06 1940.

[2] R. Garcia, A. M. Clark, and É. Tanter. Abstracting gradual typing. In 43rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL
2016), St Petersburg, FL, USA, Jan. 2016. ACM Press.

[3] W. A. Howard. The formulae-as-types notion of construction. In J. P. Seldin
and J. R. Hindley, editors, To H. B. Curry: Essays on Combinatory Logic, Lambda
Calculus, and Formalism, pages 479–490. Academic Press, New York, 1980. Reprint
of 1969 article.

[4] J. Siek and P. Wadler. Threesomes, with and without blame. In 37th annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL
2010), pages 365–376. ACM Press, Jan. 2010.

[5] J. G. Siek and W. Taha. Gradual typing for functional languages. In Scheme and
Functional Programming Workshop, pages 81–92, Sept. 2006.

[6] J. G. Siek, M. M. Vitousek, M. Cimini, and J. T. Boyland. Refined criteria for
gradual typing. In 1st Summit on Advances in Programming Languages (SNAPL
2015), pages 274–293, 2015.

	Gradual Union Types
	Overview
	The Static Language: STFL
	GTFL: Definitions
	Meaning of Gradual Unions
	Step 1: The Classic Interpretation
	Step 2: The Classic Set Interpretation
	Step 3: The Union Interpretation
	Step 4: The Stratified Interpretation

	Static Semantics of GTFL
	Consistent Predicates and Functions
	Inductive definitions
	Examples of type derivations

	Dynamic Semantics of GTFL

	Properties of GTFL
	Static Gradual Guarantee
	Type Safety
	Dynamic Gradual Guarantee

	Compiling GTFL to Threesomes
	Intermediate language: GTFL=>
	Cast Insertion
	Correctness of the Translational Semantics

