Abstract
Despite advancements in metallography automation, sample preparation remains largely semi-automated with isolated subprocesses like sectioning, grinding, and polishing. Leveraging modern technologies such as collaborative robotics, AI-driven computer vision, and advanced sensors could enable fully integrated automation. However, the diversity of processes requires skilled human oversight. Integrating user-friendly cobot interfaces may promote a synergistic workspace that enhances safety, reduces monotony, and supports complex studies and documentation aligned with open science principles. Our study explores cost-effective mini robots in critical preparation stages, highlighting steps toward complex automation in metallography.
Kurzfassung
In der Metallographie werden Proben trotz Fortschritten bei der Automatisierung nach wie vor weitgehend halbautomatisch über isolierte Teilprozesse wie Schneiden, Schleifen und Polieren präpariert. Mit modernen Technologien wie kollaborativer Robotik, KI-gesteuerter Computer Vision und hochentwickelten Sensoren wäre eine vollintegrierte Automatisierung möglich. Allerdings müssen die verschiedenartigen Prozesse von einer qualifizierten Fachkraft überwacht werden. Mit der Einbindung benutzerfreundlicher Cobot-Schnittstellen (Cobot = kollaborativer Roboter) kann eine synergetische Arbeitsumgebung geschaffen werden, die mehr Sicherheit gewährleistet, die Monotonie verringert und den Weg frei macht für komplexe Untersuchungen und Dokumentationen, die den Grundsätzen der offenen Wissenschaft gerecht werden. Unsere Untersuchung beschäftigt sich mit der Nutzung von kostengünstigen Minirobotern für kritische Phasen der Präparation und präsentiert Schritte hin zu einer komplexen Automatisierung in der Metallographie.
About the authors
Jan Čermák is a PhD student at BUT and member of the Microscopy for Materials Science group at ISI. As a graduate in robotics, he integrates process automation in the metallography laboratory and in current research he deals with the application of deep learning methods for AHSS microstructure characterization.
Ondřej Ambrož is a PhD candidate at BUT. After completing his master’s degree in foundry technology, he was employed at the ŽĎAS steelworks as a melter-operator-metallurgist. Since 2018 he has been working at the ISI of the CAS where he is responsible for all metallographic operations and development of new methods.
6 Acknowledgment
The authors acknowledge the funding received from the Lumina Quaeruntur fellowship established by the Czech Academy of Sciences (LQ100652201).
6 Danksagung
Die Autoren bedanken sich für die finanzielle Unterstützung durch das Lumina Quaeruntur- Stipendium der tschechischen Akademie der Wissenschaften (LQ100652201).
References / Literatur
[1] Markin, R. S.: Laboratory automation systems. An introduction to concepts and terminology, American Journal of Clinical Pathology 98 (1992), 4 Suppl 1, pp. S3–S10. PMID: 1344701.Search in Google Scholar PubMed
[2] Zipperian, D. C.; Diaz, D.: Metallographic specimen preparation. Materials Park, OH: ASM International, 2000. ISSN 0882-7958.Search in Google Scholar
[3] https://www.metallographic.com/Metallographic-Technical/Metallography-Technical-Cleaning.htm, accessed April 23, (2024).Search in Google Scholar
[4] Licardo, J. T.; Domjan, M.; Orehovački, T.: Intelligent Robotics – A Systematic Review of Emerging Technologies and Trends, Electronics 13 (2024) 3. 10.3390/electronics13030542Search in Google Scholar
[5] Matheson, E.; Minto, R.; Zampieri, E. G. G.; Faccio, M.; Rosati, G.: Human-Robot Collaboration in Manufacturing Applications, Robotics 8 (2019) 4. 10.3390/robotics8040100Search in Google Scholar
[6] Vijayakuymar, G.; Suresh, B.: Significance and Application of Robotics in the Healthcare and Medical Field, TBEAH 3 (2022) 2, pp. 13–18. 10.36647/TBEAH/03.02.A003Search in Google Scholar
[7] Oliveira, L. F. P.; Moreira, A. P.; Silva, M. F.: Advances in Agriculture Robotics: A State-of-the-Art Review and Challenges Ahead, Robotics 10 (2021) 2. 10.3390/robotics10020052Search in Google Scholar
[8] Lee, H.-Y.; Murray, C. C.: Robotics in order picking: evaluating warehouse layouts for pick, place, and transport vehicle routing systems, International Journal of Production Research 57 (2019) 18, pp. 5821–5841. 10.1080/00207543.2018.1552031Search in Google Scholar
[9] Adachi, Y.; Sato, N.; Ojima, M.; Nakayama, M.; Wang, Y. T.: Development of Fully Automated SerialSectioning 3D Microscope and Topological Approach to Pearlite and Dual-Phase Microstructure in Steels (2012). 10.1007/978-3-319-48762-5_6Search in Google Scholar
[10] https://www.ues.com/robomet, accessed May 13, (2024).Search in Google Scholar
[11] www.ues.com/news/rmintegrations, accessed May 13, (2024).Search in Google Scholar
[12] Chapman, M. G.; Uchic, M. D.; Scott, J. M.; Shah, M. N.; Donegan, S. P.; et al.: 3D Reconstruction of an Additive Manufactured IN625 Tensile Sample Using Serial Sectioning and Multi-Modal Characterization, Microscopy and Microanalysis 25 (2019) S2, pp. 342–343. Cambridge University Press. 10.1017/S1431927619002447.Search in Google Scholar
[13] Tsai, S. P.; Konijnenberg, P. J.; Gonzalez, I.: Development of a new, fully automated system for electron backscatter diffraction (EBSD)-based large volume threedimensional microstructure mapping using serial sectioning by mechanical polishing, and its application to the analysis of special boundaries in 316L stainless steel, Rev. Sci. Instrum. 93 (2022), 093707. 10.1063/5.0087945Search in Google Scholar PubMed
[14] Lemiasheuski, A.; Bajer, E.; Oder, G.; Göbel, A.; Hesse, R.; Pfennig, A.; Bettge, D.: Development of an automated 3D metallography system and some first application examples in microstructural analysis, Practical Metallography 60 (2023) 10, pp. 676–691. 10.1515/pm-2023-0057Search in Google Scholar
[15] Ambrož, O.; Čermák, J.; Jozefovič, P.; Mikmeková, Š.: Automated color etching of aluminum alloys, Practical Metallography 59 (2022) 8–9, pp. 459–474. 10.1515/pm-2022-1014Search in Google Scholar
[16] Čermák, J.; Ambrož, O.; Jozefovič, P.; Mikmeková, Š.: Automation of Metallographic Sample Cleaning Process, Proceedings 31st International Conference on Metallurgy and Materials. TANGER (2022), pp. 402-407. 10.37904/metal.2022.4478Search in Google Scholar
[17] Ambrož, O.; Čermák, J.; Jozefovič, P.; Mikmeková, Š.: Automation of Metallographic Sample Etching Process, Defect and Diffusion Forum 423 (2023) April, pp. 113–118. 10.4028/p-s347g9Search in Google Scholar
[18] https://www.cloeren.de/thetching/, accessed May 13, (2024).Search in Google Scholar
[19] Ambrož, O.; Čermák, J.; Jozefovič, P.; Mikmeková, Š.: Effects of etchant stirring on the surface quality of the metallography sample, Journal of Physics: Conference Series 2572 (2023). 10.1088/1742-6596/2572/1/012011Search in Google Scholar
[20] Ambrož, O.; Čermák, J.; Jozefovič, P.; Mikmeková, Š.: Robotization of conventional electrolytic process in metallography, Practical Metallography 60 (2023) 10, pp. 643–659. 10.1515/pm-2023-1056Search in Google Scholar
[21] Čermák, J.: Design of Automated Electro-Polishing Apparatus for Electron Microscopy Specimens Preparation, Brno University of Technology, Faculty of Mechanical Engineering, Institute of Production Machines, Systems, and Robotics, Master’s Thesis (2021). https://www.vutbr.cz/studenti/zav-prace/detail/132530.Search in Google Scholar
[22] www.youtube.com/watch?v=UOgVlPPeRbU, accessed May 13, (2024).Search in Google Scholar
[23] Demaitre, E.: Boston Dynamics Debuts Electric Version of Atlas Humanoid Robot, The Robot Report, WTWH Media, (2024), www.therobotreport.com/boston-dynamics-debuts-electric-version-of-at-las-humanoid-robot/.Search in Google Scholar
[24] www.youtube.com/watch?v=Sq1QZB5baNw, accessed May 13, (2024).Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston, Germany