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Abstract. LF is a meta-logical framework that has become a standard
tool for representing logics and studying their properties. Its focus is
proof theoretic, employing the Curry-Howard isomorphism: propositions
are represented as types, and proofs as terms.

Hets is an integration tool for logics, logic translations and provers, with
a model theoretic focus, based on the meta-framework of institutions, a
formalisation of the notion of logical system.

In this work, we combine these two worlds. The benefit for LF is that
logics represented in LF can be (via Hets) easily connected to various in-
teractive and automated theorem provers, model finders, model checkers,
and conservativity checkers - thus providing much more efficient proof
support than mere proof checking as is done by systems like Twelf. The
benefit for Hets is that (via LF) logics become represented formally, and
hence trustworthiness of the implementation of logics is increased, and
correctness of logic translations can be mechanically verified. Moreover,
since logics and logic translations are now represented declaratively, the
effort of adding new logics or translations to Hets is greatly reduced.
This work is part of a larger effort of building an atlas of logics and
translations used in computer science and mathematics.

1 Introduction

There is a large manifold of different logical systems used in computer science,
such as propositional, first-order, higher-order, modal, description, temporal lo-
gics, and many more. These logical systems are supported by software, like e.g.
(semi-)automated theorem provers, model checkers, computer algebra systems,
constraint solvers, or concept classifiers, and each of these software systems
comes with different foundational assumptions and input languages, which makes
them non-interoperable and difficult to compare and evaluate in practice.

There are two main approaches to remedy this situation. The model the-
oretic approach of institutions [GB92IMes89] provides a formalisation of the
notion of logical system. The benefit is that a large body of meta-theory can
be developed independent of the specific logical system, including specification
languages for structuring large logical theories. Recently, even a good part of



model theory has been generalised to this setting [Dia08]. Moreover, the Hetero-
geneous Tool Set (Hets, [MMLOQT]) provides an institution-independent software
interface, such that a heterogeneous proof management involving different tools
(as listed above) is practically realised. In Hets, logic translations, formalized
as so-called institution comorphisms, become first-class citizens. Heterogeneous
specification and proof management is done relative to a graph of logics and
translations.

The proof theoretic approach of logical frameworks starts with one “univer-
sal” logic that is used as a logical framework. This is used for representing logics
as theories (in the “universal” logic of the framework). For instance, the Edin-
burgh Logical Framework LF [HHP93| has been used extensively to represent
logics [HST94/PSKT03/AHMP98], many of them included in the Twelf distribu-
tion [PS99]. Logic representations in Isabelle [Pau94] are notable for the size of
the libraries in the encoded logics, especially for HOL [NPW02]. Logic represen-
tations in rewriting logic [MOM94] using the Maude system [CELM96] include
the examples of equational logic, Horn logic and linear logic. A notable prop-
erty of rewriting logic is reflection i.e. one can represent rewriting logic within
itself. Zermelo-Fraenkel and related set theories were encoded in a number of
systems, see, e.g., [PC93| or [TB85]. Other systems employed to encode logics
include Coq [BC04], Agda [Nor(05], and Nuprl [CABT86|. Only few logic transla-
tions have been formalized systematically in this setting. Important translations
represented using the logic programming interpretation of LF include cut elim-
ination [Pfe00] and the HOL-Nurpl translation [SS04]. The latter guided the
design of the Delphin system [PS08] for logic translations.

Both approaches provide the theoretical and practical infrastructure to define
logics. However, there are two major differences. Firstly, Hets is based on model
theory — the semantics of implemented logics and the correctness of translations
are determined by model theoretic arguments. Proof theory is only used as a
tool to discharge proof obligations and is not represented explicitly.

Secondly, the logics of Hets are specified on the meta-level rather than within
the system itself. Each logic or logic translation has to be specified by imple-
menting a Haskell interface that is part of the Hets code, and tools for parsing
and static analysis have to be provided. Consequently, only Hets developers but
not users can add them. Besides the obvious disadvantage of the cost involved
when adding logics, this representation does not provide us with a way to rea-
son about the logics or their translations themselves. In particular, each logic’s
static analysis is part of the trusted code base, and the translations cannot be
automatically verified for correctness.

The work reported here is part of the ongoing project LATIN (Logic Atlas
and Integrator, [KMR09]). LATIN has two main goals: to fully integrate proof
and model theoretic frameworks described above preserving their respective ad-
vantages, and to create modular formalizations of commonly used logics together
with logic morphisms interrelating them: the Logic Atlas. To this end, we de-
velop general definition of a logical framework (the LATIN metaframework
that covers logical frameworks such as LF, Isabelle, and rewriting logic and



implement it in Hets. The LATIN metaframework follows a “logics as theo-
ries/translations as morphisms” approach such that a theory graph in a logical
framework leads to a graph of institutions and comorphisms via a general con-
struction. This means that new logics can now be added to Hets in a purely
declarative way. Moreover, the declarative nature means that logics themselves
are no longer only formulated in the semi-formal language of mathematics, but
now are fully formal objects, such that one can reason about them (e.g. prove
soundness of proof systems or logic translations) within proof systems like Twelf.

This paper is organized as follows. We give introductions to the model and
proof theoretic approaches and the LATIN Atlas in Sect. [2l We introduce the
LATIN metaframework in Sect. [3| and describe its integration into the Hets
system in Sect. [d] We will use an encoding of first-order logic in the logical
framework LF as a running example.

2 Preliminaries

2.1 The Heterogeneous Tool Set

The Heterogeneous Tool Set (Hets, [MML0T]) is a set of tools for multi-logic spec-
ifications, which combines parsers, static analyzers, and theorem provers. Hets
provides a heterogeneous specification language built on top of CASL [ABK™02]
and uses the development graph calculus [MAHOG] as a proof management com-
ponent. The graph of logics supported by Hets and their translations is presented
in Fig.

Hets formalizes the logics and their translations using the abstract model
theory notions of institutions and institution comorphisms (see [GB92]).

Definition 1. An institution is a quadruple I = (Sig,Sen, Mod, =) where:

— Sig is a category of signatures;

— Sen : Sig — Set is a functor to the category Set of small sets and functions,
giving for each signature X its set of sentences Sen(X) and for any signature
morphism ¢ : X — X' the sentence translation function Sen(p) : Sen(X) —
Sen(XY’) (denoted by a slight abuse also ¢);

— Mod : Sig°” — Cat is a functor to the category of categories and functors
Cat E| giving for any signature X its category of models Mod(X) and for
any signature morphism ¢ : X — X' the model reduct functor Mod(y) :
Mod (X’) = Mod(X) (denoted _|,);

— a satisfaction relation =5 C |Mod(X)| x Sen(X) for each signature X

such that the following satisfaction condition holds:

M, s e M Exple)

for each M' € |Mod(X')| and e € Sen(X), expressing that truth is invariant
under change of notation and context.

4 We disregard here the foundational issues, but notice however that Cat is actually
a so-called quasi-category.
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Fig. 1. Hets logic graph

For example, the institution of unsorted first-order logic FOL has signa-
tures comnsisting of a set of function symbols and a set of predicate symbols,
with their arities. Signature morphisms map symbols such that their arities are
preserved. Models are first-order structures, and sentences are first-order formu-
las. Sentence translation means replacement of the translated symbols. Model
reduct means reassembling the model’s components according to the signature
morphism. Satisfaction is the usual satisfaction of a first-order sentence in a
first-order structure.

Definition 2. Given two institutions I, I with I; = (Sig;, Sen;, Mod;, =*),
an institution comorphism from Iy to Is consists of a functor @ : Sig, — Sig,
and natural transformations B : Mods o @ = Mod; and o : Sen; = Sens o @,
such that the following satisfaction condition holds:

M' g5 as(e) <= Be(M) Fx e,

where X is an I signature, e is a X-sentence in Iy and M’ is a &(X)-model in
I.

The process of extending Hets with a new logic can be summarized as fol-
lows. First, we need to provide Haskell datatypes for the constituents of the
logic, e.g. signatures, morphisms and sentences. This is done via instantiating
various Haskell type classes, namely Category (for the signature category of the
institution), Sentences (for the sentences), Syntax (for abstract syntax of basic
specifications, and a parser transforming input text into this abstract syntax),



StaticAnalysis (for the static analysis, turning basic specifications into theories,
where a theory is a signature and a set of sentences). All this is assembled in the
type class Logic, which additionally provides logic-specific tools like provers and
model finders. For displaying the output of model finders, also (finite) models
are represented in Hets, and these can even be translated against comorphisms.
The model theoretic foundation of Hets also is apparent from the fact that Stat-
icAnalysis contains methods for checking amalgamability properties that are
defined model theoretically (and therefore not available in purely proof theo-
retic logical frameworks). The type class Logic is used to represent logics in
Hets internally. Finally, the new logic is made available by adding it to the list
of Hets’ known logics. Similarly, Hets represents comorphisms as instances of a
type class Comorphism, which provides an interface for translating constituents
of the source logic to the target logic of the comorphism. Notice that the do-
main of the translation can be restricted to a certain sublogic of the source using
its sublogics hierarchy. Moreover, the methods of the class Comorphism include
translation of theories, signature morphisms or sentences to the target logic.

The input language of Hets is HetCASL. It combines logic-specific syntax
of basic specifications (as specified by an instance of Syntaz) with the logic-
independent structuring constructs of CASL (like extension, union, translation
of specifications, or hiding parts). Moreover, there are constructs for choosing
a particular logic, as well as for translating a specification along an institution
comorphism.

2.2 Proof Theoretic Logical Frameworks

We use the term proof theoretic to refer to logical frameworks whose semantics
is or can be given in a formal and thus mechanizable way without reference to
a Platonic universe. These frameworks are declarative formal languages with an
inference system defining a consequence relation between judgments. They come
with a notion of language extensions called signatures or theories, which admits
the structure of a category. Logic encodings represent the syntax and proof
theory of a logic as a theory of the logical framework, and logical consequence
is represented in terms of the consequence relation of the framework.

The most important logical frameworks are LF, Isabelle, and rewriting logic.
LF [HHP93] is based on dependent type theory; logics are encoded as LF sig-
natures, proofs as terms using the Curry-Howard correspondences, and con-
sequence between formulas as type inhabitation. The main implementation is
Twelf [PS99]. The Isabelle system [Pau94] implements higher-order logic [Chu40];
logics are represented as HOL theories, and consequence between formulas as
HOL propositions. The Maude system [CELMO96] is related to rewriting logic
IMOMO94]; logics are represented as rewrite theories, and consequence between
formulas as rewrite judgments. Other languages such as Coq [BC04] or Agda
[Nor05] can be used as logical frameworks as well, but this is not the primary
application encountered in practice.

In the following, we give an overview of LF, which we will use as a running
example. LF extends simple type theory with dependent function types and is



related to Martin-Lof type theory [ML74]. The following grammar is a simplified
version of the LF grammar where we write - for the empty list. It includes LF
signature morphisms, which were added to LF in [HST94] and added to Twelf
in [RS09):

Signatures X u=-|X ¢:E|X, ¢c: E=F
Morphisms o :=-|o, c:=E
Expressions F :=type |c|z | EE | \p.g F |II;.p E | E = E

LF expressions E are grouped into kinds K, kinded type-families A : K,
and typed terms t : A. The kinds are the base kind type and the dependent
function kinds IT,.4 K. The type families are the constants a, applications a t,
and the dependent function type II,.4 B; type families of kind type are called
types. The terms are constants ¢, applications ¢ ¢, and abstractions A,.4 t. We
write A — B instead of IT,.4 B if x does not occur in B.

An LF signature X is a list of kinded type family declarations a : K and
typed constant declarations ¢ : A. Both may carry definitions, i.e., c: A =t and
a: K = A, respectively. Due to the Curry-Howard representation, propositions
are encoded as types as well; hence a constant declaration ¢ : A may be regarded
as an axiom A, while ¢ : A = ¢ additionally provides a proof ¢t for A. Hence, an
LF signature corresponds to what usually is called a logical theory.

Relative to a signature X, closed expressions are related by the judgments
by E: E'and ks E = E’. Equality of terms, type families, and kinds are defined
by afn-equality. All judgments for typing, kinding, and equality are decidable.

Given two signatures X' and X', an LF signature morphism o : ¥ — Y’
is a typing- and kinding-preserving map of X-symbols to X’-expressions. Thus,
o maps every constant ¢ : A of X' to a term o(c) : 7(A4) and every type family
symbol a : K to a type family o(a) : 5(K). Here, 7 is the homomorphic extension
of o to X-expressions, and we will write o instead of & from now on.

Signature morphisms preserve typing, i.e., if Fx F : E’) then by o(E) :
o(E"), and correspondingly for kinding and equality. Due to the Curry-Howard
encoding of axioms, this corresponds to theorem preservation of theory mor-
phisms. Composition and identity are defined in the obvious way, and we obtain
a category LF.

In [RS09], a module system was given for LF and implemented in Twelf.
The module system permits to build both signatures and signature morphisms in
a structured way. Its expressivity is similar to that of development
graphs [AHMS99].

2.3 A Logic Atlas in LF

In the LATIN project [KMRO09], we aim at the creation of a logic atlas based
on LF. The Logic Atlas is a multi-graph of LF signatures and morphisms be-
tween them. Currently it contains formalizations of various logics, type theories,
foundations of mathematics, algebra, and category theory.

Among the logics formalized in the Atlas are propositional (PL), first (FOL)
and higher-order logic (HOL), sorted (SFOL) and dependent first-order logic



(DFOL), description logics (DL), modal (ML) and common logic (CL) as illus-
trated in the diagram below. Single arrows (—) in this diagram denote transla-
tions between formalizations and hooked arrows (<) denote imports. Among the
foundations are encodings of Zermelo-Fraenkel set theory, Isabelle’s higher-order
logic, and Mizar’s Set theory [IR11].

Note that a logical framework leaves the choice of the foundation deliber-
ately open. In this way, we can use one logical framework (e.g. LF) with several
foundations (e.g. ZFC, as well as category theory). Only the representation of a
logic includes the choice of a foundation.

Actually the graph is signif- P L

icantly more complex as we use ML SFOL = DFOL
the LF module system to obtain FO I /
CL

a maximally modular design of

logics. For example, ﬁrst—ogrder, \ / \H oL

modal, and description logics are WL

formed from orthogonal modules Isabelle = ZFC — Mizar
for the individual connectives,

quantifiers, and axioms. For example, the A connective is only declared once

in the whole Atlas and imported into the various logics and foundations and
related to the type theoretic product via the Curry-Howard correspondence.

Moreover, we use individual modules FoL*f
for syntax, proof theory and model the- F OLy
ory so that the same syntax can be com- truth

bined with different interpretations. For ~ Base — FOL" | FOL*°"™

example, our formalization of first-order \
logic (presented in [HR11]) consists of the FoL™*
signatures Base and F' OL®Y" for syntax, FOMod
FOL*’ for proof theory, and F' OLM? for M Q j\
model theory as illustrated in the diagram 7FC

on the right. Base contains declarations

o : type and i : type for the type of formulas and first-order individuals, and
a truth judgment for formulas. FOLY"™ contains declarations for all logical con-
nectives and quantifiers (see Fig. 4). FOL'™™ is an inclusion morphism from
Base to FOL®Y™. FOLT! consists of declarations for judgments and inference
rules associated with each logical symbol declared in FOL®Y™. FOLP! is simply
an inclusion morphism from FOLSY" to FOL'.

For the representation of FOL model theory, LF is not a suitable metalan-
guage because its type theory is minimalistic and the use of higher-order abstract
syntax is incompatible with the natural way of adding computational support
needed to express models. However, LF can serve as a minimal, neutral frame-
work to formalize the metalanguage itself. We choose ZFC set theory as the
appropriate metalanguage because it is the standard foundation of mathemat-
ics, and formalize it in LF (in the signature ZFC') and use it as the metalanguage
to define models.



The ZFC' encoding includes the type of sets, the membership predicate as
a primitive non-logical symbol, and the usual ZFC set operations and axioms
defined in a first-order language with description operator. Additionally, ZFC
contains a type judgment elem for the elements of a set as well as a binary
operation = on sets that returns the set of functions. This is important for
being able to represent models as signature morphisms (see below): signature
morphisms map types to types, and via elem, (carrier) sets can be turned into
types.

FOLM°? includes ZFC' as a metalanguage and uses it to axiomatize the
properties of FOL-models. More precisely, FOLM°? declares a set bool for the
boolean values axiomatizing it to get the desired 2-element set {0,1}, declares
a fixed set univ of individuals, along with an axiom stating that the universe is
nonempty. For each logical symbol s5¥" in FOLSY", FOLM°? declares a symbol
sMod that represents the semantic operation used to interpret s5¥" along with
axioms specifying its truth values. For instance, for disjunction, which is declared
as or : 0 — 0 — o in FOL®Y", FOLM°? declares the symbol V as a ZFC-function
from bool? to bool and axiomatizes it to be the binary supremum in the boolean
2-element lattice. This corresponds to the case-based definition of the semantics
of a formula.

FOL®"™" FOLM? ZFC
1:type univ : set set : type
o0: type bool : set prop : type
or:0—0—0 V i elem (bool = bool = bool) |V : prop — prop — prop
forall : (i — 0) = o|V : elem ((univ = bool) =>|V : (set — prop) — prop
bool)
€: set — set — prop
elem : set — type
= set — set — set

The morphism FOL™? interprets the syntax of FOL in the semantic realm
specified by F! OLM°?: Tt maps the type i of individuals to the type of elements
of univ, the type o of formulas to the type of elements of bool, and the logical
operations to the corresponding operations on booleans.

The individual FOL-models are represented as LF signature morphisms from
FOLM°? to ZFC that are the identity on ZFC'. In other words, a model M maps
univ to a nonempty set expressed by using the set operations of ZFC'. M inter-
prets the boolean operations in F OLM°4 in terms of the usual set operations in
ZF(C'. For instance, the universal quantification for the booleans is mapped to the
intersection of a family of subsets. Given such a morphism M, the composition
FOL™®; M then yields the interpretation of FOLY" in ZFC.

A particular aspect of our formalization is that soundness of FOL can be
represented naturally as an LF signature morphism from FOL"' to FOLM?
making the diagram above commute. Note that a morphisms in the opposite
direction, i.e., from FOLM°? to FOLY!, does not yield completeness.



3 The LATIN Metaframework

In this section we describe the theoretical background of our LATIN metaframe-
work (LMF) based on the approach taken in [Rab10]. The LMF is an abstract
framework that allows to represent logical frameworks as declarative languages
given by categories of theories. The LMF is generic in the sense that it can be
instantiated with specific logical frameworks such as LF, Isabelle or rewriting
logic, thus allowing Hets to be flexible in the choice of the logical framework in
which logics should be represented.

In Sect. we show that our abstract representation of logical frameworks
complies with the notion of institutions and institution comorphisms. Here we
deliberately restrict attention to a special case of [Rab10] that makes the ideas
clearest and discuss generalizations in Sect.

3.1 Main Definition

Definition 3 (Inclusions). A category with inclusions consists of a category
together with a broad subcategory that is a partial order. We write B — C' for
the inclusion morphism from B to C.

Definition 4 (Logical Framework). A tuple (C, Base,Sen,tF) is a logical
Sframework if

— C is a category that has inclusions and pushouts along inclusions,

Base is an object of C,

— Sen : C\Base — Set is a functor, where C\Base is the so-called slice cat-

egory of C over Base, whose objects are arrows in C of source Base and

morphisms make triangles commute,

for t € C\Base, F is a unary predicate on Sen(t),

— b is preserved under signature morphisms: if -y F then by Sen(o)(F) for
any morphism o : t — t' in C\ Base.

C is the category of theories of the logical framework. Our focus is on declar-
ative frameworks where theories are lists of named declarations. Typically these
have inclusions and pushouts along them in a natural way.

Logics are encoded as theories X of the framework, but not all theories can be
naturally regarded as logic encodings. Logic encodings must additionally distin-
guish certain objects over X that encode logical notions. Therefore, we consider
C-morphisms t : Base — X where Base makes precise what objects must be
distinguished.

We leave the structure of Base abstract, but we require that slices ¢ : Base —
X provide at least a notion of sentences and truth for the logic encoded by X.
Therefore, Sen(t) gives the set of sentences, and the predicate -; F' expresses
the truth of F.



Example 1 (LF). We define a logical framework FX¥' based on the category C =
LF. LF has inclusions by taking the subset relation between sets of declarations.
Given ¢ : ¥ — X’ and an inclusion X < X c¢: A, a pushout is given by

(0, ci=c) : (X, c:A) = (X, c:0(A))

(except for possibly renaming c if it is not fresh for X’). The pushouts for other
inclusions are obtained accordingly.

Base is the signature with the declarations o : type and ded : o — type.
For every slice t : Base — X, we define Sen(t) as the set of closed Sn-normal
LF-terms of type t(0) over the signature X'. Moreover, -, F holds iff the X-type
t(ded) F is inhabited.

Given t : Base — X and t' : Base — X' and 0 : X — X’ such that oot =/,
we define the sentence translation by Sen(c)(F) = o(F). Truth is preserved:
assume k; F'; thus t(ded) F is inhabited over X; then o (¢t(ded) F) = t'(ded) o(F)
is inhabited over X'; thus Fy Sen(o)(F).

Ezample 2 (Isabelle). A logical framework based on Isabelle is defined similarly.
C is the category of Isabelle theories and theory morphisms (for the latter,
see [BJLOG]). Base consists of the declarations bool : type and trueprop : bool —
prop where prop is the type of Isabelle propositions. Given ¢ : Base — X, we de-
fine Sen(t) as the set of X-terms of type t(bool), and I F holds if ¢(trueprop) F'
is an Isabelle theorem over X.

Ezample 8 (Rewriting logic). A logical framework based on rewriting logic can
be defined along the lines of [MOMO94]. C is the category of rewriting logic
theories and theory morphisms. Base consists of the following declarations:

sorts Prop FormList Sequent .

subsorts Prop < FormList .

op empty : -> FormList .

op tt : -> Prop .

op --F__ : FormList FormList -> Sequent .
where Prop stands for the type of propositions, tt for the formula true, and
turns two lists of formulas into a sequent. Given t : Base — X, we define Sen ()
as the set of Y-terms of type t(Prop), and F; F holds for some term F of type
t(Prop) if empty F F =5 empty - tt. I is preserved by rewriting logic theory
morphisms because rewriting must be preserved.

We use logical frameworks to define institutions. The basic idea is that slices
t : Base — LSY" define logics (LY specifies the syntax of the logic), signatures
of that logic are extensions LY" < 5¥" and sentences and truth are given by
Sen and . We could represent the logic’s models in terms of the models of the
logical framework, but that would complicate the mechanizable representation
of models. Therefore, we represent models as C morphisms into a fixed theory
that represents the foundation of mathematics. We need one auxiliary definition
to state this precisely:

10



Definition 5. Fiz a logical framework, and assume L™°% : LSY" — [Mod jp C
as in the diagram below.

T

[[Mod « > sy Mod > yvMod

mod
g

Lmod Emod E/nmd

syn

LSyn 5 ZSyn S A:/Sz/n,

\/

Firstly, for every inclusion LY «— X5 we define Mo and X% such
that XM°4 s o pushout. Secondly, for every o¥™ : X5V — X'S¥ e define
gmed . yMod _, yyMod s the unique morphism such that the above diagram
commutes.

Then we are ready for our main definition:

Definition 6 (Institutions in LMF). Let F = (C, Base,Sen,F) be a logi-
cal framework. Assume L = (LS Ltruth [Mod T [med) qs in the following
diagram:
F 7 5
_F )
m
[oml R

LMod o 5 ZMod N E/Mud

O.mod
Lmod Zmod Zlmod
truth osyn
Base LSyn C ESyn N E/Syn

Then we define the institution F(L) = (Sig”, Sen”, Mod”, =) as follows:

— Sigl is the full subcategory of C\ L5 whose objects are inclusions. To sim-
plify the notation, we will write XY™ for an inclusion LY — 559" below.
— Sen” is defined by

Sen” (%) = Sen((L%" — L% )oLth)  and  Sen’(0) = Sen(o).
— Mod?” is defined by

Mod " (£5) = {m : £Md — F | mo (F — $Mod) = jdr}
Mod” (o%¥")(m) = m/ 0 a4,

All model categories are discrete.

11



— We make the following abbreviation: For a model m € Mod* (X5, we
write M for mo X™% o (LSY™ < 559™) o LT . Base — F. Then we define
satisfaction by

m =kg, Fiff b Sen(m o S™04)(F).

Theorem 1 (Institutions in LMF). In the situation of Def.[d, F(L) is an
wmnstitution.

Proof. We need to show the satisfaction condition. So assume o*¥" £Syn —

XSy F e Sen® (25"), and m’ € Mod*(£/59"). First observe that m/ = m/ o

E/mod o (LSyn N ZISyn) OLtruth — (ml oo.mod) o Emod o (LSyn N ESyn) OLtruth —

m’ o omod, Then Mod* (o) (m') Eks,. Fiff-——— Sen((m/oc™°%)o Xmd)(F)
k m'oo

iff 7 Sen(m/ o Xm0 (Sen (o) (F)) iff m' =45, Sen® (o) (F).

Ezample 4 (FOL). We can now obtain an institution from the encoding of first-
order logic in Sect. based on the logical framework FZF. First-order logic is
encoded as the tuple FOL = (FOLSy", FOL'™™" porMed zrC, FOL™?) as in
Sect.
We obtain an institution comorphism FOL — FL¥(FOL) as follows. Signa-
tures of FOL are mapped to the extension of FOL®"™ with declarations f : i —
. — i — i for function symbols f, p : i — ... — i — o for predicate sym-
bols p. If we want to map FOL theories as well, we add declarations az : ded F’
for every axiom F'. Signature morphisms are mapped in the obvious way. The
sentence translation is an obvious bijection. The model translation maps every
m : YMed — F to the model whose universe is given by m(univ) and which
interprets symbols f and p according to m(f) and m(p). The model translation
is not surjective as there are only countably many morphisms m in F£F(FOL).
However, since FOL has a constructive existence proof of canonical models, these
models can be represented as ZFC terms and are in the image of the model trans-
lation. The satisfaction condition can be proved by an easy induction. FL¥'(FOL)
is complete thus FOL and FX¥'(FOL) have the same consequence relation.

Logical frameworks can also be used to encode institution comorphisms in
an intuitive way:

Theorem 2 (Institution Comorphisms in LMF). Fiz a logical framework
F = (C, Base,Sen,F). Assume two logics L = (LS, Ltruth [Mod I [mod)
and L' = (L/Syn, [/truth [/Mod | [/mod)  Then a comorphism F(L) — F(L') is
induced by morphisms (1°Y™,1m°%) if the following diagram commutes

T

LMod L/Mod
Lmod Base L/mod
Lﬂy \L/truth
syn
LS?JTL ! L/Syn

12



Proof. A signature LY" — X9V ig translated to L'SY" — X' by pushout
along 1Y yielding o*¥" : XY™ — X'Sy"_ Sentences are translated by applying
o®¥". We obtain g™e? : xMod _y 5yMod a9 the unique morphism through the
pushout X*°¢. Then models are translated by composition with c™°¢. We omit
the details.

It is easy to see that comorphisms that are embeddings can be elegantly rep-
resented in this way, as well as many inductively defined encodings. However,
the assumptions of this theorem are too strong to permit the encoding of some
less trivial comorphisms. For example, non-compositional sentence translations,
which come up when translating modal logic to first-order logic, cannot be rep-
resented as signature morphisms. Or signature translations that do not preserve
the number of non-logical symbols, which come up when translating partial to
total function symbols, often cannot be represented as pushouts. More general
constructions for the special case of LF are given in [Rabl0] and [Soj10].

3.2 Generalizations

In Ex. [4 we do not obtain a comorphism in the opposite direction. There are
three reasons for that. Firstly, FX¥'(FOL) contains a lot more signatures than
needed because the definition of Sigl permits any extension of L5, not just
the ones corresponding to function and predicate symbols. Secondly, the discrete
model categories of FX¥'(FOL) cannot represent the model morphisms of FOL.
Thirdly, only a (countable) subclass of the models of FOL can be represented
as LF morphisms. Moreover, Def. [ and [0] are restricted to institutions, i.e., the
syntax and model theory of a logic, and exclude the proof theory. We look at
these problems below.

Signatures In order to solve the first problem we need to restrict F(L) to a sub-
category of Sig”. However, it is difficult to single out the needed subcategory in
a mechanizable way. Therefore, we restrict attention to those logical frameworks
where C is the category of theories of a declarative language.

In a declarative language, the theories are given by a list of typed symbol
declarations. In order to formalize this definition without committing to a type
system, we use MMT expressions ([Rab08]) as the types. MMT expressions are
formed from variables, constants, applications Q(FE,[) of an expression E to a
list of expressions [, bindings B(E,[, E’) of a binder E with scope E’ binding
a list of variables typed by the elements of [. To that we add jokers =, which
matches an arbitrary expressions, and F, which matches a list of expressions
each of which matches F.

Such MMT expression patterns give us a generic way to pattern-match dec-
larations of the logical framework. If a concrete logic definition contains a set
P of patterns, we represent its logical signatures as C-objects %" that extend
L5Y" only with declarations matching one of the patterns in P. For example,
the patterns for first-order logic from Ex. [4| would be @Q(—,4,7) and @(—,1,0)
for function and predicate symbols of arbitrary arity, and @(ded, *) for axioms.

13



Here * stands for an arbitrary expression, which in this case must be a sentence
to be well-typed.

Model Morphisms Regarding the second problem, if C is a 2-category, we can de-
fine the model morphisms of F(L) as 2-cells in C. However it is difficult in practice
to obtain 2-categories for type theories such as LF or Isabelle. In [Soj10], we give
a syntactical account of logical relations that behave like 2-cells in sufficiently
many ways to yield model morphisms.

Undefinable Models The third problem is the most fundamental one because no
formal logical framework can ever encode all models of a Platonic universe. Our
encoding of ZFC is strong enough to encode any definable model. We call a
model M definable if it arises as the solution to a formula 3'M.F (M) for some
parameter-free formula F(z) of the first-order language of ZFC. This restriction
is philosophically serious but in our experience not harmful in practice. Indeed,
if infinite LF signatures are allowed, using canonical models constructed in com-
pleteness proofs, in many cases all models can be represented up to elementary
equivalence.

Proof Theory Our examples from Sect. already encoded the proof theory of
first-order logic in a way that treats proof theory and model theory in a balanced
way. Our definitions can be easily generalized to this setting.

Logic encodings in a logical framework become 6-tuples (L°v", Liruth [ Med T
Lmod LPfLpf) for LPF . LS9 — LPf. LPf encodes the proof theory of a logic,
which typically means to add auxiliary syntax, judgments, and proof rules to
L3 Def. 5| can be extended to obtain XP/ : 25" — ¥Pf as a pushout in
the same way as X™°¢. Finally the logical framework must be extended with a
component that yields a data structure of proofs (such as entailment systems or
proof trees) for every slice out of Base.

For example, for the framework FZ the proof trees for proofs of F using
assumptions Fy,...,F, can be defined as the $7-normal LF terms over X7/
of type XP/ (Lt (ded) Fy — ... — L'™"(ded)F, — L' (ded)F). A
similar construction was given in [Rabl0].

4 Logical Frameworks in Hets

The differences between LF and Hets mentioned in Sect. |2 exhibit complemen-
tary strengths, and a major goal of our work is to combine them. We have en-
hanced Hets with a component that allows the dynamic definition of new logics.
The user specifies a logic by giving the representation of its constituents (syn-
tax, model theory) in a logical framework and the combined system recognizes
the new logic and integrates it into the Hets logic graph. The implementation
follows the Hets principles of high abstraction and separation of concerns: we
provide an implementation for the general concept of logical frameworks, which
we describe in Sect. [£I} This is further instantiated for the particular case of LF
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in Sect. [£:2] Finally, in Sect. [£:3] we present a complete description of the steps
necessary to add a new logic in Hets using the framework of LF.

4.1 Implementing the LMF in Hets

This section sketches how the concept of logical frameworks is integrated into
Hets. The integration is done entirely on the developer’s side and a user wish-
ing to add a new logic to Hets only has to select one of the available logical
frameworks, which will serve as a meta-logic for the new object logic he or she
specifies. We will give here just a brief overview of how the implementation is
done and refer the interested reader to [Mos05] for a presentation of the theo-
retical foundations of Hets and to the Hets developers documentation pages EI
for a more detailed presentation of how the coding is actually done.

The central part of the implementation is a Haskell type class LogicalFrame-
work, which is instantiated by the logics which can be used as logical frameworks,
i.e. in which object logics can be specified by the user. Such candidates are for
example LF, rewriting logic and Isabelle ﬁ The class provides a selector for
the Base signature and a method writeLogic, which takes an object logic name
as an argument and generates the instances of the classes Syntax, Sentences,
StaticAnalysis, and Logic for the given object logic.

Each logic implementing LogicalFramework must likewise implement the class
Category, from which we get the category C mentioned in Def. [4l The sentence
functor Sen is specified implicitly by the writeLogic method: the instantiation
of the StaticAnalysis class determines exactly which sentences are valid for a
particular signature of L, thus giving Sen on objects. Since the current imple-
mentation of logics in Hets does not include satisfaction of sentences in models,
the predicate F; is currently not represented as its main purpose is to define the
satisfaction relation for object logics.

At the syntactic level, we must provide a way to write down new logic defini-
tions in HetCASL, the underlying heterogenous algebraic specification language
of Hets. Since definitions of new logics have a different status than usual algebraic
specifications, we extend the language at the library level.

Concrete Syntaxz We add the following concrete syn-
tax (on the right) to HetCASL in order to define newlogic L =

new logics. Here L is the name of the newly defined meta I

logic and F is an identifier pointing to the logical syntax Ltruth
framework used. The identifiers Ltruth [mod [pf F models [™od
are the components of the new logic L. They refer to foundation F
previously declared signature morphisms of F and proofs L/

the signatures representing Lv" LM°d [Ff can be patterns P

inferred from them. F is a signature which gives the
foundation. The declaration of patterns is optional.

® See http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/
~ CoFI/hets/src-distribution/daily/Hets/docs/Logic.html.
°® Currently only LF has a full implementation as a logical framework.
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After encountering a newlogic declaration, Hets invokes a static analyzer,
which retrieves the signatures and morphisms constituting the components of
the logic L. The analyzer verifies the correct shape of the induced diagram and
instantiates the Logic class for the logic L as specified by the writeLogic method
of the framework F.

The logic L arising from the above newlogic L declaration differs slightly
from the one described in Def. |§| in that it uses signatures of F that extend L¥"
rather than F-inclusion morphisms out of L5¥". Accordingly, the morphisms of
L are those morphisms of F which are the identity on L°Y". This is essentially
the same thing, but has the advantage that the data types representing the
signatures and morphisms of F can be directly reused for L and no separate
instantiation of the class Category is required m

4.2 LF as a Logical Framework in Hets

In this section we outline how to turn LF into a logical framework in Hets, i.e.
how to instantiate the LogicalFramework class for LF. In order to do so we will
make use of the instance of the Logic class for LF. ﬂ

The Base signature is specified to be the LF signature containing the symbols
o and ded, as described in Sect.|3] The instantiations of the classes Logic, Syntaz,
etc. provided by the writeLogic method mostly inherit their LF implementations,
with one exception being the StaticAnalysis class. While both LF and the LF
object logics use Twelf to verify the well-formedness of input specifications, a
specification in an object logic is assumed to have been given relative to the
LSY™ signature supplied when defining the object logic.

After receiving the input file, Twelf performs parsing, static analysis and
reconstruction of types and implicit arguments. If the analysis succeeds, the
output is stored as an OMDoc version of the input file, and is subsequently
imported into Hets using standard XML technologies. Hets reads the imported
OMDoc file and transforms it into corresponding LF signatures and morphisms
in their Hets internal representation.

4.3 Adding a New Logic in Hets: FOL

We will now illustrate the steps needed to add first-order logic as a new logic in
Hets. The aim of this section is not to show how to encode a particular logic in
Twelf, which for the case of first-order logic has been described in [HRII], but
rather to show how an existing encoding can be used to add the logic in Hets.
Given a FOL encoding as in Section all that is needed to be done is to
collect the components of the encoding in a newlogic definition, as in Fig.[2| The
first lines import the morphism FOL"™ ™" from Base to FOL®Y™, the morphism
FOL™? from FOL'™ to FOLM°? and the morphism FOLP' from FOL®Y" to

" The theory presented in Section [3| could thus have been formulated equivalently,
albeit less elegantly, without referring to slice categories.
8 An institution for LF can be defined as for example in [Rab08].

16



FOL* as in Ex. 4| from their respective directories. STTIFOLEQ is a fragment
of ZFC' used to represent model theory. It is composed of simple type theory
equipped with external intuitionistic first-order logic. Notice that we assume for
convenience that the file with the new logic definition is in the folder that contains
the directory of logics as sub-folder; the paths need to be adjusted if that is not
the case. |§| The directory structure mirrors the modular design of logics in the
Logic Atlas. As a result of calling Hets on the above file, a new directory called

from logics/first-order/syntax/fol get FOL_truth %%FOL"™™"
from logics/first-order/model_theory/fol get FOL_mod %% FOL™?
from logics/meta/sttifol get STTIFOLEQ %%F

from logics/first-order/proof_theory/fol get FOL_pf %%FOLP

newlogic FOL =
meta LIF
syntax FOL_truth
models FOL_mod
foundation STTIFOLEQ
proofs FOL_pf

end

Fig. 2. Defining FOL as a new object logic.

FOL is added to the source folder of Hets. The directory contains automatically
generated files with the instances needed for the logic FOL. Moreover, the Hets
variable containing the list of available logics is updated to include FOL. After
recompiling Hets, the new logic is added to the logic graph of Hets (the node
FOL in Fig. |1/ for the dynamically-added logic) and can be used in the same way
as any of the built-in logics.

In particular, we can now use the new object logic to write specifications. For
example, the specification in Fig. [3| uses FOL as a current logic and declares a
constant symbol ¢ and a predicate p, together with an axiom that the predicate
p holds for the constant c. Notice that the syntax for logics specified in a logical
framework F is inherited from the framework (in our case LF), but it has been
extended with support for sentences, in the usual CASL syntax i.e. prefixed by
the ’.” character.

Fig. [ presents the theory of SP as displayed from within Hets; as mentioned
in Section the theory is automatically assumed to extend FOL®Y". Since in

Hets all imports are internally flattened, the theory of SP when displayed will
include all the symbols from FOLY"™.

9 The complete specification of FOL in LF can be found at https://svn.omdoc.org/
repos/latin/twelf-r1687/.
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A © Theory of SP ®@e @
logic FOL
o @ type.
ded @ o -> type.
i@ type.
true : o.
false : o.
not : o -> o.
imp : o -> o -> oO.
and : o -> o -> O.
or : o -> o —-> oO.
logic FOL for.:a__ (1 ->» o) - o.
exists : (1 —->» o) -> o.
spec SP = c ;i
c : i. p 1 —-> 0.
p:1i->o0.
. p ¢ %(gen_ax_0)%
p C
end
k= Save @Close
Fig. 3. Specification in
the new object logic. Fig. 4. Theory of SP

5 Conclusion & Future Work

We have described a prototypical integration of the institution-based Heteroge-
neous Tool Sets (Hets) with logical frameworks in general and LF and the Twelf
tool in particular. The structuring language used by Hets has a model theoretic
semantics, which has been reflected in the proof theoretic logical framework LF
by representing models as theory morphisms into some foundation. While LF is
the logical framework of our current choice, both the theory and the implemen-
tation are so general that other frameworks like Isabelle can be used as well. We
expect important synergy effects from this as Isabelle is already used as one of
the main inference engines in Hets.

Proof theory of the represented logics has been treated only superficially
in the present work, but in fact, we have represented proof calculi for all the
LATIN logics within LF. Representing models in the system as well has enabled
us to formally prove soundness of the calculi. It is straightforward to extend the
construction of institutions out of logic representations in logical frameworks
such that they deliver institutions with proofs. In the long run, we envision
that the provers integrated in Hets also return proof terms, which Hets can
then fill into the original file and rerun Twelf on it to validate the proof. Thus,
Hets becomes the mediator that orchestrates the interaction between external
theorem provers and Twelf as a trusted proof checker.

While the theory and implementation described in this paper make it possi-
ble to add logics to Hets in a purely declarative way, further work is needed to
turn this into a scalable tool. Firstly, the logic translations-as-theory morphisms
approach needs to be generalised in order to cover more practically useful exam-
ples. Secondly, the new LF generated logics present in Hets need to be connected
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(via institution comorphisms) to the existing hard-coded logics in order to share
the connection of the latter to theorem provers and other tools. Thirdly, it will
be desirable to have a declarative interface for specifying the syntax of new log-
ics, such that one is not forced to use the syntax of the logical framework. We
are currently examining whether Eclipse and Xtext are helpful here. Finally, also
the various tool interfaces of Hets should be made more declarative, such that
Hets logics specified in a logical framework can be directly connected to theorem
provers and other tools, instead of using a comorphism into a hard-coded logic.
Then, in the long run, it will be possible to entirely replace the hard-coded logics
with declarative logic specifications in the LATIN metaframework — and only
the latter needs to be hard-coded into Hets.

The Logic Atlas currently consists of a around 150 files containing some 700
signatures and views and producing over 10000 lines of Twelf output (includ-
ing declarations that are generated by the module system). This is the result
of roughly one year of development with substantial contributions from six dif-
ferent people, and due to the evolutionary improvement of our methodology,
architecture, and expertise, growth has been exponential. Nevertheless, the rep-
resentation and interconnection of logics is (and will remain) a task that requires
a deep understanding of the respective logics, a good eye for the underlying prim-
itives, and sound judgment in the design and layout of atlantes. We consider the
current Logic Atlas to be a seed atlas that establishes best practices in these
questions and provides a nucleus of logical primitives that can be extended to
add particular logics by outside logic and system developers.

We explicitly invite researchers outside the LATIN project to contribute their
logics. This should usually be a matter of importing the aspects that are provided
by Logic Atlas theories, and LF-encoding the aspects that are not.
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