Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) November 27, 2021

Semantic function module pipeline generation

Automating the generation and optimization of inter-module process pipelines for industrial plants using semantic annotations and pre- and post-condition matching

Generierung von semantischen Function Module Prozess-Pipelines
Automatisierung der Generierung und Optimierung von Modul-zu-Modul-Prozess-Pipelines für industrielle Anlagen mittels semantischer Annotationen und Abgleich von Prä- und Post-Konditionen
  • Nicolai Schoch

    Nicolai Schoch is Scientist at ABB Corporate Research in Ladenburg, Germany. His research interests focus on semantics, modeling, analytics and automation for Industry 4.0 and Automation Engineering.

    EMAIL logo
    , Mario Hoernicke

    Mario Hoernicke is Senior Principal Scientist at ABB Corporate Research in Ladenburg, Germany. His research interest focusses on the development of new and innovative concepts for automation engineering.

    and Katharina Stark

    Katharina Stark (née Gohr) is Senior Scientist at ABB Corporate Research in Ladenburg, Germany. Her research interests are workflows and tools in the area of automation engineering.

Abstract

With modular automation, modular industrial plants use a functional engineering approach, and modules enable plug & produce plant engineering. However, plant configuration is still a largely manual process and often not optimized with respect to the available information. In this contribution, we propose a system and algorithm to support the automation engineer in the process of joining together modules into process pipelines and in their optimization. Our solution is built upon an abstract semantic data model that facilitates the automated matching of pre- and post-condition of modules and of the things that are processed by these modules. The pipeline generation engine is further extended by means of an optimization and ranking algorithm, and thus enables automated inter-module pipeline generation and plant optimization. We evaluate our system by means of a simple fictional use case scenario and prove feasibility, applicability as well as the huge potential for time and cost savings.

Zusammenfassung

Die modulare Automatisierung ermöglicht durch Verwendung eines funktionalen Engineering Ansatzes Plug & Produce in industriellen Anlagen. Das Engineering modularer Anlagen ist dennoch immer noch ein weitgehend manueller Prozess, welcher nicht alle zur Verfügung stehenden Informationen verwendet. In diesem Beitrag wird ein Algorithmus vorgeschlagen, welcher den Automatisierungstechniker beim Verbinden von Modulen zu Prozess-Pipelines unterstützt und welcher ein Optimieren der Anlagentopologie ermöglicht. Ein abstraktes semantisches Datenmodell ist hierbei die Basis für das automatische Vergleichen der Eingangs- und Ausgangsbedingungen der Stoffströme von Modulen und darauf aufbauend für die automatische Planung der Verrohrung der Module. Des Weiteren kann eine Optimierung und/oder Bewertung des Stoffflusses innerhalb der modularen Anlage stattfinden und alternative Anlagenkonfigurationen können vorgeschlagen werden. Zur Evaluierung des Algorithmus wird ein einfaches Anwendungsszenario verwendet, welches die Machbarkeit, Anwendbarkeit und letztlich das immense Potential zur Kostenreduktion demonstriert.

About the authors

Dr. rer. nat. Nicolai Schoch

Nicolai Schoch is Scientist at ABB Corporate Research in Ladenburg, Germany. His research interests focus on semantics, modeling, analytics and automation for Industry 4.0 and Automation Engineering.

Dipl.-Ing. (FH) Mario Hoernicke

Mario Hoernicke is Senior Principal Scientist at ABB Corporate Research in Ladenburg, Germany. His research interest focusses on the development of new and innovative concepts for automation engineering.

M. Sc. Katharina Stark

Katharina Stark (née Gohr) is Senior Scientist at ABB Corporate Research in Ladenburg, Germany. Her research interests are workflows and tools in the area of automation engineering.

References

1. Hoernicke, M. et al.: “Automation architecture and engineering for modular process plants – approach and industrial pilot application”, In: 1st Virtual IFAC World Congress (IFAC-V 2020).10.1016/j.ifacol.2020.12.1966Search in Google Scholar

2. IEC 63280 ED1/CD, “Automation engineering of modular systems in the process industry – General concept and interfaces”.Search in Google Scholar

3. Bernshausen, J. et al.: “Plug and produce nears market readiness”, ATP Magazin 61(1-2): 56–69, 2019.10.17560/atp.v61i1-2.2400Search in Google Scholar

4. VDI 2776, “Process engineering plants – Modular plants”, Part 1 “Fundamentals and planning modular plants”.Search in Google Scholar

5. VDI/VDE/NAMUR 2658, “Automation engineering of modular systems in the process industry”, Part 1, “General concept and interfaces”.Search in Google Scholar

6. Hoernicke, M. et al.: “Modular engineering of conventional plants – using MTP for world-scale industry plants”, ATP Magazin (submitted 2021).10.17560/atp.v63i4.2587Search in Google Scholar

7. ZVEI White Paper “Module-based Production in the Process Industry – effects on Automation in Industry 4.0 Environment”.Search in Google Scholar

8. Markaj, A. et al.: “Requirements and conceptual design for hybrid process plants,” In: IEEE 26th International Conference on Emerging Technologies and Factory Automation (ETFA), 2021, Västeras (submitted June 2021).10.1109/ETFA45728.2021.9613714Search in Google Scholar

9. ISO/IEC 2382-15:1999 Information technology – Vocabulary – Part 15: Programming languages.Search in Google Scholar

10. Gross, J.L., Yellen, J., Anderson, M.: “Graph Theory and Its Applications”, Chapman and Hall/CRC; 3. Edition.Search in Google Scholar

11. DECHEMA e. V., AK, “Modular Plants”: “Flexible chemical production by modularization and standardization – status quo and future trends”, 2016.Search in Google Scholar

12. Becker, T. et al.: “Decentralized modular production to increase supply chain efficiency in chemical markets”, J Business Economics, 2021.10.1007/s11573-020-01019-4Search in Google Scholar

13. Stutz, A. et al.: “Orchestration vs. choreography – functional association for future automation systems”, In: IFAC World Congress, 2020.10.1016/j.ifacol.2020.12.1961Search in Google Scholar

14. Radatz, H. et al.: “Selection of equipment modules for a flexible modular production plant by a multi-objective evolutionary algorithm”, J Computers & Chemical Engineering, 2018.10.1016/j.compchemeng.2018.12.009Search in Google Scholar

Received: 2021-06-24
Accepted: 2021-09-23
Published Online: 2021-11-27
Published in Print: 2021-12-20

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 18.11.2024 from https://www.degruyter.com/document/doi/10.1515/auto-2021-0090/html
Scroll to top button