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Abstract

A new, more fundamental approach is proposed to the classical bargaining problem.
The give-and-take feature in the negotiation process is explicitly modelled under the
new framework. A compromise set consists of all allocations a bargainer is willing to
accept as agreement. We focus on the relationship between the rationality principles
(arguments) adopted by bargainers in making mutual concessions and the formation of
compromise sets. The bargaining correspondence is then defined as the intersection of
bargainers’compromise sets. We study the non-emptyness, symmetry, effi ciency and
single-valuedness of the bargaining correspondence, and establish its connection to the
Nash solution. Our framework provides the first rational foundation to Nash’s axiomatic
approach, and hence bridges the “Edgeworth-Nash gap”.
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Give me that which I want, and you shall have this which you want, is the
meaning of every such offer. (Adam Smith)

1 Introduction

THE BARGAINING PROBLEM concerns how parties reconcile conflicting interests and
reach a mutually acceptable agreement. A simple wage negotiation between Robinson
Crusoe and Friday was considered by Edgeworth (1881), who concluded that the terms of
bargaining are indeterminate:

This simple case brings clearly into view the characteristic evil of indeterminate
contract, deadlock, undecidable opposition of interests, ... It is the interest of
both parties that there should be some settlement, one of the contracts repre-
sented by the contract-curve between the limits. But which of these contracts is
arbitrary in the absence of arbitration, the interests of the two adversa pugnantia
fronte all along the contract-curve, ...

Beyond Pareto optimality and individual rationality, Edgeworth argued that economic
theory remains silent on how the agreement, if it is reached, is determined on the contract
curve.

Built upon the expected utility theory newly developed by von Neumann and Mor-
genstern in the late 1940s, Nash (1950) elegantly formalized the bargaining problem and
provided the first definite answer on how the gains from trade would be divided. He first
assumed that for every bargaining situation, there exists a unique utility allocation (solu-
tion) that is unanimously agreed by the parties as a “fair bargain,”i.e., an allocation that
gives each player what he/she expects to get. To locate this fair bargain, Nash suggested
the following:

One states as axioms several properties that it would seem natural for the so-
lution to have and then one discovers that the axioms actually determine the
solution uniquely (Nash 1953, p. 129).

The axiomatic approach proposed by Nash does not impose any structure restrictions
on the bargaining process. Instead, it appeals to general rationality postulates (axioms)
in pinning down the allocation of a fair bargain.1 On top of the (weak) Pareto optimality
axiom considered by Edgeworth, Nash proposed three additional axioms, and these four
axioms uniquely determine the bargaining outcome. While many other solution concepts,
axioms, and characterizations have been proposed since then, the literature on cooperative
bargaining mainly follows Nash’s framework.2

From Edgeworth’s problem of indeterminacy to Nash’s solution witnesses one of the
greatest intellectual leaps in economic theory.3 The contradictory views between Edgeworth

1The strategic approach, on the other hand, explicitly specifies the negotiation process in a multi-stage
game, and predicts bargaining outcomes based on a suitable equilibrium concept.

2See Thomson (1994) for a comprehensive survey of the literature. For recent developments in the
literature, see Thomson (2009).

3Myerson (1999) stated that Nash’s bargaining solution was “virtually unanticipated in the literature,”
and Binmore (2005) argued that “Nash deserves his Nobel prize more for his bargaining solution than for his
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and Nash, however, invite close scrutiny. A careful reading of Edgeworth’s statement reveals
that the problem of indeterminacy comes in two forms: (i) no agreement is reached (a
deadlock), and (ii) an agreement might be reached but cannot be predicted ex ante. Thus,
to fully resolve the problem, the following two issues should be addressed. When facing a
bargaining situation,

I. Existence of Agreement. Under what rationality principles, the parties reach an
agreement, and

II. Characterization of Agreement. Under what additional rationality principles, the
agreement can be characterized (i.e., located or predicted).

Note the subtle difference between these two issues. The first issue concerns the rational
foundation of when the minds with competing interests meet, and the second issue concerns
where the minds meet. By resolving the first issue, we conclude that the negotiation would
not end in deadlock, but we may not have suffi cient information to locate the agreement,
which leads to the second issue. The first issue is more fundamental than the second, as
resolving the second issue implies that either: (i) the existence of agreement is also resolved
under those rationality principles, or (ii) the existence of agreement is assumed.

Having clarified the two distinct issues raised by Edgeworth, let us look at what Nash’s
axiomatic approach has achieved. Nash’s bargaining theory can be stated as follows:

If there exists a unique unanimous agreement for every bargaining problem,
and the agreement satisfies Nash’s system of axioms, then this agreement can
be characterized (located).

In other words, Nash successfully addressed the second issue raised by Edgeworth —
that the terms of bargaining can be uniquely determined under Nash’s four axioms. But
the first issue, existence of agreement, is simply assumed in Nash’s approach.4 The theory
provides no clues as to how the parties would reach consent that there must be an agreement
for each problem in the first place. Accordingly, in contrast to the common belief among
economists, Nash’s theory is a characterization theory, not a theory of agreement, and so
far there is no rational foundation for the existence of agreement in bargaining theory. In
this regard, Nash does not fully resolve Edgeworth’s problem of indeterminacy. We call this
the Edgeworth-Nash gap.

We propose a new, more fundamental approach to the bargaining problem. Our new
framework models bargaining as a cooperative persuasion game that highlights the following

equilibrium concept, since his contribution to bargaining theory is entirely original, whereas his equilibrium
idea had a number of precursors.”

4While it was not explicitly declared when Nash (1950) first proposed his axiomatic approach, the unique
existence of the solution (agreement) was formally stated as the first fundamental axiom (assumption) in
Nash (1953, p. 136). This assumption is vital in Nash’s framework. Without this assumption, Nash’s
axioms, which are properties defined on the assumed solution, would be meaningless, and Nash’s approach
would be logically unsound. Binmore (1984) also pointed out that the existence of agreement is implicitly
assumed in Nash (1950).
One way to avoid addressing the existence of agreement issue in Nash’s framework is to interpret a

bargaining solution as a compromise recommended by an arbitrator rather than a unanimous agreement
reached by the parties.
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three important features of bargaining. The first feature is that bargaining is a multiperson
decision-making problem. Each bargainer’s decision on whether or not to accept a particu-
lar compromise should be formally modelled. The second feature is that people commonly
view bargaining as a give-and-take process. How much a bargainer is willing to concede
depends on how much others concede. The third feature of bargaining is that usually the
bargaining process we observe in our daily life is structure-free, meaning it is not artificially
specified/restricted. Accordingly, our model considers a scenario in which bargainers simply
meet at the bargaining table, communicate, negotiate, and bring every justifiable argument
to convince each other to concede in order to reach a mutually acceptable outcome. The
first two are essential characteristics of bargaining but none of them is featured in Nash’s ax-
iomatic approach, and the third one distinguishes our approach (as well as Nash’s axiomatic
approach) from the strategic approach.

To portray how bargainers make concessions during negotiations, several simple and in-
tuitive rationality principles (arguments) are proposed. Each and every bargainer is guided
by those “arguments” in deciding whether or not to make further concessions during the
negotiation process. It is necessary that, as a minimum requirement of fairness, valid argu-
ments must be mutually adopted by all bargainers: an argument can be taken as a means
to convince me to concede only if you also follow the same argument in making concessions.
Define a bargainer’s compromise set as the collection of all allocations he/she is willing to
accept as agreement. We first establish the relationship between the rationality principles
adopted by bargainers in making mutual concessions and the formation of their compromise
sets. The bargaining correspondence is then defined as the intersection of bargainers’com-
promise sets. A (unique) unanimous agreement exists when the bargaining correspondence
is non-empty (single-valued). A suffi cient condition is provided for the single-valuedness of
the bargaining correspondence, i.e., for the existence of unique agreement (Proposition 2 &
Corollary 1). Thus, we provide the first rational foundation to Nash’s axiomatic approach.
In particular, we propose simple pairwise concession arguments and show that when parties
follow those arguments in making mutual concessions, not only a pairwise agreement is
reached for each pair of parties, but a unanimous agreement is also reached by all parties.
It implies that the rationality requirement for meeting of the minds is invariant with the
number of bargainers involved, which sharply contradicts the traditional view that reaching
an agreement is more diffi cult in multilateral bargaining than in bilateral bargaining.

We also establish several properties on the bargaining correspondence, such as symme-
try and effi ciency. Our result, when bargainers reach a unique symmetric agreement in a
symmetric problem, settles the debate between Harsanyi and Schelling on the use of the
symmetry axiom in bargaining theory. A robust axiom named the Concession Invariance
Principle in hyperplane problems (CIPH) is then proposed as a rationality principle that
bargainers would follow in adjusting their mutual concessions across hyperplane problems.
CIPH requires that bargainers’relative concessions in all hyperplane problems remain un-
changed. We show that when bargainers adopt CIPH and make exact concessions in a
hyperplane problem, they agree to share mutual benefits at “the midpoint”of the problem
(Proposition 3). This “midpoint” allocation coincides with most well-known bargaining
solutions, including the Nash solution and the Kalai-Smorodinsky solution. Furthermore,
when an additional rationality principle named Contraction Inclusion (CI) is adopted by
bargainers, the agreement in any problem is the one predicted by Nash (Proposition 4). CI
states that when facing a new bargaining situation with fewer alternatives, each bargainer
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accepts previously accepted alternatives as long as they are still available. This final result
(Proposition 4) provides a novel interpretation of the Nash solution.

2 Nash’s Axiomatic Approach

A bargaining problem (or a problem in short) among a collection of players (bargainers),
N = {1, ..., n}, is represented by a pair (S, d), where S ⊂ Rn is the set of players’utility pos-
sibilities, and d ∈ S is the disagreement point, which is the utility allocation that results if no
agreement is reached by all parties. It is assumed that S is (i) compact, (ii) convex, (iii) com-
prehensive (x, z ∈ S implies that y ∈ S for all x ≤ y ≤ z), and (iv) x > d for some x ∈ S.5
Let Σ be the class of all n-person problems satisfying (i)-(iv). Define the set of individually
rational utility allocations as IR(S, d) ≡ {x ∈ S|x ≥ d}, the set of weakly Pareto optimal
allocations as WPO(S) ≡ {x ∈ S|∀x′ ∈ Rn and x′ > x⇒ x′ /∈ S}, and the set of Pareto op-
timal allocations as PO(S) ≡ {x ∈ S|∀x′ ∈ Rn, x′ ≥ x and x′ 6= x⇒ x′ /∈ S}. Moreover, de-
note the ideal point of (S, d) as b(S, d) ≡ (b1(S, d), ..., bn(S, d)), where bi(S, d) = max{xi|x ∈
IR(S, d)}; the midpoint of (S, d) is m(S, d) ≡ 1

nb(S, d) + (1 − 1
n)d. Given (S, d) ∈ Σ, we

define (bi(S, d), d−i) ≡ (d1, ..., di−1, bi(S, d), di+1, ..., dn) as player i′s dictatorial allocation.
Let Π be the set of all permutations on N = {1, ..., n}, i.e., all bijections π : N → N. Given
x = (x1, ..., xn) ∈ Rn, let πijx = (x1, ..., xi−1, xj , xi+1, ..., xj−1, xi, xj+1, ..., xn). A problem
(S, d) ∈ Σ is said to be symmetric if (S, d) = (πS, πd) for all π ∈ Π.

A solution is a function f : Σ → Rn such that for all (S, d) ∈ Σ, f(S, d) ∈ S. Nash
proposed that f should satisfy the following four axioms:

Weak Pareto Optimality (WPO) For all (S, d) ∈ Σ, f(S, d) ∈WPO(S).

Symmetry (SYM) If (S, d) ∈ Σ is symmetric, then f1(S, d) = ... = fn(S, d).

Scale Invariance (SI) G = (G1, ..., Gn) : Rn → Rn is a positive affi ne transformation
if G(x) = (a1x1 + c1, ..., anxn + cn) for some a ∈ Rn++ and c ∈ Rn. SI requires that for any
(S, d) ∈ Σ and a positive affi ne transformation G, f(G(S), G(d)) = G(f(S, d)).

Independence of Irrelevant Alternatives (IIA) For all (S, d), (T, d) ∈ Σ, if T ⊃ S
and f(T, d) ∈ S, then f(S, d) = f(T, d).

WPO is a collective rationality assumption requiring that the parties should fully utilize
the surplus from the situation. The SYM axiom demands that the parties share the gain
equally when facing a symmetric problem. Initially Nash (1950) appealed to equal bargain-
ing ability to justify the SYM axiom, but admitted it is a mistake later on (Nash 1953, p.
137). Instead, he argued that the SYM axiom must be satisfied if the players are equally
intelligent and equally rational, and all relevant factors are incorporated into the model.
The SI axiom is assumed if the preferences for each player can be represented by a von
Neumann-Morgenstern utility function. The IIA axiom attracts most criticisms. Given two
problems (T, d) and (S, d) with T ⊃ S, IIA requires that if the parties unanimously agree
that f(T, d) is the fair bargain in (T, d), then f(T, d) remains the fair bargain in (S, d).

Nash proved that the Nash solution defined below is the unique solution satisfying the
above four axioms.

5Given x, y ∈ Rn, x > y if xi > yi for each i, and x ≥ y if xi ≥ yi for each i.
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The Nash solution Nash : For each (S, d) ∈ Σ, Nash(S, d) = arg max{Πni=1(xi− di)|x ∈
IR(S, d)}.

The other two prominent solution concepts in the literature are the egalitarian and
Kalai-Smorodinsky solutions:

The egalitarian solution E : For each (S, d) ∈ Σ, E(S, d) = d+ λ∗1, where 1 = (1, ..., 1)
and λ∗ = max{λ|d+ λ1 ∈ S}.

The Kalai-Smorodinsky solution KS : For each (S, d) ∈ Σ, KS(S, d) = λ∗b(S, d) + (1−
λ∗)d, where λ∗ = max{λ|λb(S, d) + (1− λ)d ∈ S}.

3 Compromise Sets and The Bargaining Correspondence

Bargaining, in a nutshell, is a multiperson decision-making problem, where players’interests
are not fully aligned, yet a unanimous agreement has to be reached in order for them to
benefit from the situation. Suppose the parties involved in a bargaining situation are highly
rational with complete information. In the presence of their diverse interests, can we assert
that a unique unanimous agreement could always be reached, as assumed in Nash (1950)?
In other words, on what ground shall we argue that the parties with irreconcilable proposals
(and hence have reached a bargaining impasse) are “irrational”? Moreover, does it become
more diffi cult to reach a unanimous agreement when more people are involved?

To address the above issues, we have to look into how the bargaining stance is formed
for each individual during the negotiation process. A bargaining stance is defined as the set
of alternatives a player is willing to accept as possible final outcomes. At the bargaining
table, the parties communicate and make proposals and counterproposals to each other.
Suppose they face a problem (S, d). A (reasonable) proposal can simply be represented by
an alternative x ∈ S. For example, player i may initially propose (bi(S, d), d−i) to others,
which means that i is only willing to accept his/her dictatorial allocation as an agreement.
Others, by appealing to whatever principles (fairness, effi ciency, etc.), may ask i to concede
by accepting some other possible outcomes. Player imay or may not be persuaded by others.
If i is persuaded by others, i revises the proposal to a new one. With free and suffi cient
communication, it reaches a stage at which all possible arguments/principles have been
exhausted, and each player fully determines his/her bargaining stance. In other words,
no further negotiation could make any player budge his/her bargaining stance. We call
this final, unbudged bargaining stance a player’s compromise set. Formally speaking, let
Ci : Σ −→ 2R

n
be a non-empty and closed (in the Hausdorff topology) correspondence such

that for every (S, d) ∈ Σ, Ci(S, d) ⊂ IR(S, d). Then Ci(S, d), named as i′s compromise set
with respect to (S, d), is the set of feasible alternatives (compromises) deemed acceptable
by player i when facing the problem (S, d). It has to be individually rational, as no player
has an incentive to accept any payoff below what he/she can get at disagreement.6 Denote
a profile of compromise sets by C = (C1, ..., Cn). First let us list some examples of C :

Example 1 For every i ∈ N and (S, d) ∈ Σ, Ci(S, d) = {(bi(S, d), d−i)}.

Example 2 For every i ∈ N and (S, d) ∈ Σ, Ci(S, d) = {(b1(S, d), d−1), ..., (bn(S, d), d−n)}.

Example 3 For every i ∈ N and (S, d) ∈ Σ, Ci(S, d) = {x ∈ IR(S, d)|xi ≥ Nash(S, d)i}.

6 In other words, a bargainer does not make any “compromise” if his/her proposals are outside IR(S, d).
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Example 4 For every i ∈ N and (S, d) ∈ Σ, Ci(S, d) = {x ∈ IR(S, d) ∩WPO(S)|xi ≥
E(S, d)i}.

Example 5 For every i ∈ N and (S, d) ∈ Σ, Ci(S, d) = {x ∈ IR(S, d)|x ≥ m(S, d)}.

Example 6 Let N = {1, 2}. For every (S, d) ∈ Σ, C1(S, d) = {x ∈ IR(S, d)|x1−d1x2−d2 ≥
Nash(S,d)1−d1
Nash(S,d)2−d2 } and C2(S, d) = {x ∈ IR(S, d)|x1−d1x2−d2 ≤

KS(S,d)1−d1
KS(S,d)2−d2 }.

In Example 1, each player only accepts his/her dictatorial allocation as a bargaining
outcome. In other words, no one intends to make any sacrifices. Example 2 is a peculiar
example in which players are willing to accept ANY dictatorial allocation. In Example 3,
players view the Nash solution as a reasonable benchmark, and are willing to accept any
allocation that gives him/her a payoffno less than what he/she can get at the Nash solution.
In Example 4, each player would like to accept any effi cient allocation that gives him/her
a payoff no less than what he/she can obtain at the egalitarian solution. In Example 5, all
players are happy to accept any compromise that gives each one at least half of the ideal
payoff. In Example 6, player 1 accepts any allocation with the relative gain no less than
that at the Nash solution, and player 2 accepts any allocation with the relative gain no
greater than that at the KS solution.

Given a profile of compromise sets C, the bargaining correspondence with respect to C
is Bc : Σ −→ 2R

n
such that Bc(S, d) = ∩ni=1Ci(S, d). We say the parties reach a unanimous

agreement(s) in (S, d) when Bc(S, d) is nonempty. A unique agreement is said to be reached
among the parties under C in (S, d) when Bc(S, d) is single-valued. For a given subset of
agents, I ⊂ N, we use the notation ∩i∈ICi to represent the intersection of {Ci}i∈I . |I|
denotes the number of agents in I. Going back to the above examples, we observe that
Bc(S, d) is empty in Example 1, nonempty in Examples 2 and 5, and single-valued in
Examples 3 and 4. Depending on the problem (S, d), Bc(S, d) could be empty, a singleton,
and nonempty with multiple elements in Example 6.

Bargaining is a give-and-take process. The insight from Adam Smith quoted at the
beginning of the paper tells us that the concessions made by the parties are interdependent
—whether a player would like to make a concession depends on whether others do the same.
We would like to study under what rationality principles mutually adopted by the players,
an agreement can be reached. Note that “mutual adoption of rationality principles” itself
is a minimum requirement of the concept of “fairness” bargainers have in mind — if, by
appealing to some rationality principle, you persuade me to make concessions, then you
should make the same concessions under the same principle when facing the same situation.
Hence when the problem is symmetric, the following axiom should be satisfied:

Common Reasoning (CR) If (S, d) = (πS, πd) for every π ∈ Π, then C(S, d) =
π(πC1(S, d), ..., πCn(S, d)) for every π ∈ Π.

CR requires that when facing a symmetric bargaining situation, the parties, being
equally rational, should propose the same compromises (from each’s perspective). For exam-
ple, given a two-person symmetric problem (S, d), if (8, 2) ∈ C1(S, d), then (2, 8) ∈ C2(S, d).
CR is a weak mutually rational requirement. All examples above (Examples 1-6) satisfy
CR. CR alone, however, does not guarantee that an agreement can be reached. Even when
an agreement is reached, it could be neither symmetric nor unique (Example 2).
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The bargainers involved in the day-to-day negotiations commonly make interpersonal
comparisons of utility to persuade others to concede (Shapley (1969) and Thomson (2009)).
For example, Shapley (1969) made the following observation:

At other times, a person may compare his gain against another’s gain, or loss
against loss. “This is going to hurt me more than it hurts you.”, the classic
slogan of parental discipline, has its counterpart in the language of negotiation.
The criterion in this form of comparison is not total welfare, as above, but “fair
division”, or equity. “My demand is more reasonable than yours,”the bargainer
may plead, “therefore you should give in.”

This argument, however, is not suffi cient for the parties to reach an agreement. Consider
a two-person symmetric problem (S, d) with S = {x ∈ Rn+|x1+x2 = 10} and d = 0. Suppose
player 1 proposes (8, 2) as an agreement. By CR, player 2 responds to player 1’s proposal
by submitting (2, 8) as a counterproposal. Both demands are “equally reasonable”, and
the argument above does not have a bite — neither player finds grounds to counter the
other’s proposal. In order to break the deadlock, someone has to make a concession. The
following axiom captures this idea. Given x1 = (x11, ..., x

1
n) and x2 = (x21, ..., x

2
n) in Rn, the

join of x1 and x2 is x1 ∨ x2 = (max(x11, x
2
1), ...,max(x1n, x

2
n)), and the meet of x1 and x2

is x1 ∧ x2 = (min(x11, x
2
1), ...,min(x1n, x

2
n)). The lattice spanned by x1 and x2 is denoted as

L(x1, x2) = {y ∈ Rn|x1 ∧ x2 ≤ y ≤ x1 ∨ x2}. Given x ∈ Rn, denote by x = (a, ..., a) with
a = min{x1, ..., xn} and x = (b, ..., b) with b = max{x1, ..., xn}.

Symmetric Pairwise Concession (SPC) For any pair of players {i, j} ⊂ N and a
problem (S, d) ∈ Σ, if x ∈ Ci(S, d) and πijx ∈ Cj(S, d) with x 6= πijx, then Ci(S, d) ∩
L(x, πijx)\{x} 6= ∅.

x ∈ Ci(S, d) and y ∈ Cj(S, d) are said to be a pair of symmetric demands or compromises
between i and j if y = πijx. L(x, πijx) consists of all compromises “between”x and πijx.
SPC states that in response to player j′s symmetric compromise, player i is willing to make
further concession accepting a compromise between x and πijx (Figure 1).

Lemma 1 If C satisfies CR and SPC and (S, d) ∈ Σ is symmetric, then for any pair of
players {i, j} ⊂ N and x ∈ Ci(S, d), Ci(S, d) ∩ Cj(S, d) ∩ L(x, πijx) 6= ∅.
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Given a symmetric problem, if players i and j adopt common reasoning, and are willing
to make a concession between symmetric demands, then a pairwise agreement can be reached
between i and j. Such an agreement may not give i and j the same payoff. Consider
Example 2 with |N | = 2. In this example C satisfies CR and SPC, and we have Bc(S, d) =
{(b1(S, d), d2), (d1, b2(S, d))}.

Could pairwise agreements lead to a unanimous agreement among all players? Unfor-
tunately, the following example shows that a unanimous agreement may not be reached in
a symmetric problem under CR and SPC:

Example 7 Let S = {x ∈ R3+|
∑3
i=1 xi = 10} and d = 0. C(S, d) is such that

C1(S, d) = {(5, 5, 0), (5, 0, 5), (0, 5, 0), (0, 0, 5)}
C2(S, d) = {(5, 5, 0), (0, 5, 5), (0, 0, 5), (5, 0, 0)}
C3(S, d) = {(5, 0, 5), (0, 5, 5), (0, 5, 0), (5, 0, 0)}

It can be readily verified that C(S, d) satisfies CR and SPC, Ci(S, d) ∩Cj(S, d) 6= ∅ for
i, j ∈ {1, 2, 3}, but ∩3i=1Ci(S, d) = ∅.

Example 7 is peculiar though. Consider player 1’s compromise set. First observe that
player 1 is happy to share the total gain equally with either player 2 or player 3 ((5, 5, 0) ∈
C1(S, d) and (5, 0, 5) ∈ C1(S, d)). As (5, 0, 5) ∈ C1(S, d)), by CR, (0, 5, 5) ∈ C2(S, d). In
response to player 2’s symmetric counterproposal (0, 5, 5), however, player 1 is only willing
to accept (0, 0, 5), the worst allocation for both players in L((5, 0, 5), (0, 5, 5)).

Define Lo(x, πijx) = L(x, πijx)\{y ∈ Rn|yi = min{xi, xj} or yj = min{xi, xj}}. Con-
sider the following slightly stronger version of SPC.

Symmetric Pairwise Concession∗ (SPC*) For any pair of players {i, j} ⊂ N and
a problem (S, d) ∈ Σ, if x ∈ Ci(S, d) and πijx ∈ Cj(S, d) with x 6= πijx, then Ci(S, d) ∩
Lo(x, πijx) 6= ∅.

SPC* requires that in response to player j′s symmetric demand, player i is willing to
make a further, strict concession by accepting a compromise between x and πijx that gives
both players payoffs strictly higher than min{xi, xj}.

Lemma 2 If C satisfies CR and SPC∗ and (S, d) ∈ Σ is symmetric, then for any pair of
players {i, j} ⊂ N and x ∈ Ci(S, d) with x 6= πijx, Ci(S, d)∩Cj(S, d)∩{y ∈ Lo(x, πijx)|yi =
yj} 6= ∅.

Lemma 2 states that If both players follow CR and are willing to make strict concessions
between any pair of symmetric demands, then a pairwise agreement with equal payoffs can
be reached. This result seems to be straightforward. What is surprising is that under CR
and SPC*, a unanimous agreement exists in every symmetric problem.

Proposition 1 If C satisfies CR and SPC∗ and (S, d) ∈ Σ is symmetric, then Bc(S, d) ∩
{y ∈ Rn|y1 = ... = yn} 6= ∅.

Suppose players adopt common reasoning, and each pair of players is willing to make
strict concessions between symmetric demands. Then in every symmetric problem, a sym-
metric agreement exists. There could be multiple agreements, however, and some agree-
ments could be asymmetric. To gain the intuition behind Proposition 1, let us describe how
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pairwise agreements could lead to a 3-wise agreement. Suppose players facing a symmetric
problem follow the CR and SPC∗ principles in making their proposals/counterproposals.
We know from Lemma 2 that there exists some x ∈ S with x1 = x2 that is agreed upon
between player 1 and player 2. As x ∈ C1(S, d), by CR, player 3 would make a coun-
terproposal at π13x. Clearly x is a unanimous agreement if x1 = x3. In the following, we
consider the case when x1 < x3, and the case of x1 > x3 can be analyzed analogously.
As x ∈ C1(S, d) and π13x ∈ C3(S, d) with x 6= π13x, by Lemma 2 again we conclude
that there exists some z ∈ S that is agreed upon between player 1 and player 3, where
z1 = z3 ∈ (x1, x3], and zi = xi for i ∈ N\{1, 3}. As z ∈ C1(S, d), by CR, player 2 would
propose π12z = (x2, z1, z3, x4, ..., xn) = (x1, z1, z1, x4, ..., xn). Applying Lemma 2 again we
conclude that there exists some y ∈ S that is agreed upon between players 1 and 2, where
y1 = y2 ∈ (x1, z1], y3 = z1, and yi = xi for i ∈ N\{1, 2, 3}. Comparing x and y, we
observe that the difference in demands between players 1 and 2 and player 3 shrinks, as
x1 < y1 ≤ y3 = z1 ≤ x3. Through back-and-forth concessions in the negotiation process,
a 3-wise agreement which gives the three players equal payoffs can be reached. Here the
negotiation does not become deadlocked like that in Example 7, as the parties are willing to
make strict pairwise concessions when demands are irreconcilable but equally reasonable.

When facing an asymmetric problem, a stronger rationality principle is required for the
parties to achieve a unanimous agreement. Consider the following axiom:

Pairwise Concession (PC) For any pair of players {i, j} ⊂ N and a problem (S, d) ∈
Σ, let x ∈ Ci(S, d) and y ∈ Cj(S, d) with x 6= y.

(i) If y = πijx, then Ci(S, d) ∩ Lo(x, πijx) 6= ∅
(ii) If y 6= πijx and x /∈ Cj(S, d), then Ci(S, d) ∩ L(x, y)\{x, x ∧ y} 6= ∅.

The PC axiom extends the rationale of SPC* into asymmetric demands. Like SPC*, it
requires that when facing symmetric demands, bargainers have to make strict concessions.
When demands are asymmetric and irreconcilable, a bargainer has to concede and propose a
revised demand, and this new demand cannot be the worst outcome in L(x, y). The following
proposition provides a suffi cient condition for the existence of unanimous agreements.

Proposition 2 If C satisfies CR and PC, then Bc(S, d) 6= ∅ for every (S, d) ∈ Σ. More-
over, Bc(S, d) ∩ {y ∈ Rn|y1 = ... = yn} 6= ∅ when (S, d) is symmetric.

When the parties mutually adopt CR and PC as rationality principles in making con-
cessions during the negotiation process, a unanimous agreement exists. Furthermore, a
symmetric agreement exists in a symmetric bargaining situation. It is conventional wisdom
that reaching a unanimous agreement becomes more diffi cult when more people are involved
in negotiation. For example, Myerson (1997) wrote:

So far we have only considered bargaining problems that involve two parties.
Multilateral bargaining may become even more complicated,... If any party to a
multilateral agreement can upset the agreement between anyone else, however,
then the need to have well-coordinated expectations about what each party can
reasonably demand is even greater than in bilateral bargaining problems.

Arguably it could take longer to coordinate and reach an agreement when more people
are involved in a bargaining situation. Proposition 2, however, shows that the existence of
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unanimous agreement is independent of the number of bargainers involved. In other words,
whenever a unanimous agreement cannot be reached among N > 2 players, we could boil
the issue of deadlock down to there being a pair of players who do not make concessions
between irreconcilable demands. The mutual rationality requirement for “meeting of the
minds”does not become more stringent from bilateral to multilateral bargaining.

Proposition 2 provides a suffi cient condition for the existence of agreement. For each
problem, however, there could be multiple agreements. In a symmetric problem, some
asymmetric agreements may exist. Example 5 is one such example. The multiplicity of
agreements arises when some bargainers make excessive concessions. The following axiom
is built on the rationality that each player has an incentive to make sure that the concession
is not excessive:

Exact Concession (EC) For every i ∈ N and (S, d) ∈ Σ, if ∩−iCj(S, d) 6= ∅ and
a = max{xi|x ∈ ∩−iCj(S, d)}, then Ci(S, d) ∩ {x ∈ S|xi < a} = ∅.

The EC axiom states that each party should not accept less than what others are willing
to concede. It is straightforward to see the following (the proof is omitted):

Lemma 3 If C satisfies EC, then Bc(S, d) is either empty or single-valued for every (S, d) ∈
Σ.

Combining Lemma 3 with Proposition 2 we obtain the following corollary:

Corollary 1 If C satisfies CR, PC, and EC, then Bc(S, d) is single-valued for every (S, d) ∈
Σ with Bc(S, d) ∈ {y ∈ Rn|y1 = ... = yn} whenever (S, d) is symmetric.

Hence CR, PC and EC guarantee that a unique agreement exists for every problem.
This agreement is symmetric whenever the problem is symmetric, which is the SYM axiom
postulated by Nash. There was a fantastic, unsettled debate around 1960 between Thomas
Schelling and John Harsanyi on whether the SYM axiom used by Nash in bargaining the-
ory, or even more broadly, any symmetry assumption made in game theory, is justifiable.
Harsanyi defended the use of the SYM axiom as follows:

The bargaining problem has an obvious determinate solution in at least one
special case: viz., in situations that are completely symmetric with respect to
the two bargaining parties. In this case it is natural to assume that the two
parties will tend to share the net gain equally since neither would be prepared
to grant the other better terms than the latter would grant him (Harsanyi 1956,
p. 147).

Schelling argued that symmetry should not be imposed as a constraint of rationality:

What I am going to argue is that though symmetry is consistent with the
rationality of the players, it can not be demonstrated that asymmetry is incon-
sistent with their rationality, while the inclusion of symmetry in the definition
of rationality begs the question... Both players, being rational, must recognize
that the only kind of “rational” expectation they can have is a fully shared
expectation of an outcome (Schelling 1959, p. 219).
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He continued to give an example showing that an asymmetric outcome could arise from
the parties’mutually rational expectations:

Specifically, suppose that two players may have $100 to divide as soon as
they agree explicitly on how to divide it; and they quite readily agree that A
shall have $80 and B shall have $20; and we know that dollar amounts in this
particular case are proportionate to utilities, and the players do too: can we
demonstrate that the players have been irrational (Schelling 1959, p. 220)?

Harsanyi responded by asserting that symmetry is a necessary premise for the existence
of a unique outcome:

On the contrary, the symmetry postulate has to be satisfied, as a matter of
sheer logical necessity, by any theory whatever that assigns a unique outcome
to the bargaining process (Harsanyi 1961, p. 188).

In Schelling’s example, Harsanyi argued that, if (80, 20) is an agreement, then the exact
opposite allocation, (20, 80), would also be another outcome predicted by the theory, and
the terms of bargaining cannot be uniquely determined. Harsanyi (1961) then concluded
that “Schelling cannot avoid the symmetry postulate if he is to propose any definite theory
of bargaining at all.”

Our results reconcile the two contrasting views. If CR and PC (or SPC∗) are the only
two rationality principles the two bargainers adopt in making mutual concessions, then
Schelling is right that an asymmetric agreement such as (80, 20) could arise from a symmetric
problem. But Harsanyi is also correct: by CR, (20, 80)must be another plausible agreement.
However, Harsanyi’s statement that SYM is a necessary postulate for the existence of a
unique agreement, is wrong. First, in Nash’s approach, the existence of unique agreement is
presumed, implicitly in Nash (1950) and explicitly in Nash (1953). Second, on top of the CR
and PC axioms, if the bargainers also make no excessive concessions, then the agreement
must be symmetric in symmetric problems (Corollary 1). Thus, under our framework, SYM
is an outcome derived from the rationality of the bargainers’expectations, not a restriction
of rationality.7

Next we study the effi ciency of agreement. Consider the following axiom:

Concession Monotonicity (CM) For every i ∈ N and (S, d) ∈ Σ, if x ∈ Ci(S, d),
then y ∈ Ci(S, d) for every y ∈ S such that yi > xi and yj = xj for every j 6= i.

CM is an axiom on self-interest. If an alternative is acceptable by a bargainer, then any
other alternative that gives this bargainer a higher payoffwhile keeping the payoffs of others
unchanged should be accepted by him/her. However, suppose another alternative is such
that each and every bargainer can get a higher payoff, CM does not require the bargainer to
accept this alternative. Therefore, CM alone does not imply an agreement must be effi cient.

Lemma 4 Let (S, d) ∈ Σ. If Bc(S, d) is single-valued and C satisfies PC and CM, then
Bc(S, d) ∈WPO(S) ∩ IR(S, d).

7Note that CR itself is a kind of symmetry assumption on the players’behavior (but obviously much
weaker than SYM). Hence we do not completely accomplish Schelling’s goal of abandoning ANY symmetry
assumption in game theory. Our view is that this direction is unrealistic.
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If the agreement is unique, and the bargainers follow PC and CM in making mutual
concessions, then this agreement is effi cient. Note that WPO is a collective rationality
requirement. The result shows that WPO comes from each bargainer pursuing his/her self-
interest. But uniqueness of agreement is crucial as well. Without uniqueness, we may have
multiple agreements and some of them will be ineffi cient.

Several properties we have studied so far can be summarized in the following definition:

Definition 1 A profile of compromise sets C is said to be regular if for every (S, d) ∈ Σ,
(i) Bc(S, d) is single-valued
(ii) Bc(S, d) is symmetric whenever (S, d) is symmetric
(iii) Bc(S, d) ∈WPO(S) ∩ IR(S, d)

A suffi cient condition for a profile of compromise sets C to be regular can be readily
provided:

Corollary 2 If C satisfies CR, PC, EC and CM, then C is regular.

4 The Concession Invariance Principle

In the previous secton, we provide a rational foundation for a profile of compromise sets
to be regular. It resolves the first issue of contract indeterminacy —an agreement exists
in every problem. It also partially resolves the second issue — the agreement is uniquely
determined for symmetric problems. Not too much can be said for asymmetric problems,
except that the agreement is unique and effi cient. In the following, we take regularity as
a basic requirement, and suggest a rationality postulate to pin down a unique agreement
in hyperplane problems. We then impose an additional axiom to characterize the Nash
solution.

For two-person bargaining problems, let C be such that C1(S, d) = C2(S, d) = m(S, d)
for every symmetric problem (S, d) ∈ Σ, and C1(S, d) = C2(S, d) = {(b1(S, d), d2)} other-
wise. Clearly C is regular, but C is hardly sensible in portraying bargainers’behavior. The
unique unanimous agreement associated with C is symmetric in a symmetric problem, but
jumps to player 1’s dictatorial allocation in an asymmetric one. Given that in bargaining
every single party has the ability to unilaterally block any agreement reached by others, we
should expect the parties to compromise and meet in the middle. The question is where
the parties perceive “the middle”to be? When facing a bargaining situation, fairness could
be the major concern the parties have in mind. As argued in Shapley (1969), a bargainer
may contemplate whether an agreement is a “fair division”based on how much he/she sac-
rifices compared to the other parties at this agreement. In other words, a bargainer would
convince others to concede further by saying, “I give up more than you do in an effort to
reach an agreement, therefore you should give way.”But how do bargainers evaluate their
“sacrifices”? Consider the example depicted below (Figure 2). Suppose player 2 is willing
to make a compromise at x∗. The sacrifice made by player 2 in reaching an agreement can
be measured by area A, the set of all alternatives giving player 2 higher payoffs than x∗ but
he/she gives in. What if player 2 is willing to make a compromise at y∗ instead of x∗? The
area A + B consists of all alternatives that give player 2 higher payoffs than y∗. However,
player 2 makes unnecessary, ineffi cient sacrifice in B. In order to offer payoff y∗1 to player

13



X2

X1

y*

x*
A

B

Figure 2

1, player 2 does not have to sacrifice that much by accepting y∗2 as his/her payoff. Instead,
player 2 could propose x∗ as a compromise, improving his/her own payoff without asking
player 1 to make a further concession compared to the alternative proposal y∗. Accordingly,
the effective sacrifice made by player 2 is still measured by area A.

We formalize this idea as follows. Let i ∈ N and (S, d) ∈ Σ. Define ϕi,S : S −→ R
by ϕi,S(x) = max{zi|(zi, x−i) ∈ S}. Let V ol : BRn −→ R+ denote the Lebesgue measure
(n-dimensional volume) on Rn, where BRn stands for the Borel σ−algebra on Rn. Define
µi,(S,d) : 2S −→ R+ by

µi,(S,d)(A) =

{
supx∈A∩IR(S,d) V ol({y ∈ IR(S, d)|yi ≥ ϕi,S(x)}) A ∩ IR(S, d) 6= ∅

0 A ∩ IR(S, d) = ∅ .

Then µi,(S,d)(Ci(S, d)) is a proper measure the parties may take to fathom the degree of
(maximal) concession made by player i.Denote by µC(S,d) = (µ1,(S,d)(C1(S, d)), ..., µn,(S,d)(Cn(S, d))).

A problem (S, d) ∈ Σ is said to be a hyperplane problem if S is a standard orthogonal
n−simplex in Rn; i.e., S can be expressed in the following form: S = {x ∈ Rn|

∑n
i=1

xi−bi
ai
≤

1, a > 0, x ≥ b}. Let ΣH ⊂ Σ be the collection of all hyperplane problems in Σ. If two vectors
u and v in Rn are parallel, we write u//v. Consider the following rationality principle:

Concession Invariance Principle in Hyperplane Problems (CIPH) : For every
pair of problems (S, d) and (T, e) in ΣH , µC(S,d)//µC(T,e).

Pick a problem (S, d) in ΣH , and let C(S, d) be the players’compromise sets in (S, d).
For each player i ∈ N, given the concessions made by other players, C−i(S, d), i must
perceive that the concession made by him/her, Ci(S, d), is a justifiable, fair one. When some
alternatives are added to or eliminated from S, then they face a new problem (T, e) in ΣH ,
how would the parties renegotiate their compromise sets? CIPH suggests that the parties
would proportionally adjust their mutual concessions in adapting to the new bargaining
situation. That is to say, the ratio of concessions measure by µ between two hyperplane
problems remains constant across parties. It also implies that, if for some hyperplane
problem all parties make equal concessions (µ1,(S,d)(C1(S, d)) = ... = µn,(S,d)(Cn(S, d)) for
some (S, d) in ΣH), then they make equal concessions in all hyperplane problems.

For symmetric problems, the following lemma shows that the parties make the same
degree of concession under regularity and EC.
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Lemma 5 Let (S, d) ∈ Σ be a symmetric problem. If C is regular and satisfies EC, then
µ1,(S,d)(C1(S, d)) = ... = µn,(S,d)(Cn(S, d)).

Observe that in a symmetric problem (S, d) ∈ Σ, CR directly implies µ1,(S,d)(C1(S, d)) =
... = µn,(S,d)(Cn(S, d)). Lemma 5, however, does not resort to CR for the parties to make
equal concessions. It states that in a symmetric problem, the parties make equal concessions
when: (i) they consent to reach a unique symmetric agreement, and (ii) they do not make
excessive concessions. With this lemma in hand, we are ready to show the following:

Proposition 3 If C is regular and satisfies EC and CIPH , then Bc(S, d) = m(S, d) for
every (S, d) ∈ ΣH .

In hyperplane problems, the midpoint is the unique effi cient agreement at which the
parties make exact and equal concessions. All well-known solutions in bargaining literature
except the proportional solutions coincide with the midpoint allocation in hyperplane games.
The coincidence arises as the characterizations of those solution concepts make use of either
the SI axiom or the Midpoint Domination (MD) axiom (Moulin (1983)). The expected
utility theorem is the cornerstone of Nash’s bargaining theory, and the von Neumann-
Morgenstern utilities are unique up to positive affi ne transformations. Thus SI was naturally
introduced by Nash as a desirable property a solution should have. On the other hand, MD
is a fairness principle stemming from random dictatorship: the parties should get no less
than the average of their dictatorial payoffs. Here the midpoint is the unique agreement
outcome in hyperplane games as the parties make equal concessions in symmetric problems,
and extend these concessions proportionally to hyperplane problems.

What if the parties use a measure different from µ to evaluate the concessions made by
each other? How would it change the result? Consider the following two other measures
the parties may have in mind. Let Ṽ ol : BRn−1 −→ R+ denote the (n − 1)-dimensional
Lebesgue measure on Rn−1. Define µ̃i,(S,d) : 2S −→ R+ by

µ̃i,(S,d)(A) =

{
supx∈A∩IR(S,d) Ṽ ol({y ∈ IR(S, d) ∩WPO(S)|yi ≥ ϕi,S(x)}) A ∩ IR(S, d) 6= ∅

0 A ∩ IR(S, d) = ∅
.

µ̃ differs from µ in that only effi cient allocations are included in calculating a party’s
degree of concession. Alternatively, a party may compare the payoff he/she is willing to
accept against the highest possible payoff he/she could obtain: define ˜̃µi,(S,d) : 2S −→ R+
by ˜̃µi,(S,d)(A) =

{
supx∈A∩IR(S,d)

ϕi,S(x)−di
bi(S,d)−di A ∩ IR(S, d) 6= ∅

0 A ∩ IR(S, d) = ∅
.

All three measures are intuitively appealing, and different bargainers may use different
measures in extending the concessions made in symmetric problems to hyperplane problems.
It turns out that Proposition 3 still holds —no matter which of the three measures we use in
defining CIPH —the agreement is still the midpoint in hyperplane problems. Hence CIPH
is a robust rationality principle in hyperplane problems.

This robustness property, however, disappears when one tries to extend CIPH to non-
hyperplane problems. Depending on which measure we use, the concession invariance prin-
ciple, when it is applied to all problems rather than just hyperplane problems, could lead
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us to the Equal Area solution, the Equal Length or Equal Surface solution, or the Kalai-
Smorodinsky solution. Given that the Nash solution is the most prominent solution concept
in the literature, a characterization of the Nash solution under our new framework is pro-
vided. Consider the following axiom:

Contraction Inclusion (CI) Given (S, d) and (T, e) in Σ with d = e, if S ⊂ T then
Ci(T, d) ∩ S ⊂ Ci(S, d) for every i ∈ N.

Fix a bargaining situation and a profile of compromise sets. Suppose now some alterna-
tives become infeasible. Facing this new bargaining situation, how would the parties readjust
their acceptable compromises? CI states that the parties would be willing to accept those
compromises that were previously accepted as agreement as long as they are still available.

Proposition 4 If C is regular and satisfies EC, CIPH and CI, then Bc = Nash.

Suppose the parties, who make no excessive concessions, consent to reach a unique
effi cient (symmetric) agreement for every (symmetric) problem, and proportionally adjust
their concessions in hyperplane problems. Moreover, when facing a new bargaining situation
with fewer alternatives, the parties accept previously accepted compromises as long as they
are still available. Then the agreement is the one predicted by Nash.

Several remarks are in order. First, the rational foundation of the Nash solution pro-
vided here is very different from that provided by Nash himself. In Nash’s characterization,
the agreements are uniquely determined by PO and SYM in symmetric problems. SI then
generalizes the agreements in symmetric problems to hyperplane problems, and IIA is im-
posed to extend those agreements to non-hyperplane problems. In our characterization, PO
and SYM, two properties implied in the regularity of C, are derived through rationality
principles adopted by the parties in making mutual concessions. CIPH portrays how the
parties make proportional mutual adjustments in their concessions to reach agreements in
hyperplane problems, and CI extends those agreements to non-hyperplane problems.

Second, Nash’s characterization and ours complement each other. Given a bargaining
situation, consider the following two questions:

(i) What is the “just agreement”an impartial arbitrator would recommend to the par-
ties? What rationality principles should the arbitrator follow to make this recommendation?

(ii) What would be the agreement reached by the parties? What rationality principles
do they follow in making mutual concessions to reach this agreement?

Note that SI excludes interpersonal comparisons of utility, and it is very unlikely the par-
ties would have this principle in mind, or even use this principle as an argument to convince
each other to make concessions during the negotiation process. Thus Nash’s characteriza-
tion is more suitable to answer the first question. On the other hand, our characterization
is more suitable to address the second one.

Third, while the agreement characterized in Proposition 4 coincides with the Nash so-
lution, the profile of compromises, C, is not unique. The most trivial example satisfying
Proposition 4 is the profile C with Ci(S, d) = Nash(S, d) for every i ∈ N and (S, d) ∈ Σ.
It can be readily seen that there are uncountable other examples. This implies that when
we see two groups of bargainers reach the same agreement for the same problem, we can-
not jump to a conclusion that both groups share exactly the same reasonings or follow the
same “fairness”principles in reconciling their differences. The agreement reached provides
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only censored data —no further information can be implied except that each bargainer’s
compromise set contains this agreement.

5 Concluding Remarks

This paper proposes an alternative framework to understand the bargaining problem. We
study the formation of bargainers’compromise sets during negotiations, and establish the
existence of agreement, which provides the first rational foundation for Nash’s axiomatic
approach. We also characterize the Nash solution under this new framework. Two lines
of future research are promising. One may take the framework developed here to charac-
terize other well-known bargaining solutions. This direction may bring new insight into
old solution concepts, and new solution concepts may emerge along the way. The second
line of research could be to embed this new approach into various types of modelling in
bargaining to address several important issues, such as bargaining with uncertain disagree-
ment (Chun and Thomson (1990)), bargaining with a variable population (Lensberg and
Thomson (1989)), bargaining with non-expected utility preferences (Rubinstein, Safra, and
Thomson (1992)), and bargaining in committees (Laruelle and Valenciano (2007)).

6 Appendix: Proofs

Proof of Lemma 1. Let C satisfy CR and SPC. Pick any pair of agents {i, j}, a symmetric
problem (S, d) ∈ Σ, and x ∈ Ci(S, d). By CR, C(S, d) = πij(πijC1(S, d), ..., πijCn(S, d)).
Therefore Cj(S, d) = πijCi(S, d). As x ∈ Ci(S, d), πijx ∈ Cj(S, d). If x = πijx, then
x ∈ Ci(S, d)∩Cj(S, d)∩L(x, πijx) and the lemma holds. Assume now x 6= πijx. Suppose to
the contrary that Ci(S, d)∩Cj(S, d)∩L(x, πijx) = ∅. Let ρ : Rn×Rn −→ [0,∞) denote the
Euclidean metric. Then the distance between two sets E and F in Rn is defined as ρ(E,F ) =
inf{ρ(y, z) : y ∈ E, z ∈ F}. Since Ci(S, d)∩L(x, πijx) and Cj(S, d)∩L(x, πijx) are two non-
empty disjoint compact sets, ρ(Ci(S, d) ∩ L(x, πijx), Cj(S, d) ∩ L(x, πijx)) = ε > 0. By the
compactness of Ci(S, d)∩L(x, πijx), there exists x̃ ∈ Ci(S, d)∩L(x, πijx) with ρ(x̃, Cj(S, d)∩
L(x, πijx)) = ε. By CR, πij x̃ ∈ Cj(S, d)∩L(x, πijx). By SPC, Ci(S, d)∩L(x̃, πij x̃)\{x̃} 6= ∅.
Pick z ∈ Ci(S, d) ∩ L(x̃, πij x̃)\{x̃}. z 6= πij x̃, for otherwise z = πij x̃ ∈ Ci(S, d) ∩ Cj(S, d) ∩
L(x, πijx), contradicting the assumption that Ci(S, d) ∩ Cj(S, d) ∩ L(x, πijx) = ∅. By CR
again, πijz ∈ Cj(S, d) ∩ L(x, πijx). It can be readily seen that ρ(z, πijz) < ε. Accordingly,
ρ(Ci(S, d) ∩ L(x, πijx), Cj(S, d) ∩ L(x, πijx)) < ε, a contradiction.

Proof of Lemma 2. Let C satisfy CR and SPC*. Pick any pair of agents {i, j},
a symmetric problem (S, d) ∈ Σ, and x ∈ Ci(S, d) with x 6= πijx. Define A = {y ∈
Lo(x, πijx)|yi = yj}. By CR, it suffi ces to show that Ci(S, d) ∩ A 6=∅. Suppose to the
contrary that Ci(S, d) ∩ A = ∅. By CR, πijx ∈ Cj(S, d). By SPC*, there exists x̃ ∈
Ci(S, d) ∩ Lo(x, πijx). Observe that Ci(S, d) ∩ L(x̃, πij x̃) ⊂ Ci(S, d) ∩ Lo(x, πijx) and Ã =

{y ∈ L(x̃, πij x̃)|yi = yj} ⊂ A. Hence Ci(S, d)∩A = ∅ implies Ci(S, d)∩L(x̃, πij x̃)∩Ã = ∅.
Let ρ : Rn × Rn −→ [0,∞) denote the Euclidean metric. Since Ci(S, d) ∩ L(x̃, πij x̃) and
Ã are two non-empty disjoint compact sets, ρ(Ci(S, d) ∩ L(x̃, πij x̃), Ã) = ε > 0. By the
compactness of Ci(S, d)∩L(x̃, πij x̃), there exists ˜̃x ∈ Ci(S, d)∩L(x̃, πij x̃) with ρ(˜̃x, Ã) = ε.

By CR, πij ˜̃x ∈ Cj(S, d)∩L(x̃, πij x̃). ˜̃x 6= πij ˜̃x, for otherwise ρ(˜̃x, Ã) = 0, which contradicts
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ρ(˜̃x, Ã) = ε > 0. By SPC*, Ci(S, d) ∩ Lo(˜̃x, πij ˜̃x) 6= ∅. Pick z ∈ Ci(S, d) ∩ Lo(˜̃x, πij ˜̃x) ⊂
Ci(S, d)∩L(x̃, πij x̃). It can be readily seen that ρ(z, Ã) < ε, which contradicts the fact that
ρ(Ci(S, d) ∩ L(x̃, πij x̃), Ã) = ε. Therefore we must have Ci(S, d) ∩ A 6=∅.

Before proceeding to the proof of Proposition 1, we first establish a lemma. Given
m ∈ {1, ..., n− 2}, define the following property:

Property Pm : For any I ⊂ N with |I| = m, ∩i∈ICi(S, d)∩{y ∈ Rn|yi = yj for i, j ∈ I} 6=
∅. Moreover, for every x ∈ ∩i∈ICi(S, d) ∩ {y ∈ Rn|yi = yj for i, j ∈ I} and t ∈ N\I with
xt 6= xi∗ , where i∗ ∈ I, ∩i∈I∪{t}Ci(S, d) ∩ {y ∈ Rn|min{xi∗ , xt} < yi = yj ≤ max{xi∗ , xt}
for i, j ∈ I ∪ {t}, yk = xk for k ∈ N\(I ∪ {t})} 6= ∅.

Lemma 6 Suppose C satisfies CR and (S, d) ∈ Σ is a symmetric problem. Then Pm

implies Pm+1 for m = {1, ..., n− 2}.

Proof of Lemma 6. Assume the premise of the lemma holds. Pick W ⊂ N with
|W | = m + 1. Without loss of generality, assume W = {1, ...,m + 1}. First we show
that ∩i∈WCi(S, d) ∩ {y ∈ Rn|yi = yj for i, j ∈ W} 6= ∅. By Pm, there exists x ∈
∩i∈W\{1}Ci(S, d) ∩ {y ∈ Rn|yi = yj for i, j ∈ W\{1}}. If x1 = x2, by CR and the fact
that (S, d) is symmetric, x ∈ C1(S, d). Therefore ∩i∈WCi(S, d) ∩ {y ∈ Rn|yi = yj for
i, j ∈ W} 6= ∅. If x1 6= x2, then we apply Pm and conclude that ∩WCi(S, d) ∩ {y ∈
Rn|min{x2, x1} < yi = yj ≤ max{x2, x1} for i, j ∈ W, yk = xk for k ∈ N\W} 6= ∅. Hence
∩i∈WCi(S, d) ∩ {y ∈ Rn|yi = yj for i, j ∈W} 6= ∅ in both cases.

Next we prove the second part of Pm+1. Pick any x ∈ ∩i∈WCi(S, d) ∩ {y ∈ Rn|yi = yj
for i, j ∈W}, and t ∈ N\I with xt 6= x1.Without loss of generality, let t = m+ 2. Consider
two subcases:

(i) x1 < xm+2. Define E = {y ∈ Rn|x1 ≤ y1 = ... = ym+1 ≤ ym+2 ≤ xm+2, yi = xi for
i = m+3, ..., n}. E is compact and non-empty (x ∈ E). Then the set G ≡ ∩m+1i=1 Ci(S, d)∩E
is compact and non-empty. Define a continuous mapping f : G −→ R by f(y) = ym+2− y1.
f attains its minimum on G. Let ε = miny∈G f(y) and z ∈ arg miny∈G f(y). ε ≥ 0 as
ym+2 − y1 ≥ 0 for every y in G. We claim that ε = 0. Suppose to the contrary that
ε > 0. Since z ∈ arg miny∈G f(y), zm+2 − z1 = zm+2 − z2 = ε. Applying property Pm to
the triple (I = {2, ...,m + 1}, z, t = m + 2), there exists z′ = (z1, a, ..., a, xm+3, ..., xn) ∈
∩m+2i=2 Ci(S, d), where min{z2, zm+2} = z2 = z1 < a ≤ max{z2, zm+2} = zm+2. Applying Pm

again to the triple (I = {2, ...,m+ 1}, z′, t = 1), there exists z′′ = (b, ..., b, a, xm+3, ..., xn) ∈
∩m+1i=1 Ci(S, d), where min{z1, a} = z1 < b ≤ max{z1, a} = a. Observe that b > z1 ≥ x1
and b ≤ a ≤ zm+2 ≤ xm+2. Therefore z′′ ∈ E, which in turn implies that z′′ ∈ G. Then
f(z′′) = a − b < zm+2 − z1 = ε, a contradiction! Accordingly we must have ε = 0.
ε = 0 implies z1 = ... = zm+2. By CR and the fact that z ∈ C1(S, d), z ∈ Cm+2(S, d).
Hence z ∈ ∩m+2i=1 Ci(S, d). Moreover, the above procedure also shows that x1 < z1 ≤ xm+2.
Accordingly, ∩m+2i=1 Ci(S, d) ∩ {y ∈ Rn|min{x1, xm+2} = x1 < yi = yj ≤ max{x1, xm+2} =
xm+2 for i, j ∈W ∪ {m+ 2}, yk = xk for k ∈ N\(W ∪ {m+ 2})} 6= ∅.

(ii) x1 > xm+2. Simply replace E by E′ = {y ∈ Rn|x1 ≥ y1 = ... = ym+1 ≥ ym+2 ≥
xm+2, yi = xi for i = m+ 3, ..., n} and f(y) = ym+2 − y1 by f ′(y) = y1 − ym+2, and repeat
the steps in (i).

Proof of Proposition 1. The proof is by induction. Assume the premise of the proposi-
tion holds. By Lemma 2, property Pm holds for m = 1. By iteratively applying Lemma 6,
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property Pm holds for m = 2, ..., n − 1. Then by Pn−1, ∩n−1i=1 Ci(S, d) ∩ {y ∈ Rn|y1 = ... =
yn−1} 6= ∅. Let x ∈ ∩n−1i=1 Ci(S, d) ∩ {y ∈ Rn|y1 = ... = yn−1}. If x1 = xn, then it can be
readily seen that x ∈ Cn(S, d) and the proof is complete. If x1 6= xn, property Pn−1 again
implies that ∩ni=1Ci(S, d) ∩ {y ∈ Rn|y1 = ... = yn} 6= ∅.

To prove Proposition 2, we first establish two lemmas.

Lemma 7 Suppose C satisfies PC. For any pair of players {i, j} ⊂ N and (S, d) ∈ Σ,
Ci(S, d) ∩ Cj(S, d) ∩ L(x, y) 6= ∅ for every x ∈ Ci(S, d) and y ∈ Cj(S, d).

The proof is analogous to that of Lemma 1 and hence is omitted.
Given m ∈ {1, ..., n− 1}, define the following property:

PropertyQm : For any I ⊂ N with |I| = m, ∩i∈ICi(S, d) 6= ∅.Moreover, for every I ⊂ N
with |I| = m and t ∈ N\I, x ∈ ∩i∈ICi(S, d) and y ∈ Ct(S, d), ∩i∈I∪{t}Ci(S, d) ∩ L(x, y) 6=
∅.

Lemma 8 Qm implies Qm+1 for m = {1, ..., n− 2}.

Proof of Lemma 8. Fix some m ∈ {1, ..., n− 2} and assume Qm holds. Pick any I ⊂ N
with |I| = m + 1 and let j ∈ I. By Qm, ∩i∈I\{j}Ci(S, d) 6= ∅. Let x ∈ ∩i∈I\{j}Ci(S, d)
and y ∈ Cj(S, d). By Qm again, ∩i∈ICi(S, d) ∩ L(x, y) 6= ∅. Hence ∩i∈ICi(S, d) 6= ∅ for
any I ⊂ N with |I| = m + 1. This establishes the first part of Qm+1. Next we show the
second part of Qm+1 is also true. Pick any I ⊂ N with |I| = m + 1 and t ∈ N\I. Pick
x ∈ ∩i∈ICi(S, d) and y ∈ Ct(S, d). Suppose to the contrary that ∩i∈I∪{t}Ci(S, d)∩L(x, y) =
∅. Let ρ : Rn×Rn −→ [0,∞) denote the Euclidean metric. Since ∩i∈ICi(S, d)∩L(x, y) and
Ct(S, d)∩L(x, y) are two non-empty disjoint compact sets, ρ(∩i∈ICi(S, d)∩L(x, y), Ct(S, d)∩
L(x, y)) = ε > 0. By compactness, there exist x̃ ∈ ∩i∈ICi(S, d) ∩ L(x, y) and ỹ ∈ Ct(S, d) ∩
L(x, y) with ρ(x̃, ỹ) = ε. Let j ∈ I. By Qm, ∩i∈{t}∪I\{j}Ci(S, d) ∩ L(x̃, ỹ) 6= ∅. Let z ∈
Ct(S, d)∩L(x̃, ỹ) ⊂ Ct(S, d)∩L(x, y). z 6= ỹ for otherwise ỹ ∈ ∩i∈I∪{t}Ci(S, d)∩L(x, y) and
ρ(∩i∈ICi(S, d) ∩ L(x, y), Ct(S, d) ∩ L(x, y)) = 0. Then ρ(x̃, z) < ρ(x̃, ỹ) = ρ(∩i∈ICi(S, d) ∩
L(x, y), Ct(S, d) ∩ L(x, y)) = ε, a contradiction.

Proof of Proposition 2. The statement Bc(S, d) ∩ {y ∈ Rn|y1 = ... = yn} 6= ∅
when (S, d) is symmetric is already established in Proposition 1. Here we prove the non-
emptyness of Bc(S, d). Suppose C satisfies PC. Let (S, d) ∈ Σ. By Lemma 7, property Q1

holds. Iteratively invoking Lemma 8 concludes that Qn−1 holds. By Qn−1, Bc(S, d) 6= ∅.

Proof of Lemma 4. Suppose to the contrary that the unique agreement is x /∈WPO(S).
Then there exists y ∈ Rn with y > x such that (yi, x−i) ∈ S for every i ∈ N. By CM,
(yi, x−i) ∈ Ci(S, d) for every i. Following the proof of Proposition 2, there exists a unanimous
agreement x∗ ∈ L(x, y)\{x}, which contradicts the uniqueness of agreement.

Proof of Lemma 5. Suppose C is regular and satisfies EC, and (S, d) ∈ Σ is sym-
metric. By the regularity of C, Bc(S, d) = Ci(S, d) ∩ (∩−iCj(S, d)) = (a, ..., a) ∈ PO(S) ∩
IR(S, d). By EC, xi ≥ a for every x ∈ Ci(S, d), i = 1, ..., n. Then ϕi,(S,d)(x) ≥ a for every
x ∈ Ci(S, d), i = 1, ..., n. Accordingly, µi,(S,d)(Ci(S, d)) = supx∈Ci(S,d)∩IR(S,d) V ol({y ∈
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IR(S, d)|yi ≥ ϕi,(S,d)(x)}) = V ol({y ∈ IR(S, d)|yi ≥ a}). As (S, d) is symmetric, V ol({y ∈
IR(S, d)|yi ≥ a}) = V ol({y ∈ IR(S, d)|yj ≥ a}), i, j ∈ N. Hence, µ1,(S,d)(C1(S, d)) = ... =
µn,(S,d)(Cn(S, d)).

The proof of Proposition 3 makes use of the following result:

Lemma 9 Let Conv(v0, ..., vn) denote a n-simplex in Rn with vertices v0, ..., vn. Then
V ol(Conv(v0, ..., vn)) = 1

n! |det[v1 − v0, ..., vn − v0]| .

Proof of Lemma 9. See, for example, Stein (1966).

Proof of Proposition 3. Suppose C is regular and satisfies EC and CIPH . Pick any
(S, d) ∈ ΣH . Then IR(S, d) is a standard orthogonal n−simplex with IR(S, d) = {x ∈
Rn|

∑n
i=1

xi−di
bi(S,d)−di ≤ 1, x ≥ d}. By the regularity of C, Bc(S, d) is single-valued and belongs

to PO(S)∩IR(S, d). Let Bc(S, d) ≡ y. Then
∑n
i=1

yi−di
bi(S,d)−di = 1. By EC, µi,(S,d)(Ci(S, d)) =

supx∈Ci(S,d)∩IR(S,d) V ol({z ∈ IR(S, d)|zi ≥ ϕi,(S,d)(x)}) = V ol({z ∈ IR(S, d)|zi ≥ yi}). It
can be readily verified that {z ∈ IR(S, d)|zi ≥ yi} = Conv(v0, v1, ..., vn), where

vj =


(d1, ..., di−1, yi, di+1, ..., dn) j = 0

(d1, ..., di−1, bi(S, d), di+1, ..., dn) j = i

(d1, ..., dj−1, dj + (bj(S, d)− dj)(1− yi−di
bi(S,d)−di ), dj+1, ..., di−1, yi, di+1, ..., dn) 0 < j < i

(d1, ..., di−1, yi, di+1, ..., dj−1, dj + (bj(S, d)− dj)(1− yi−di
bi(S,d)−di ), dj+1, ..., dn) j > i

Accordingly,

vj − v0 =

{
(0, ..., 0, bi(S, d)− yi, 0, ..., 0) j = i

(0, ..., 0, (bj(S, d)− dj)(1− yi−di
bi(S,d)−di ), 0, ..., 0) j 6= i

By Lemma 9,

µi,(S,d)(Ci(S, d)) = V ol(Conv(v0, v1, ..., vn)) =
1

n!
|det[v1 − v0, ..., vn − v0]|

=
1

n!
(bi(S, d)− yi)Πj 6=i[(bj(S, d)− dj)(1−

yi − di
bi(S, d)− di

)]

=
1

n!
(
bi(S, d)− yi
bi(S, d)− di

)nΠnk=1(bk(S, d)− dk)

By Lemma 5 and CIPH , we must have

b1(S, d)− y1
b1(S, d)− d1

= ... =
bn(S, d)− yn
bn(S, d)− dn

Combined this with the condition
∑n
i=1

yi−di
bi(S,d)−di = 1, we conclude that yi = mi(S, d) =

1
nbi(S, d) + (1− 1

n)di, and Bc(S, d) = m(S, d).

Proof of Proposition 4. Suppose C is regular and satisfies EC, CIPH and CI. Pick
(S, d) ∈ Σ and identify its Nash solution Nash(S, d). Following Nash’s (1950) proof we can
construct a problem (T, d) such that T has the following properties: (i) T ⊃ S, (ii) T is a
standard orthogonal n−simplex in Rn, and (iii) Nash(S, d) = m(T, d). By Proposition 3,
Bc(T, d) = ∩ni=1Ci(T, d) = m(T, d) = Nash(S, d). By CI, Nash(S, d) ∈ Ci(S, d) for every i.
Then Nash(S, d) ∈ Bc(S, d). By the regularity of C, Nash(S, d) = Bc(S, d).
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