
UNIVERSITY OF UDINE - ITALY

Department of Mathematics and Computer Science

Ph.D. Thesis

DAG SCHEDULING FOR GRID

COMPUTING SYSTEMS

Supervisors: Candidate:
Prof. ALESSANDRO DE ANGELIS ALBERTO FORTI

Doctorate of Philosophy in Computer Science

XVIII cycle

AY 2005/2006

Abstract

Today’s parallel and distributed systems are changing in their organization and the
concept of Grid computing, a set of dynamic and heterogeneous resources connected
via Internet and shared by many and different users, is nowadays becoming a reality.
A large number of scheduling heuristics for parallel applications described by directed
acyclic graphs (DAGs) have been presented in the literature, but most of them assume
a homogeneous system with a homogeneous network, i.e. a message is transmitted
with the same speed on all the links. In a Grid environment this assumption cannot be
done. In this thesis we tackle the problem of scheduling parallel applications described
by directed acyclic graphs (DAGs) in a Grid computing system.

Contents

Introduction v

1 Introduction to Grid 1
1.1 What is Grid . 1

1.1.1 Grid challenges . 3
1.2 Grid Applications . 4

1.2.1 Case study: the MAGIC telescope 4
1.3 Summary . 7

2 Grid technologies 11
2.1 Brief overview of distributed systems 11

2.1.1 Properties of a distributed system 12
2.2 The client-server model . 13
2.3 Communication . 14

2.3.1 Remote procedure call . 14
2.3.2 Remote object invocation . 15
2.3.3 Message-oriented communication 16
2.3.4 Stream-oriented communication 16

2.4 Service Oriented Architecture . 17
2.4.1 Basic components of SOA . 18
2.4.2 Web services as an implementation of the SOA 19

2.5 The evolution of the Grid . 21
2.6 The Globus Toolkit . 22
2.7 Open Grid Service Architecture (OGSA) 24
2.8 Web Services Resource Framework . 27
2.9 Summary . 29

3 Grid scheduling 31
3.1 Grid Resource Management Systems 31
3.2 Introduction to Grid scheduling . 33

3.2.1 General Architecture of a Grid Scheduler 35
3.3 Grid Workflows . 36
3.4 Grid scheduling systems . 39

3.4.1 Condor DAGMan . 39
3.4.2 GrADS . 40
3.4.3 UNICORE . 41

3.5 Summary . 41

ii Contents

4 Literature survey of the DAG scheduling problem 43
4.1 The DAG scheduling problem . 43

4.1.1 NP-completeness of the DAG scheduling problem 46
4.2 Background . 47

4.2.1 The computing system . 48
4.2.2 DAG scheduling preliminaries 48
4.2.3 Clustering of a DAG: communication and granularity 52

4.3 Scheduling of Primitive Graph Structures 55
4.4 Taxonomy of DAG scheduling algorithms 56
4.5 Properties of list scheduling . 58
4.6 DAG scheduling algorithms . 59

4.6.1 Polynomial-time algorithm for Tree-Structured DAGs 60
4.6.2 Arbitrary graphs for a two-processor system 60
4.6.3 Scheduling of Interval-Ordered DAGs 61
4.6.4 Sarkar’s algorithm . 62
4.6.5 The HLFET algorithm . 62
4.6.6 The ETF algorithm . 62
4.6.7 The ISH algorithm . 63
4.6.8 The FLB algorithm . 63
4.6.9 The DSC algorithm . 63
4.6.10 The CASS-II algorithm . 64
4.6.11 The DCP algorithm . 65
4.6.12 The MCP algorithm . 66
4.6.13 The MD algorithm . 66
4.6.14 The Hybrid Remapper algorithm 66

4.7 Summary . 68

5 A DAG scheduling algorithm for Grid computing systems 71
5.1 The computing system environment 71
5.2 Considerations on the design of the algorithm 73
5.3 Preliminaries . 74
5.4 The CCF algorithm . 74

5.4.1 Considerations . 74
5.4.2 Assumptions . 75
5.4.3 First version of the algorithm 76
5.4.4 Analysis of the algorithm . 79
5.4.5 Final version of the algorithm 84
5.4.6 Join DAG analysis for the final version of the algorithm 85

5.5 A variant of the DSC algorithm . 87
5.6 Summary . 88

Contents iii

6 Experimental Results 89
6.1 Simulation framework . 89

6.1.1 The simulator . 90
6.1.2 DAG generation . 90
6.1.3 Platform generation . 91

6.2 Performance comparisons . 92
6.3 Summary . 96

Conclusions 99

Bibliography 101

iv Contents

Introduction

The subject of this thesis is the scheduling of parallel applications described by di-
rected acyclic graphs (DAGs) in Grid computing systems. Basically, Grid is a geo-
graphical distributed system. Distributed computing scaled to a global level with the
maturation of the Internet in the 1990s. Advances in networking technologies will
soon make it possible to use the global information infrastructure in a qualitatively
different way, as a computational as well as an information resource. The last decade
has seen a substantial increase in commodity computer and network performance, as
a result of faster hardware, low costs and more sophisticated software. Nevertheless,
there are problems in the fields of science, engineering, and business, which cannot be
effectively dealt with using the current generation of supercomputers. Usually these
problems are computational and data intensive and consequently need heterogeneous
resources not available in a single organization. The ubiquity of the Internet and
the availability of high-speed networks leads to the possibility of using wide-area dis-
tributed computers for solving large-scale problems. Such an approach to network
computing is known by several names: metacomputing, scalable computing, global
computing, Internet computing, Peer-to-Peer (P2P) and Grid computing.

Grids enable the sharing, selection, and aggregation of a wide variety of resources
including supercomputers, storage systems, data sources, and specialized devices that
are geographically distributed and owned by different organizations. The Grid allows
users to solve larger-scale problems by pooling together resources that could not be
coupled easily before.

The concept of Grid computing started as a project to link geographically dis-
persed supercomputers, but now it has grown far beyond its original intent. Due
to the rapid growth of the Internet and Web, there has been a growing interest in
Web-based distributed computing, and many projects have been started and aim to
exploit the Web as an infrastructure for running coarse-grained distributed and par-
allel applications. In fact, like any other growing idea, the Grid has evolved passing
through different phases. Nowadays we are in the third Grid generation [106]. This
generation defines the Grid as a service oriented architecture based on web services.
In this context, the Web has the capability to act as a platform for parallel and
collaborative work as well as a key technology to create a pervasive and ubiquitous
Grid-based infrastructure.

The design of Grid as a service oriented architecture have led to a growing interest
in workflows by the Grid community. The reason is that the “software as a service”
approach results in a componentized view of software applications and workflow can
naturally be used as a component composition mechanism. Traditionally, the main
applications of workflows have been in the automation of administrative and produc-
tion processes, especially within businesses and large organizations. The expansion

vi Introduction

of workflow towards middleware is realized within the Web service initiative. Grid
workflows are an emerging research field in the Grid community and there is an ongo-
ing effort to define a standard meaning of workflow for the Grid. Actually, the most
common Grid workflow can be modelled as simple Task (Directed Acyclic) Graphs
(DAGs), where the order of execution of tasks (modelled as nodes) is determined by
dependencies (in turn modelled as directed arcs). Each DAG node represents the
execution of a component, characterized by a set of attributes such as an estimate
of its cost and possible requirements on the target execution platform, while DAG
directed edges represent data dependencies between specific application components.
Data dependencies will be usually constituted by large files written by a component
and required for the execution of one or more other components of the application.
Two types of DAGs can be distinguished: coarse grained DAGs, in which the compu-
tation is dominant with respect to communication, and fine grained DAGs, in which
the communication is dominant with respect to computation.

One of the most active areas of research in the Grid community is scheduling.
Scheduling in Grid means taking decisions involving resources distributed over mul-
tiple administrative domains. The main difference between a Grid scheduler and a
local scheduler is that the former does not own the resources at a local site and has
no control over them. In particular it doesn’t know if other users are sending jobs
to the resources that it is considering. Grid is a dynamic environment and resources
come and go, therefore a scheduler has to be able to discover and monitor the re-
sources. In general, Grid schedulers get information from a general Grid Information
System (GIS) that in turn gathers information from individual local resources. The
Globus Monitoring and Discovery Service [26] is an example of Grid service that
allows the monitoring and the discovery of the resources. Another example is the
Network Weather System [130] that is a distributed monitoring system designed to
track and forecast dynamic resource conditions, e.g. it allows a user or a program
(such as a scheduler) to request information (latency, bandwidth, load, estimates, etc)
for entities corresponding to network links connecting specified endpoints, retrieve the
fraction of CPU available to a newly started process, retrieve the amount of memory
that is currently unused in a remote host, etc.

The problem of scheduling DAGs in a heterogeneous environment is NP-complete.
To tackle the problem, simplifying assumptions have been made regarding the task
graph structure representing the program and the model for the parallel processor
system. However, it is NP-complete even in two simple cases: (1) scheduling unit-time
tasks to an arbitrary number of processors [58], (2) scheduling one or two time unit
tasks to two processors [22]. Many DAG scheduling algorithms can be found in the
literature. Usually they do not impose constraints on the graph structure but many of
them assume a homogeneous computing system. The reason is that they were designed
to schedule parallel applications in clusters. For the same reason the algorithms
that consider heterogeneous systems assume a homogeneous interconnection network,
i.e. all the links have the same latency and bandwidth and, therefore, messages are
transmitted with the same speed on all the links. Very few works do not impose any
constraint on the networked computing system.

The DAG scheduling problem is usually identified by the combination of two

Introduction vii

phases: matching which assigns tasks to machines and scheduling which defines the
execution order of the tasks assigned to each machine. The overall problem of match-
ing and scheduling is referred to as mapping.

Due to the intractability of the general scheduling problem, many heuristics have
been suggested to tackle it under more generic situations. A heuristic produces an
answer in less than exponential time but does not guarantee an optimal solution. The
most popular approach to the design of scheduling algorithms is the list scheduling
technique. Tasks are associated to priorities and a selection phase chooses the one
with higher priority. The selected task is then mapped to an appropriate resource.
In order to find a good schedule, the scheduler must take care of these two aspects:

• Map a task to a resource that allows to complete the execution of that task as
soon as possible.

• Minimize data transfer times.

Obviously it is impossible to optimize both aspects at the same time, a tradeoff must
be found. In particular, minimization of the data transfer times can be accomplished
in two ways: by mapping the communicating tasks onto two resources close to each
other or with the zeroing of the communication time by mapping the two tasks onto
the same resource. Usually, the tradeoff point is between parallelization and sequen-
tialization. To sequentialize means mapping parallel tasks onto the same resource,
sequentialization allows to zero incoming or outgoing edges connecting the two tasks
to a common parent or child. What emerges from the literature is that algorithms
based on Critical Path (CP) heuristics are the ones giving, on average, the best results
in terms of quality of the schedule produced, i.e. reduction of the completion time of
the entire workflow. The CP is the weight of the longest path of the DAG and pro-
vides an upper bound on the schedule length. In order to keep track of the CP during
the scheduling some algorithms consider nodes belonging to the Dominant Sequence
(DS), that is the CP of the scheduled DAG. Anyway, even these dynamic heuristics
can get trapped in a locally optimal decision, leading to a non-optimal global solution.
This means that scheduling at each step a DS node may not be the correct choice.

This thesis aims at studying algorithms for scheduling DAGs in a Grid computing
system. We first have analyzed the problem of scheduling in the Grid and then we
have studied how the DAG scheduling algorithms found in the literature work. The
final goal of this thesis is to propose a novel scheduling algorithm to address the
problem of scheduling DAG described parallel applications in Grid. A modification of
the well known DSC [135] algorithm is also presented. We have conducted extensive
simulation tests in order to compare the results of the two proposed algorithms with
other reference algorithms.

Thesis outline

This thesis is divided into six chapters, which are organized as follows.

viii Introduction

In order to make the reader familiar with Grid computing, in chapter 1 we present
an introduction to Grid, together with a case study of the migration to Grid of the
astroparticle experiment (in which we have participated) MAGIC.

In chapter 2 we describe the evolution of Grid together with the technologies that
enables this new paradigm of computation.

In chapter 3 we review Grid scheduling issues and challenges. Then, we consider
how workflows have been characterized by the Grid community and we review some
Grid scheduling systems developed in the last years.

In chapter 4 we explain in detail the DAG scheduling problem and review the
actual state of the art of scheduling algorithms.

In chapter 5 we propose two DAG scheduling algorithms designed to work in Grid.
The first one is called CCF (Cluster ready Children First) and the second one, the
DSC VAR, is a variant of the famous DSC. Some properties of the proposed CCF
algorithm are identified and analyzed.

Finally, chapter 6 presents experimental results obtained with the simulation of
the proposed algorithms CCF and DSC VAR.

1
Introduction to Grid

Next generation scientific exploration requires computing power and storage that no
single institution alone is able to afford. Additionally, easy access to distributed data
is required to improve the sharing of results by scientific communities spread around
the world. The proposed solution to these challenges is to enable different institu-
tions, working in the same scientific field, to put their computing, storage and data
resources together in order to achieve the required performance and scale. Grid is
a type of parallel and distributed system that enables the sharing, selection, and
aggregation of services of heterogeneous resources distributed across “multiple” ad-
ministrative domains based on their availability, capability, performance, cost, and
users’ quality-of-service requirements. As Network performance has outpaced com-
putational power and storage capacity, this new paradigm has evolved to enable the
sharing and coordinated use of geographically distributed resources. This chapter
presents an introduction to Grid giving focus to the main requirements and challenges
that must be addressed in setting up this new paradigm of distributed computing.

1.1 What is Grid

The ancestor of the Grid is Metacomputing. This term was coined in the early
eighties. The idea of Metacomputing was to interconnect a collection of computers
held together by state-of-the-art technology and ”balanced” so that, to the individual
user, it looks and acts like a single computer. The constituent parts of the resulting
“metacomputer” could be housed locally, or distributed between buildings, even con-
tinents. One of the first infrastructures in this area, named Information Wide Area
Year (I-WAY) [41], was demonstrated at Supercomputing 1995. This project strongly
influenced the subsequent Grid computing activities. In fact one of the researchers
who lead the project I-WAY was Ian Foster who along with Carl Kesselman published
in 1997 a paper [42] that clearly links the Globus Toolkit, which is currently the heart
of many Grid projects, to Metacomputing.

Foster and Kesselman published in 1998 the book “The Grid: Blueprint for a New
Computing Infrastructure”[43], which is considered the “Grid bible”. They defined
the Grid as follows: A computational Grid is a hardware and software infrastructure
that provides dependable, consistent, pervasive, and inexpensive access to high-end

2 1. Introduction to Grid

computational capabilities. In fact one of the main ideas of the Grid, which also
explains the origin of the word itself, was to make computational resources available
like electricity. One remarkable fact of the electric power grid infrastructure is that
when we plug an appliance into it we do not care where the generators are located
and how they are wired. We are only interested in getting the electric power, and
that’s all! Unfortunately, in practice, the similarities between the electric power grid
and the computational Grid are very few.

According to a Foster’s check list the minimum properties of a Grid system are
the following [47]:

• A Grid coordinates resources that are not subject to centralized control (e.g.
resources owned by different companies or under the control of different admin-
istrative units) and at the same time addresses the issues of security, policy,
payment, membership, and so forth that arise in these settings.

• A Grid must use standard, open, general-purpose protocols and interfaces.
These protocols address fundamental issues such as authentication, authoriza-
tion, resource discovery, and resource access.

• A Grid delivers nontrivial quality service, i.e. it is able to meet complex user
demands (e.g. response time, throughput, availability, security, etc.).

This checklist gives focus to what is the key concept of Grid computing: the
ability to negotiate resource-sharing arrangements among a set of participating parties
(providers and consumers). The “sharing” refers not only to file exchange but also
to direct access to computers, software, data, and other resources. This sharing have
to be highly controlled with resource providers and consumers defining clearly and
carefully just what is shared, who is allowed to share, and the conditions under which
sharing occurs. A set of individuals and/or institutions defined by such sharing rules
forms a virtual organization.

Basically, the vision that is now becoming reality is as follows:

• The user submits his request through a Graphical User Interface (GUI) just
specifying high level requirements (the kind of application he wants to use, the
operating system,...) and possibly providing input data.

• The Grid finds and allocates suitable resources (computing systems, storage
facilities, etc.) to satisfy the user’s request.

• The Grid monitors request processing.

• The Grid notifies the user when the results are available allowing their retrieval.

Grid can be seen as the latest and most complete evolution of more familiar
developments such as distributed computing, the Web, peer-to-peer computing and
virtualization technologies:

• Like the Web, Grid computing keeps complexity hidden: multiple users enjoy a
single, unified experience.

1.1. What is Grid 3

• Unlike the Web, which mainly enables communication, Grid computing enables
full collaboration toward common business goals.

• Like peer-to-peer, Grid computing allows users to share files.

• Unlike peer-to-peer, Grid computing allows many-to-many sharing not only files
but other resources as well.

• Like clusters and distributed computing, Grids bring computing resources to-
gether.

• Unlike clusters and distributed computing, which need physical proximity and
operating homogeneity, Grids can be geographically distributed and heteroge-
neous.

• Like virtualization technologies, Grid computing enables the virtualization of
IT resources.

• Unlike virtualization technologies, which virtualize a single system, Grid com-
puting enables the virtualization of vast and disparate IT resources.

1.1.1 Grid challenges

There are many challenges that must be addressed in order to build a working Grid
environment. The following list shows the main requirements a Grid should satisfy,
or equivalently the main services a Grid should make available:

• Information services: Concerns information about the resources available on
the Grid. It includes the set of available resources, hardware specifications as
well dynamic information like load and forecasts. These information should be
automatically maintained and kept up to date.

• Resource brokering: Grid users should submit their requests to a resource
broker specifying their high level requirements. The Resource Broker should be
able to find and allocate suitable resources by querying information services.

• Uniform access to resources: all the resources of the same kind (computing
elements, storage elements, etc.) should be accessed in a uniform way, no matter
which technologies or standards they are based on. Middleware installed on
each single machine is a way for hiding heterogeneity and for providing uniform
interfaces.

• Security: Security mechanisms are needed in order to enable system adminis-
trators to enforce access rules for all the resources made available on the Grid.
This point is strongly related with the concept of virtual organization. A num-
ber of issues must be addressed inside the security context [46]:

– Single sign-on. A single computation may entail access to many resources,
but a user should be able to authenticate once and then assign to the
computation the right to operate on his or her behalf.

4 1. Introduction to Grid

– Mapping to local security mechanisms. Different sites may use different
local security solutions. A Grid security infrastructure needs to map to
these local solutions at each site, so that local operations can proceed with
appropriate privileges.

– Delegation. A computation that spans many resources creates sub-computations
that may themselves generate requests to other resources and services,
perhaps creating additional subcomputations, and so on. Authentication
operations are involved at each stage.

– Community authorization and policy. In a large community, the policies
that govern who can use which resources for what purpose cannot be based
directly on individual identity. It is infeasible for each resource to keep
track of community membership and privileges. Instead, resources (and
users) need to be able to express policies in terms of other criteria, such as
group membership, which can be identified with a cryptographic credential
issued by a trusted third party.

• Job scheduling: Jobs submitted by the users should be effectively and effi-
ciently scheduled.

• Data Access: Grid users should be able to access distributed data in a uniform
way.

• Data replication: Grids should allow automatic file replica creation in order
to move data closer to the user or to the computing facilities that will process
them. It is also a way to increase the fault-tolerance of the system.

1.2 Grid Applications

Currently there is a big effort in helping applications to migrate to Grid. An example
is the EGEE (Enabling Grids for E-sciencE) project [34]. The project aims to pro-
vide researchers in academia and industry with access to major computing resources,
independently of their geographic location. The EGEE project will also focus on at-
tracting a wide range of new users to the Grid. Two pilot application domains have
been selected to guide the implementation and certify the performance and function-
ality of the evolving infrastructure. One is the Large Hadron Collider Computing
Grid, supporting HEP (High Energy Physic) physics experiments, and the other is
Biomedical Grids, where several communities are facing equally daunting challenges
to cope with the flood of bioinformatics and healthcare data.

Just to give an example, in the following section we briefly describe the recent
migration to Grid of one astroparticle physics experiment: the MAGIC telescope.

1.2.1 Case study: the MAGIC telescope

The MAGIC (Major Atmospheric Gamma Imaging Cerenkov telescope) telescope has
been designed to search the sky to discover or observe high energy γ-rays sources and

1.2. Grid Applications 5

address a large number of physics questions [87]. Located at the Instituto Astro-
physico de Canarias on the island La Palma, Spain, at 28◦ N and 18◦ W, at altitude
2300m asl, it is the largest γ-ray telescope in the world. MAGIC is operating since
October 2003, data are taken regularly since February 2004 and signals from Crab
and Markarian 421 was seen.

The main characteristics of the telescope are summarized below:

• A 17m diameter (f/d=1) tessellated mirror mounted on an extremely light
carbon-fiber frame (< 10 tons), with active mirror control. The reflecting sur-
face of mirrors is 240m2; reflectivity is larger than 85% (300 - 650nm).

• Elaborate computer-driven control mechanism.

• Fast slewing capability (the telescope moves 180◦ in both axes in 22s).

• A high-efficiency, high-resolution camera composed by an array of 577 fast pho-
tomultipliers (PMTs), with a 3.9◦ field of view.

• Digitalization of the analogue signals performed by 300 MHz FlashADCs and a
high data acquisition rate of up to 1 KHz.

• MAGIC is the lowest threshold (≈ 30 GeV) IACT operating in the world.

γ-ray observation in the energy range from a few tenths of GeV upwards, in overlap
with satellite observations and with substantial improvements in sensitivity, energy
and angular resolution, leads to search behind the physics that has been predicted
and new avenues will open. Understanding of AGNs, GRBs, SNRs, Pulsars, diffuse
photon background, unidentified EGRET sources, particle physics, darkmatter, quan-
tum gravity and cosmological γ-ray horizon are some of the physics goals that can be
addressed with the MAGIC telescope.

Benefits of Grid computing for MAGIC

The collaborators of the MAGIC telescope are mainly spread over Europe, 18 insti-
tutions from 9 countries, with the main contributors (90% of the total) located in
Germany (Max-Planck-Institute for Physics, Munich and University of Wuerzburg),
Spain (Barcelona and Madrid), Italy (INFN and Universities of Padova, Udine and
Siena).

The geographical distribution of the resources makes the management of the ex-
periment harder. This is a typical situation for which Grid computing can be of great
help, because it allows researchers to access all the resources in a uniform, transpar-
ent and easy way. The telescope is in operation during moonless nights. The average
amount of raw FADC data recorded is about 500-600 GB/night. Additional data from
the telescope control system or information from a weather station are also recorded.
All these information have to be taken into account in the data analysis.

The MAGIC community can leverage from Grid facilities in areas like file sharing,
Monte Carlo data production and analysis [40]. In a Grid scenario the system can
be accessed through a web browser based interface with single sign-on authentication

6 1. Introduction to Grid

Figure 1.1: MAGIC Monte Carlo Simulation workflow

method. We can briefly summarize the main benefits given by the adoption of Grid
technology for the MAGIC experiment:

• Presently, users analyzing data must know where to find the required files and
explicitly download them. In a Grid perspective, instead, users don’t care about
data location and files replication policies improve access time and fault toler-
ance.

• Grid workflow tools can manage the MAGIC Monte Carlo simulation. The
resources from all the members of the MAGIC community can be put together
and exploited by the Grid. Easy access to data production for every user, or
accordingly to the virtual organization (VO) policies.

• Analysis tools can be installed on the Grid. They are thus shared and available
for all the users (no need for single installations). Moreover, they can exploit
the facilities of a distributed system.

MMCS

The MAGIC Monte Carlo Simulation workflow is a series of programs which simulate
the properties of different physics processes and detector parts (figure 1.1):

• CORSIKA: air shower and hadronic background simulation. The output con-
tains information about the particles and the Cherenkov photons reaching the
ground around the telescope.

1.3. Summary 7

• Reflector : simulates the propagation of Cherenkov photons through the atmo-
sphere and their reflection in the mirror up to the camera plane. The input for
the Reflector program is the output of CORSIKA.

• StarfieldAdder : simulation of the field of view. It adds light from the non-diffuse
part of the night sky background, or the effect of light from stars, to images
taken by the telescope.

• StarResponse: simulation of the night sky background (NSB) response.

• Camera: simulate the behavior of the photomultipliers and of the electronic of
the MAGIC camera. It also allows to introduce the NSB (optionally), from the
stars and/or the diffuse NSB.

Architecture

Figure 1.2 shows the computing centers that make available the main resources form-
ing the backbone of the Grid system for MAGIC. These centers are: GRIDKA (Ger-
many), CNAF (Italy) and PIC (Spain). The system [70] will be based on the middle-
ware from the European Data Grid project [121], which is using the Globus toolkit
[42] as the underlying software. The data flow starts in the island of La Palma and
arrives in all the other centers passing through the PIC institute in Barcellona. The
two services of the system are the MAGIC Monte Carlo Simulation (MMCS) and
the MAGIC Analysis and Reconstruction Software (MARS). These services will run
at all sites. Each of the two services will have its own scheduler (Resource Broker)
running at CNAF or PIC. The schedulers will send the jobs to the different sites.
The produced Monte Carlo data will be distributed as will the incoming real data
from the telescope. The distribution and replication of the data will be based on the
replica location service of the EDG project. The system will be accessed via a portal
running at GRIDKA. The local computers from a MAGIC partner site can connect to
the closest of the backbone nodes to contribute with their local computing resources.

1.3 Summary

Increased network bandwidth, more powerful computers, and the acceptance of the
Internet have driven the on-going demand for new and better ways to compute. At the
heart of Grid Computing is an infrastructure that provides dependable, consistent,
pervasive and inexpensive access to computational capabilities. By pooling federated
assets into a virtual system, a grid provides a single point of access to powerful
distributed resources. With a Grid, networked resources, e.g. desktops, servers,
storage, databases, even scientific instruments, can be combined to deploy massive
computing power wherever and whenever it is needed most. Users can find resources
quickly, use them efficiently, and scale them seamlessly.

A Grid can be seen as the latest and most complete evolution f more familiar
developments such as distributed computing, the Web, peer-to-peer computing and

8 1. Introduction to Grid

Figure 1.2: The design of the backbone for the distributed computing system shows
the main components. The data from cosmic ray showers will be distributed. The
corresponding dataow is drawn as the solid lines. The main two computing tasks -
analysis (MARS) and monte carlo production (MMCS) - are performed at all sites.
They are controlled by two schedulers located at different sites. The access to this
scheduler is available via a portal from every webserver.

1.3. Summary 9

virtualization technologies. There are many challenges that must be addressed in
order to build a working Grid environment, such as: information services, resource
brokering, uniform access to resources, security, job scheduling, data access and data
replication.

Grid is nowadays becoming a reality. Although it is at a very early stage of real-
ization, many applications covering different research areas like experimental physics,
astroparticle physics experiments, bioinformatics, earth observation, etc., are cur-
rently migrating to Grid.

10 1. Introduction to Grid

2
Grid technologies

There is much development work to be done in order to deploy a working Grid. How-
ever, there has been a lot of work done in the past decade in the area of distributed
computing and clearly it is essential to build on this wherever possible. Moreover,
due to the rapid growth of the Internet and the Web, there has been a rising inter-
est in Web-based distributed computing, and many projects have been started that
aim to exploit the Web as an infrastructure for running coarse-grained distributed
and parallel applications. In this context Grid is emerging as an Internet-based dis-
tributed system. An increasing number of research groups have been working in the
field of wide-area distributed computing. These groups have implemented middle-
ware, libraries and tools that allow the cooperative use of geographically distributed
resources unified to act as a single powerful platform for the execution of a range of
parallel and distributed applications. This approach to computing has been known by
several names, such as metacomputing, scalable computing, global computing, Inter-
net computing and lately as Grid computing. This chapter presents an overview of the
technologies, open standards and protocols used for building up this new paradigm.

2.1 Brief overview of distributed systems

A general and effective definition of distributed systems can be found in [118]: a dis-
tributed system is a collection of independent computers that appears to its users as a
single coherent system. We can mention two important characteristics: the differences
between the various computers and the ways in which they communicate are hidden
from users and the users and the applications can interact with a distributed system
in a consistent and uniform way, regardless of where and when interaction takes place.

To support heterogeneous computers and networks while offering a single-system
view, distributed systems are often organized by means of a layer of software that is
logically placed between a higher-level layer consisting of users and applications, and
a layer underneath consisting of operating systems. This layer of software is called
middleware. There are many definitions of middleware. Practically, the middleware
is a connectivity software that consists of a set of enabling services that allow mul-
tiple processes running on one or more machines to interact across a network. This
technology has evolved during the 1990’s to provide for interoperability in support

12 2. Grid technologies

of the move to client/server architectures. The most widely-publicized middleware
initiatives are the Open Software Foundation’s Distributed Computing Environment
(DCE), Object Management Group’s Common Object Request Broker Architecture
(CORBA), and Microsoft’s COM/DCOM (COM, DCOM).

2.1.1 Properties of a distributed system

There are many possible ways to evaluate distributed systems. Here we present a
set of properties that a distributed system should implement. While not exhaustive,
this set is chosen because these properties are often used when talking about the
advantages or disadvantages of decentralized systems.

Security. A distributed system connects many users and resources and as this con-
nectivity increases, security becomes more and more important. Security covers
a variety of topics, such as preventing people from taking over the system, in-
jecting bad information, or using the system for a purpose other than what the
owners intend.

Transparency. A distributed system should hide the fact that its processes and
resources are physically distributed across multiple computers. There are many
kinds of transparency:

• Access transparency: hides differences in data representation and the way
that resources can be accessed by users.

• Location transparency: manages of names for accessing resources. A phys-
ical or a logical name can be used.

• Migration transparency: manages the relocation of the resources.

• Relocation transparency: hides that a resource may be moved to another
location while in use.

• Replication transparency: hides that a resource is replicated.

• Concurrency transparency: hides that a resource may be shared by several
competitive users.

• Failure transparency: hides the failure and recovery of a resource.

• Persistence transparency: hides whether a software resource is in memory
or on disk.

Openness. An open distributed system is a system that offers services according to
standard rules that describe the syntax and semantics of those services. In
distributed systems, services are generally specified through interfaces. Many
problems must be addressed in order to build an open distributed system:

• Detailed interfaces of components need to be published.

• Flexibility: new components have to be integrated with existing compo-
nents and it has to be easy to configure.

2.2. The client-server model 13

• Interoperability: two implementations of systems or components from dif-
ferent manufactures can co-exist and work together by merely relying on
each others services as specified by a common standard.

• Portability: an application developed for a distributed system A can be
executed, without modification, on a different distributed system B that
implements the same interfaces as A.

Scalability. It indicates the capability of a system to increase total througput under
an increased load when resources (typically hardware) are added. Scalability of
a system can be measured along at least three different dimensions [118, 96]:

• Size: more users and resources can be easily added to the system.

• Geographic: A geographically scalable system is one that maintains its
usefulness and usability, regardless of how far apart its users or resources
are.

• Administrative: no matter how many different organizations need to share
a single distributed system, it should still be easy to use and manage.

2.2 The client-server model

Important to any distributed system is its internal organization. The client-server
model is the most widely accepted model for structuring distributed systems. A
basic definition can be the following: client/server is a computational architecture
that involves client processes requesting service from server processes. A server
is a process implementing a specific service, for example, a file system service or
a database service. A client is a process that requests a service from a server by
sending it a request and subsequently waiting for the server’s reply. This interaction
is also known as request-reply behavior. In general, client/server maintains a
distinction between processes and network devices. Usually a client computer and a
server computer are two separate devices, each customized for their designed purpose.
In any case, the same device may function as both client and server, hence, a device
that is a server at one moment can reverse roles and become a client to a different
server (either for the same application or for a different application).

Although communication between a client and a server can be implemented by
means of a simple connectionless protocol (if the underlying network is fairly reliable),
it is usually based on a reliable connection-oriented protocol, like the TCP/IP.

Advantages and disadvantages of the client-server model

The client-server model was originally developed to allow more users to share access
to database applications. Compared to the mainframe approach, client-server offers
improved scalability because connections can be made as needed rather than being
hard-wired. Flexible user interface development is the most obvious advantage of
client-server computing. It is possible to create an interface that is independent of

14 2. Grid technologies

the server hosting the data. Therefore, the user interface of a client-server application
can be written on a Macintosh and the server can be written on a mainframe. Clients
could be also written for DOS- or UNIX-based computers. The client-server model
also supports modular applications. In the so-called two-tier and three-tier types of
client-server systems, a software application is separated into modular pieces, and
each piece is installed on hardware specialized for that subsystem.

One area of special concern in client-server networking is system management.
With applications distributed across the network, it can be challenging to keep con-
figuration information up-to-date and consistent among all of the devices. Therefore,
upgrades to a newer version of a client-server application can be difficult to synchro-
nize or stage appropriately. Finally, client-server systems rely heavily on the network’s
reliability; redundancy or fail-over features can be expensive to implement.

2.3 Communication

Interprocess communication is at the heart of all distributed systems, and there are
many ways to exchange information among processes on different machines. In tradi-
tional network applications, communication is often based on the low-level message-
passing primitives offered by the transport layer. An important issue in middleware
systems is to offer a higher level of abstraction that will make it easier to express com-
munication between processes than the support offered by the interface to the trans-
port layer. At least four abstractions can be distinguished: the Remote Procedure
Call (RPC), the Remote Object Invocation, the message-oriented communication and
the stream-oriented communication. We briefly describe these four communication
methods.

2.3.1 Remote procedure call

Remote Procedure Call (RPC) is a powerful technique for constructing distributed,
client-server based applications [118, 83]. It is based on extending the notion of
conventional, or local procedure calling, so that the called procedure need not exist
in the same address space as the calling procedure. The two processes may be on the
same system, or they may be on different systems with a network connecting them. By
using RPC, programmers of distributed applications avoid the details of the interface
with the network. The transport independence of RPC isolates the application from
the physical and logical elements of the data communications mechanism and allows
the application to use a variety of transports.

How RPC works

The idea is to make a remote procedure call look as much as possible like a local one, it
has to be transparent. In order to achieve this goal, client and server stubs are used.
When the calling process calls a procedure, the action performed by that procedure
will not be the actual code as written, but code that begins network communication.

2.3. Communication 15

Figure 2.1: The steps involved in doing a remote computation through RPC: client
and server stubs.

It has to conenct to the remote machine, send all the parameters down to it, wait for
replies, do the right thing to the stack and return. This is the client side stub. The
server side stub has to wait for messages asking for a procedure to run. It has to
read the parameters, and present them in a suitable form to execute the procedure
locally. After execution,it has to send the results back to the calling process. Stubs are
usually generated automatically. The compiler must generate separate stubs, one for
the client stub embedded in the application, and one for the server stub for the remote
machine. In order to generate the stubs, the compiler must know which parameters
are input parameters and which are output parameters. Input parameters are sent
from the client to server, output parameters are sent back.

2.3.2 Remote object invocation

Distributed object-oriented systems are a natural outgrowth of object-based operating
systems and languages. In these systems, every resource or abstraction is represented
by an object. The key feature of an object is that it encapsulates data, called the
state, and the operations on those data, called the methods. Methods are made
available through an interface. An object may implement multiple interfaces and
there may be several objects that offer an implementation for it. This strict separation
between interfaces and objects allows to place an interface at one machine, while the
object itself resides on another machine.

Basically, the remote object invocation is an object-oriented version of the remote
procedure call [118, 83]. When a client binds to a distributed object, an implementa-
tion of the object’s interface, called proxy, is loaded into the client’s address space.
A proxy is the equivalent of the stub in RPC. It marshals method invocations into
messages and unmarshals reply messages to return the result of the method invocation
to the client. The object resides at a server machine. On the server side, incoming
invocation requests are first passed to a skeleton (the equivalent of the server side
stub) which unmarshals them to proper method invocations at the object’s interface

16 2. Grid technologies

at the server.
Usually it is only the interface of an object to be distributed, the state is not

distributed and resides at a single machine. Such objects are also referred to as
remote objects. It is however possible to find objects whose state may be distributed
across multiple machines, and this distribution is also hidden from clients behind the
object’s interfaces.

2.3.3 Message-oriented communication

Message-oriented communication is a way of communicating between processes. Mes-
sages, which correspond to events, are the basic units of data delivered. Tanenbaum
and Steen [118] classified message-oriented communication according to two factors:
synchronous or asynchronous communication, and transient or persistent communi-
cation. In synchronous communication, the sender blocks waiting for the receiver
to engage in the exchange. Asynchronous communication does not require both the
sender and the receiver to execute simultaneously. So, the sender and recipient are
loosely-coupled. The amount of time messages are stored determines whether the
communication is transient or persistent. Transient communication stores the mes-
sage only while both partners in the communication are executing. If the next router
or receiver is not available, then the message is discarded. Persistent communication,
on the other hand, stores the message until the recipient receives it.

There are several combinations of these types of communication that occur in
practice. Examples of message oriented transient communication are the Berkley
Sockets and the Message Passing Interface (MPI). On the other side, a typical ex-
ample of asynchronous persistent communication is Message-Oriented Middleware
(MOM). Message-oriented middleware is also called a message-queuing system, a mes-
sage framework, or just a messaging system. MOM can form an important middleware
layer for enterprise applications on the Internet. In the publish and subscribe model
(see 2.4.1), a client can register as a publisher or a subscriber of messages. Messages
are delivered only to the relevant destinations and only once, with various communi-
cation methods including one-to-many or many-to-many communication. The data
source and destination can be decoupled under such a model.

2.3.4 Stream-oriented communication

Communication as discussed so far was based on:

• independent and complete units of information;

• moment of receiving is not important for correctness.

There are some situations where communication timing plays a crucial role. For ex-
ample, in a real time video conference moment of receiving and correct representation
are essential. To capture the exchange of time-dependent information, distributed
systems generally provide support for data streams, which are sequence of data
units. Regarding on how timing is considered, three different transmission modes can
be distinguished:

2.4. Service Oriented Architecture 17

• Asynchronous transmission mode: no timing constraints, data items are trans-
mitted one after the other. File transmission is a typical example.

• Synchronous transmission mode: there is a maximum end-to-end delay for each
unit in a data stream.

• Isochronous transmission mode: data transfer is subject to a maximum and
minimum end-to-end delay, also referred to as bounded jitter. The term streams
usually identifies continuous data streams using isochronous transmission.

A stream can be simple or complex, depending if it consists of only a single sequence
of data or several related simple streams (e.g. stereo audio, audio and video). Sub-
streams of complex streams must be continuously synchronized. A stream can often
be considered as a virtual connection between a source and a sink. The source or sink
can be a process, but could also be a device. Time-dependent (and other nonfunc-
tional) requirements are generally expressed as Quality of Service (QoS) requirements.
These requirements describe what is needed from the underlying distributed system
and network to ensure that, for example, the temporal relationships in a stream can
be preserved.

2.4 Service Oriented Architecture

This and the next section want to introduce the basic concepts on which Grid is being
taking form. The first fact is that Grid is evolving into a Service Oriented Architecture
(SOA), primarily based on Web Services. The SOA is based on the concept of loose
coupling. Coupling is the dependency between interacting systems. This dependency
can be decomposed into real dependency and artificial dependency:

1. Real dependency is the set of features or services that a system consumes from
other systems. The real dependency always exists and cannot be reduced.

2. Artificial dependency is the set of factors that a system has to comply with in
order to consume the features or services provided by other systems. Typical
artificial dependency factors are language dependency, platform dependency,
API dependency, etc. Artificial dependency always exists, but it or its cost can
be reduced.

For example, if you travel overseas on business, you know that you must bring power
adapters along with you. The real dependency is that you need power; the artificial
dependency is that your plug must fit into the local outlet. Looking at all the varying
sizes and shapes of those plugs from different countries, you would notice that some
of them are small and compact while many others are big and bulky. We cannot
remove artificial dependencies, but we can reduce them. If the artificial dependencies
among systems have been reduced, ideally, to their minimum, we have achieved loose
coupling.

SOA is an architectural style whose goal is to achieve loose coupling among in-
teracting software agents. A service is a unit of work done by a service provider to

18 2. Grid technologies

Figure 2.2: Elements of the Service Oriented Architecture

achieve desired end results for a service consumer. Both provider and consumer are
roles played by software agents on behalf of their owners. How does SOA achieve loose
coupling among interacting software agents? It does so by employing two architectural
constraints:

1. A small set of simple and ubiquitous interfaces to all participating software
agents. Only generic semantics are encoded at the interfaces. The interfaces
should be universally available for all providers and consumers.

2. Descriptive messages constrained by an extensible schema delivered through the
interfaces. No, or only minimal, system behavior is prescribed by messages. A
schema limits the vocabulary and structure of messages. An extensible schema
allows new versions of services to be introduced without breaking existing ser-
vices.

Since we have only a few generic interfaces available, we must express application-
specific semantics in messages. We can send any kind of message over our interfaces,
but there are a few rules to follow before we can say that an architecture is service
oriented. First, the messages must be descriptive, rather than instructive, because the
service provider is responsible for solving the problem. Second, service providers will
be unable to understand your request if your messages are not written in a format,
structure, and vocabulary that is understood by all parties. Limiting the vocabulary
and structure of messages is a necessity for any efficient communication. The more
restricted a message is, the easier it is to understand the message, although it comes
at the expense of reduced extensibility. Third, extensibility is vitally important. If
messages are not extensible, consumers and providers will be locked into one particular
version of a service.

2.4.1 Basic components of SOA

The SOA’s basic components are the elements and the operations messages they
exchange with each other. There are three key elements: Service Provider, Service
Requestor and Service Registry, as shown in Figure 2.2.

2.4. Service Oriented Architecture 19

Service Provider. The Service Provider is responsible for building a useful service,
creating a service description for it, publishing that service description to one
or more service registries, and receiving service invocation messages from one
or more Service Requestors.

Service Requestor. The Service Requestor is responsible for finding a service de-
scription published to one or more Service Registries, such as yellow pages for
services, and for using service descriptions to bind to or invoke services hosted
by Service Providers. Any consumer of a service can be considered a Service
Requestor.

Service Registry. The Service Registry is responsible for advertising service de-
scriptions published to it by the Service Providers, and for allowing Service
Requestors to search the collection of service descriptions contained within the
Service Registry. Once the Service Registry provides a match between the Ser-
vice Requestor and the Service Provider, the Service Registry is no longer needed
for the interaction.

Operations are defined by contracts between the above elements. There are three
types of contracts: Publish, Find and Bind, as shown in Figure 2.2.

Publish. The Publish operation is a contract between the Service Provider and the
Service Registry. The Service Provider registers the service interfaces it provides
at the Service Registry using the Publish operation. Once published, the services
provided by the Service Provider are available for any Service Requestor to use.

Find. The Find operation is a contract between the Service Requestor and Service
Registry. The Service Requestor uses the Find operation to get a list of the
Service Providers that satisfies its needs. It may indicate one or more search
criteria, such as the desired availability and performance, in the Find operation.
The Service Registry searches through all the registered Service Providers and
returns the appropriate information.

Bind. The Bind operation is a contract between the Service Requestor and the Ser-
vice Provider. It allows the Service Requestor to connect to the Service Provider
before invoking the operations. It also enables the Service Requestor to generate
the client-side proxy for the service provided by the Service Provider. The bind-
ing can be dynamic or static: in the first case, the Service Requestor generates
the client-side proxy based on the service description obtained from the Service
Registry at the time the service is invoked; the other case involves the Service
Requestor generating the client-side proxy during application development.

2.4.2 Web services as an implementation of the SOA

The W3C (World Wide Web Consortium, which develops interoperable technologies,
e.g. specifications, guidelines, software, and tools, to lead the Web to its full potential)
[122] gives the following definition of web service:

20 2. Grid technologies

A Web service is a software system designed to support interoperable
machine-to-machine interaction over a network. It has an interface de-
scribed in a machine-processable format (specifically WSDL). Other sys-
tems interact with the Web service in a manner prescribed by its descrip-
tion using SOAP messages, typically conveyed using HTTP with an XML
serialization in conjunction with other Web-related standards.

Several characteristics of a web service can be identified [19]:

XML based: XML is used as the data representation layer for all web services pro-
tocols and technologies.

Loosely coupled: a consumer of a web service is not tied to that web service directly;
the web service interface can change over time without compromising the client’s
ability to interact with the service.

Coarse-grained: object-oriented technologies expose their services through individ-
ual methods. Building a program from scratch requires the creation of several
fine-grained methods that are then composed into a coarse-grained service that
is consumed by either a client or another service. Web services technology
provides a natural way of defining coarse-grained services.

Ability to be synchronous or asynchronous: synchronicity refers to the bind-
ing of the client to the execution of the service. In synchronous invocations,
the client blocks and waits for the service to complete its operation before con-
tinuing. Asynchronous operations allow a client to invoke a service and then
execute other functions.

Supports Remote Procedure Calls (RPCs): web services allow clients to in-
voke procedures, functions, and methods on remote objects using an XML-based
protocol.

Supports document exchange: One of the key advantages of XML is its generic
way of representing not only data, but also complex documents. Web services
support the transparent exchange of documents to facilitate business integra-
tion.

Over the past two years, three primary technologies have emerged as worldwide
standards that make up the core of today’s web services technology. These tech-
nologies are: SOAP, WSDL and UDDI. The Simple Object Access Protocol (SOAP)
provides a standard packaging structure to transport XML documents over a variety
of standard Internet technologies, including SMTP, HTTP, and FTP. It is used to
exchange messages between Web services. The Web Service Description Language
(WSDL) is an XML technology that describes the interface of a web service in a
standardized way and allows disparate clients to automatically understand how to
interact with a web service. The Universal Description, Discovery, and Integration
(UDDI) provides a worldwide registry of web services for advertisement, discovery,

2.5. The evolution of the Grid 21

and integration purposes. One of the big promises of web services is seamless, au-
tomatic business integration: a piece of software will discover, access, integrate, and
invoke new services from unknown companies dynamically without the need for hu-
man intervention.

The web services model lends itself well to a highly distributed, service-oriented
architecture (SOA). A web service may communicate with a handful of standalone
processes and functions or participate in a complicated, orchestrated business pro-
cess. A web service can be published, located, and invoked within the enterprise, or
anywhere on the Web.

2.5 The evolution of the Grid

Three stages of Grid evolution can be identified [106]: first-generation systems born
in the early to mid 1990s, second-generation systems with a focus on middleware
to support large-scale data and computation and current third-generation systems
in which the emphasis shifts to distributed global collaboration, a service-oriented
approach and information layer issues. The first generation marked the emergence
of the early metacomputing or Grid environments. Typically, the objective of these
early metacomputing projects was to provide computational resources to a range of
high-performance applications. Two representative projects in the vanguard of this
type of technology were FAFNER [36] and I-WAY [41]. FAFNER was the forerunner
of the likes of SETI@home [112] and Distributed.Net [95], and I-WAY for Globus [42]
and Legion [59]. The emphasis of the early efforts in Grid computing was in part
driven by the need to link a number of US national supercomputing centers.

The second-generation Grid was the result of the emergence of an infrastructure
capable of binding together more than just a few specialised supercomputing centers.
Now the take-up of high bandwidth network technologies and adoption of standards,
allows the Grid to be viewed as a viable distributed infrastructure on a global scale
that can support diverse applications requiring large-scale computation and data [43].
There are three main issues that had to be confronted: heterogeneity, scalability and
adaptability. In a Grid, the middleware is used to hide the heterogeneous nature of
the resources and to provide users and applications with a homogeneous and seam-
less environment by providing a set of standardised interfaces to a variety of ser-
vices. Systems use varying standards and system application programming interfaces
(APIs), resulting in the need to port services and applications to the plethora of com-
puter systems used in a Grid environment. The most significant projects that have
contributed to make the Grid concrete are: Globus [42], Legion [59], the European
DataGrid project [121], the UNIform Interface to COmputer REsources (UNICORE)
project [7], the Cactus project [6], as well as others.

With third generation there is an increasing adoption of a service-oriented model
and increasing attention to metadata. There is a strong sense of automation in third-
generation systems; for example, when humans can no longer deal with the scale and
heterogeneity but delegate to processes to do so (e.g. through scripting), which leads
to autonomy within the systems. Similarly, the increased likelihood of failure implies

22 2. Grid technologies

a need for automatic recovery: configuration and repair cannot remain manual tasks.
In the next section we describe the main characteristics of the Globus toolkit,

which is the standard de facto for the Grid middleware.

2.6 The Globus Toolkit

The Globus Toolkit [42] is actually the de facto standard middleware for Grid com-
puting. It is a metacomputing infrastructure toolkit providing basic capabilities and
interfaces in areas such as communication, information, resource location, resource
scheduling, authentication, and data access. Together, these toolkit components de-
fine a metacomputing abstract machine on which a range of alternative infrastructures
can be constructed, services, and applications. The term metacomputer is used to
denote a networked virtual supercomputer, constructed dynamically from geographi-
cally distributed resources linked by high-speed networks.

With version 3.0, the Globus Toolkit is a reference implementation of the Open
Grid Service Architecture (OGSA) published by the Global Grid Forum (GGF). It is
divided in four main components:

• The Grid Security Infrastructure.

• The resource management infrastructure (GRAM)

• The information management infrastructure.

• The data management infrastructure.

Globus Grid Security Infrastructure (GSI) Since a Grid implies crossing or-
ganizational boundaries, resources are going to be accessed by many different organi-
zations. This poses a lot of challenges:

• We have to make sure that only certain organizations can access our resources,
and that we’re 100% sure that those users are really who they claim to be.
In other words, we have to make sure that everyone in a Grid application is
properly authenticated/authorized;

• We are going to bump into some pretty interesting scenarios. For example,
suppose organization A asks B to perform a certain task. B, on the other hand,
realizes that the task should be delegated to organization C. However, let’s
suppose C only trusts A (and not B). Should C turn down the request because
it comes from B, or accept it since the ’original’ requestor is A?

• Depending on the application, we may also be interested in assuring data in-
tegrity and privacy, although in a Grid application this is generally not as im-
portant as authentication.

The GSI offers the following three features:

• A complete public-key infrastructure.

2.6. The Globus Toolkit 23

• Mutual authentication through digital certificates.

• Credential delegation and single sign-on.

The GSI [129] is based on public-key cryptography, and therefore can be configured to
guarantee privacy, integrity, and authentication. Mutual authentication is achieved
using X.509 certificates [128]. Grid is a collection of heterogeneous resources that
span across multiple organization domains. In this context the single sign-on is a very
important feature. Situations like the one described before, where a job encompasses
three different organizations, are addressed with delegation. For example, it would
interesting to find a legitimate way for B to demonstrate that it is, in fact, acting on
A’s behalf. One way of doing this would be for A to ’lend’ its public and private key
pair to B. However, this is absolutely out of the question. Remember, the private key
has to remain secret, and sending it to another organization (no matter how much you
trust them) is a big breach in security. What can be used, instead, are certificates.

The Globus Resource Allocation Manager Globus is a layered architecture
in which high-level global services are built on top of an essential set of core local
services. At the bottom of this layered architecture, the Globus Resource Allocation
Manager (GRAM) [27] provides the local component for resource management. Each
GRAM is responsible for a set of resources operating under the same site-specific
allocation policy, often implemented by a local resource management system, such as
Load Sharing Facility (LSF) or Condor. GRAM provides a standard network-enabled
interface to local resource management systems. Hence, computational Grid tools
and applications can express resource allocation and process management requests in
terms of a standard application programming interface (API), while individual sites
are not constrained in their choice of resource management tools.

The Resource Specification Language (RSL) is used throughout this architecture as
a common notation for expressing resource requirements. A variety of resource brokers
implement domain-specific resource discovery and selection policies by transforming
abstract RSL expressions into progressively more specific requirements until a specific
set of resources is identified.The final step in the resource allocation process is to
decompose the RSL into a set of separate resource allocation requests and to dispatch
each request to the appropriate GRAM.

The Globus Information Management The dynamic nature of Grid environ-
ments means that toolkit components, programming tools, and applications must be
able to adapt their behavior in response to changes in system structure and state [26].
Globus Metacomputing Directory Service (MDS) is designed to support this type of
adaptation by providing an information-rich environment in which information about
system components is always available. MDS stores and makes accessible information
such as the architecture type, operating system version and amount of memory on a
computer, network bandwidth and latency, available communication protocols, and
the mapping between IP addresses and network technology.

24 2. Grid technologies

An information-rich environment is more than just mechanisms for naming and
disseminating information: it also requires agents that produce useful information and
components that access and use that information. Within Globus, both these roles
are distributed over every system component and potentially over every application.
Every Globus service is responsible for producing information that users of that service
may find useful, and for using information to enhance its flexibility and performance.

The Globus Data Management The main components of the data management
infrastructure are:

GridFTP. It is a high-performance, secure protocol based on the Internet Engineer-
ing Task Force’s FTP standards which uses the GSI (Grid Security Infrastruc-
ture) for authentication and new extensions to the FTP protocol for parallel
data transfer, partial file transfer, and third-party (server-to-server) data trans-
fer [5]. This will allow Grid applications to have ubiquitous, high-performance
access to data in a way that is compatible with the most popular file transfer
protocol in use today.

Data Replication. Tools for managing data replicas: multiple copies of data stored
in different systems to improve access across geographically-distributed Grids
and fault-tolerance [20]. These replication technologies currently include a
Replica Catalog (that stores information about files and their replicas) and
a Replica Management tool that combines the Replica Catalog with GridFTP
to manage data replication.

2.7 Open Grid Service Architecture (OGSA)

A wide array of heterogeneous resources comprise a Grid, and it’s important that
they interact and behave in well-known and consistent ways. The need for open stan-
dards that define this interaction and encourage interoperability between components
supplied from different sources was the motivation for the Open Grid Services Ar-
chitecture (OGSA) [44], specified by the Open Grid Services Infrastructure working
group of the Global Grid Forum (GGF) in June 2002. The objectives of OGSA are:

• Manage resources across distributed heterogeneous platforms.

• Deliver seamless quality of service (QoS). The topology of Grids is often com-
plex. Interaction of Grid resources is usually dynamic. It’s important that the
Grid provide robust, behind-the-scenes services such as authorization, access
control, and delegation.

• Provide a common base for autonomic management solutions. A Grid can
contain many resources, with numerous combinations of configurations, inter-
actions, and changing state and failure modes. Some form of intelligent self
regulation and autonomic management of these resources is necessary.

2.7. Open Grid Service Architecture (OGSA) 25

Figure 2.3: Elements of the Service Oriented Architecture

• Define open, published interfaces. OGSA is an open standard managed by the
GGF standards body. For interoperability of diverse resources, Grids must be
built on standard interfaces and protocols.

• Exploit industry standard integration technologies.

Figure 2.3 shows the architecture of OGSA. It comprises four main layers, starting
from the bottom they are:

• Resources, physical resources and logical resources.

• Web services, plus the OGSI extensions that define Grid services.

• OGSA architected services.

• Grid applications.

Now we give a brief description of each of the four layers listed above.

Physical and logical resources Resources comprise the capabilities of the Grid,
and are not limited to processors. Physical resources include servers, storage, and
network. Above the physical resources are logical resources. They provide additional
function by virtualizing and aggregating the resources in the physical layer. General
purpose middleware such as file systems, database managers, directories, and workflow
managers provide these abstract services on top of the physical Grid.

26 2. Grid technologies

Figure 2.4: OGSA Web Services plus OGSI layer.

Web services Here’s an important tenet of OGSA: all Grid resources (both logical
and physical) are modeled as services. The Open Grid Services Infrastructure (OGSI)
[45] specification defines Grid services and builds on top of standard Web services
technology. OGSI exploits the mechanisms of Web services like XML and WSDL to
specify standard interfaces, behaviors, and interaction for all Grid resources. OGSI
extends the definition of Web services to provide capabilities for dynamic, stateful,
and manageable Web services that are required to model the resources of the Grid.

The Web Services layer is one of the two main logical components of OGSA (the
other is the OGSA architected Grid services). This layer is also the one that substan-
tially changes in the migration to the WSRF (see section 2.8). Figure 2.4 shows a
detailed view. The GGF OGSA working group believed it was necessary to augment
core Web services functionality to address Grid services requirements. OGSI extends
Web services by introducing interfaces and conventions in two main areas:

• First, there’s the dynamic and potentially transient nature of services in a Grid.
Therefore, Grid services need interfaces to manage their creation, destruction,
and life cycle management.

• Second, there’s state. Grid services can have attributes and data associated
with them. This is similar in concept to the traditional structure of objects
in object-oriented programming. Objects have behavior and data. Likewise,
Web services needed to be extended to support state data associated with Grid
services.

Now we briefly describe the interfaces and conventions that OGSI introduces.

Factory. Grid services that implement this interface provide a way to create new
Grid services. Factories may create temporary instances of limited function,
such as a scheduler creating a service to represent the execution of a particular
job, or they may create longer-lived services such as a local replica of a frequently
used data set. Not all Grid services are created dynamically. For example, some
might be created as the result of an instance of a physical resource in the Grid
such as a processor, storage, or network device.

Life cycle. Because Grid services may be transient, Grid service instances are cre-
ated with a specified lifetime. The lifetime of any particular service instance

2.8. Web Services Resource Framework 27

can be negotiated and extended as required by components that are dependent
on or manage that service. The life cycle mechanism was architected to prevent
Grid services from consuming resources indefinitely without requiring a large
scale distributed ”garbage collection” scavenger.

State management. Grid services can have state. OGSI specifies a framework for
representing this state called Service Data and a mechanism for inspecting or
modifying that state named Find/SetServiceData.

Service groups. Service groups are collections of Grid services that are indexed,
using Service Data, for some particular purpose. For example, they might be
used to collect all the services that represent the resources in a particular cluster-
node within the Grid.

Notification. The state information (Service Data) that is modeled for Grid ser-
vices changes as the system runs. Many interactions between Grid services
require dynamic monitoring of changing state. Notification applies a traditional
publish/subscribe paradigm to this monitoring. Grid services support an in-
terface (NotificationSource) to permit other Grid services (NotificationSink) to
subscribe to changes.

HandleMap. When factories are used to create a new instance of a Grid service,
the factory returns the identity of the newly instantiated service. This identity
is composed of two parts, a Grid Service Handle (GSH) and a Grid Service
Reference (GSR). A GSH is guaranteed to reference the Grid service indefinitely,
while a GSR can change within the Grid services lifetime. The HandleMap
interface provides a way to obtain a GSR given a GSH. This might seem simple,
but there are a number of associated intricacies with such a request [44].

OGSA architected Grid services The previous layer, Web services with its OGSI
extensions, provide a base infrastructure for this layer. The Global Grid Forum
is currently working to define many of these architected Grid services in areas like
program execution, data services, and core services (Figure 2.5). Some are already
defined, and some implementations have already appeared. As implementations of
these newly architected services begin to appear, OGSA will become a more useful
service-oriented architecture (SOA).

Grid applications Over time, as a rich set of Grid-architected services continues
to be developed, new Grid applications that use one or more Grid architected services
will appear.

2.8 Web Services Resource Framework

In January 2004, the WS-Resource Framework (WSRF) was presented, an open frame-
work for modeling and accessing stateful resources using Web services. WSRF defines

28 2. Grid technologies

Figure 2.5: Detailed view of the OGSA architected Grid services layer.

how Web service standards are evolving to meet Grid services elements and require-
ments. Essentially, it represents a refactoring and evolution of OGSI (see figure 2.6)
that delivers essentially the same capabilities in a manner that is more in alignment
with the Web services community. The WSRF is broken up into six Web Services
specifications that define terms such as the WS-Resource approach to modeling and
managing state in a Web services context. The six specifications are:

• WS-ResourceProperties: specifies stateful Web services.

• WS-ResourceLifetime: specifies Web service life cycle.

• WS-RenewableReferences: specifies Web service endpoint reference and address-
ing.

• WS-ServiceGroup: specifies the creation and use of groups of Web services.

• WS-BaseFault: specifies fault type used for fault error reporting.

• WS-Notification: specifies the notification framework.

WSRF is the the natural convergence of the Grid services, as defined in OGSA,
and the Web services framework. The main concept that arises from the migration of
OGSI to WSRF is the WS-Resource, introduced to manage the state of a Grid service.
If Web services are supposed to be stateless, message exchanges are, in many cases,
supposed to enable access/update to state maintained by other system components;
those file systems, databases or other entities, can also be considered to be stateful
resources. The link between one or more stateful resources and a Web service is the
Implied Resource Pattern. The Implied Resource Pattern is a set of conventions on
Web services technologies, in particular XML, WSDL and WS-Addressing, implicitly
meaning that the requestor does not provide the identity if the resource has an explicit
parameter in the body of the request message. The context used to designate the
implied stateful resource is encapsulated in the WS-Addressing endpoint reference
used to address the target Web service at its endpoint. The term pattern indicates
that the relationship between Web services and stateful resources is codified by a set of
conventions on existing Web services technologies, XML, WSDL, and WS-Addressing.

2.9. Summary 29

Figure 2.6: From OGSI to WSRF.

2.9 Summary

Distributed systems consist of autonomous computers that work together to give the
appearance of a single coherent system. Nowadays they are generally built by means
of an additional layer of software on top of a network operating system. This layer,
called middleware, is designed to hide the heterogeneity and distributed nature of the
underlying collection of computers. Middleware-based distributed systems generally
adopt a specific model to express distribution and communication, such as: remote
procedure calls, distributed objects, files, and documents.

Important to any distributed system is its internal organization. The most popu-
lar model is the client-server model. A client sends a message to a server and waits
until the latter returns a reply. This model is strongly related to traditional pro-
gramming, in which services are implemented as procedures or functions. Another
model for structuring distributed systems is the Service Oriented Architecture (SOA).
This model is receiving a growing interest. The SOA is based on the concept of loose
coupling, where coupling is intended as the dependency between interacting systems.
The SOA’s basic components are elements and the operations messages they exchange
with each other. There are three key elements: Service Provider, Service Requestor
and Service Registry.

The Grid distributed system concept was born in the early to mid 1990s. Like
any other growing idea, the Grid has evolved passing through different phases. Nowa-
days we are in the third Grid generation. This generation defines the Grid as a
service oriented architecture based on web services. This step is characterized by the
refactoring of the implementation standard OGSI that is evolved in the Web Services
Resource Framework (WSRF). The main concept that arises from the migration OGSI
to WSRF is the WS-Resource, introduced to manage the state of a Grid service.

30 2. Grid technologies

3
Grid scheduling

A Grid is a dynamic heterogeneous environment that agglomerates geographically
distributed resources. Therefore, a Grid scheduler (or broker) must make resource
selection decisions in an environment where it has no control over the local resources,
the resources are distributed, and information about the systems is often limited or
dated. These interactions are also closely tied to the functionality of the Grid Infor-
mation Services. In this chapter we describe properties and services characterizing
the Grid Resource Management System (RMS), that provides services for the man-
agement and exploitation of the resources (scheduling services are part of the RMS).
Then we tackle the problem of scheduling applications in a Grid environment and
give a brief summary of current projects dealing with Grid scheduling systems.

3.1 Grid Resource Management Systems

Grid is a large, dynamic, heterogeneous and collaborative environment. Grids inte-
grate networking, communication, computation and information to provide a virtual
platform for computing and data management. Machines in a Grid are typically
grouped into autonomous administrative domains that communicate via high-speed
communication links. Scheduling, in such an environment, requires a different ap-
proach than presently used in distributed systems. This approach must take into
account that resources in a Grid typically do not belong to the same administrative
domain. Therefore, the individual demands of the participants need to be observed.
This requires a new technological approach. Access to resources is typically subject
to individual access, accounting, priority, and security policies of the resource owners.
Moreover a Grid resource is a very general concept, it is not restricted only to CPU
cycles, but also network bandwidth, disk space, memory, files, etc. In a broad sense
a Grid resource is anything that may be used through a standard Grid interface, i.e.
an Application Programming Interface and a protocol.

In a Grid environment there is the need of a set of basic functions and services
that take care of all these constraints, that means accepting requests for resources
and assign specific machine resources to a request from the overall pool of Grid re-
sources for which a user has access permission. This set of services is called Grid
Resource Management System (RMS). The RMS manages the pool of resources that

32 3. Grid scheduling

are available to the Grid, i.e. the scheduling of processors, network bandwidth, and
disk storage. In a Grid, the pool can include resources from different providers thus
requiring the RMS to hold the trust of all resource providers. Basically, the RMS is
constituted by the middleware, tools and services that allow to disseminate resource
information, discover suitable resources and scheduling resources for job execution.
The design of a RMS have to consider aspects such as: site autonomy, heterogeneity,
extensibility, allocation/co-allocation, scheduling, and online control [45, 26, 10].

Site autonomy. Computing resources are geographically distributed under different
ownerships each having their own access policy, cost and various constraints.
Every resource owner will have a unique way of managing and scheduling re-
sources and the Grid schedulers have to ensure that they do not conflict with
resource owners policies.

Heterogeneity. The solution of complex problems can require various kind of re-
sources located on different sites that can use different operating systems as
well as different local resource management systems which lead to significant
differences in functionality.

Extensibility. A resource management solution must support the frequent develop-
ment of new domain-specific management structures, without requiring changes
to code installed at participating sites.

Allocation/Co-allocation. Applications have computational requirements that can
be satisfied by using one or more resources that could be allocated simultane-
ously at several sites. Site autonomy and possibility of failure during allocation
introduces a need for specialized mechanisms for allocating resources, initiating
computation on those resources, and monitoring and managing those computa-
tions.

Scheduling. To achieve high performance, efficient mechanism to assign job/appli-
cations tasks to the selected resources and to schedule on them their execution
are needed.

Online control. Many applications can require to adapt their execution to resource
availability, in particular when application requirements and resource charac-
teristics change during application execution.

In the past several RMS were proposed, but currently no one supports a full set of
functionalities as required by a Grid RMS. For example, Condor [14] supports site au-
tonomy, but not co-allocation or online control, others, such as Legion, supports online
control and policy extensibility, but not the heterogeneous substrate or co-allocation
problems [30]. In [109] a taxonomy to survey existing Grid resource management
implementations can be found.

Any application can be a Grid application but, in order to take full advantage
from the Grid, it should be based on loosely-coupled components and it should be
Grid-aware, i.e. designed to work in Grid. A Grid-aware application is one that at

3.2. Introduction to Grid scheduling 33

Figure 3.1: A Grid application execution scenario.

run-time can exploit the RMS to identify Grid characteristics, and then dynamically
reconfigure resource requirements and possibly the application structure to maintain
the required performance.

Figure 3.1 describes a Grid application execution scenario. The user submits its
application to the Grid, which immediately send the application to the Resource
Broker (RB). The RB is responsible to submit the user application to appropriate
resources for execution. The RB uses other Grid services such as the information
services and monitor services in order to select the resources and to monitor the
application execution.

3.2 Introduction to Grid scheduling

Grid scheduling is defined as the process of making scheduling decisions involving
resources over multiple administrative domains. This process can include searching
multiple administrative domains to use a single machine or scheduling a single job to
use multiple resources at a single site or multiple sites. From a Grid point of view a
job is anything that needs a resource.

As we mentioned earlier, Grid is a collection of heterogeneous resources, in par-
ticular a computational resource can be a cluster with its own local scheduler. A
Grid scheduler can exploit RMS services in order to communicate with these local
schedulers. In general we can differentiate between a Grid scheduler and a local re-
source scheduler, that is, a scheduler that is responsible for scheduling and managing

34 3. Grid scheduling

resources at a single site, or perhaps only for a single cluster or resource. One of the
primary differences between a Grid scheduler and a local resource scheduler is that
the Grid scheduler does not own the resources at a site (unlike the local resource
scheduler) and therefore does not have control over them.

The structure of a scheduler may depend on the number of resources managed
and the domain in which resources are located. In general we can distinguish three
different models for structuring schedulers: Centralized, Decentralized and Hierarchi-
cal [14]. The first one can be used for managing single or multiple resources located
either in a single or multiple domains. It can only support a uniform scheduling
policy and suits well for cluster management (or batch queuing) systems. The De-
centralized model seems to better fit for a typical Grid environment. In this model
the schedulers interact among themselves in order to decide which resources should
be allocated to the jobs being executed. There is no central component responsible
for scheduling, hence this model appears to be highly scalable and fault-tolerant. The
resource owners can define their policies that the schedulers has to enforce. However,
because the status of remote jobs and resources is not available at single location, the
possibility of generating highly efficient schedules is questionable. The Hierarchical
model also fits for Grid environments as it allows remote resource owners to enforce
their own policy on external users, and removes single centralization points. This
model looks like a hybrid model (combination of central and decentralized model),
and seems to better suit Grid systems. The scheduler at the top of the hierarchy is
called super-scheduler/resource broker, which interacts with local schedulers in order
to decide schedules.

Scheduling algorithms can be classified as static or dynamic. In the former the
mapping decisions are taken before executing an application and are not changed
until the end of the execution. In the latter the mapping decisions are, instead, taken
while the program is running. Since static mapping usually does not imply overheads
on the execution time of the mapped application, more complex mapping solutions
than the dynamic ones can be adopted. The static approach is not well suited for a
Grid environment, which is highly dynamic.

In order to take scheduling decisions, a Grid scheduler needs (updated) infor-
mation about the available resources (e.g. architectural parameters, load, forecasts,
etc.). These information are retrieved through the Grid Information System (GIS)
[109], that gathers information from individual local resources. There are different
information systems, designed with different architectures, but each of them deals
with organizing sets of sensors in such a way that an outside system can have easy
access to the data. They are designed in order to differentiate between static and
dynamic data. Static data, such as type of operating system or which file systems are
accessible, is often cached or made more rapidly available, whereas data that changes
more often needs a heavier-weight interaction and has to be made available in very
different ways (streaming versus time-out caches, for example). These system have
to be extensible in order extensible to allow additional monitoring of quantities, as
well as higher-level services such as better predictions or quality-of-information met-
rics [108]. Some examples of GIS are the Globus Monitoring and Discovery Service
(MDS2) [26], the Grid Monitoring Architecture (GMA), developed by the Global Grid

3.2. Introduction to Grid scheduling 35

Figure 3.2: Main phases of a Grid scheduler

Forum performance working group [123] and the Network Weather System [130]. It
must be mentioned that, as a matter of fact, the decisions a scheduler makes are only
as good as information provided to it.

3.2.1 General Architecture of a Grid Scheduler

In [109] Schopf delineates the general architecture of a Grid scheduler, also termed
super-scheduler or broker. Grid scheduling involves three main phases (Figure 3.2):
resource discovery, which generates a list of potential resources; information gathering
about those resources and selection of a good set of them; and job execution, which
includes file staging and cleanup.

Resource Discovery. This phase involves selecting a set of candidate resources and,
at this moment, it is perhaps the less studied field in the scheduling community.
It requires a standard way to express application requirements with respect
to the resource information stored in the Grid Information System. It is thus
needed an agreed-upon schema to describe the attributes of the systems, in or-
der for different systems to understand what the values mean. An example of
such a schema is the GLUE Information Model [8]. Once the list of resources
is obtained, it must be filtered in order to eliminate the ones that are unusable.
That means filter resources which the user submitting the job has not access to
(Authorization Filtering), filter resources that do not match application require-
ments (Application Definition), like operating system or hardware/software re-
quirements and finally filter resources that do not match minimal application re-
quirements (Min. Requirement Filtering), with focus on dynamic requirements
like load. From the above filtering criteria, the Authorization needs particular
attention, it requires a secure and scalable user accounting system. G-PBox [21]
and DGAS [102] are two projects addressing this problem.

36 3. Grid scheduling

System Selection. While the previous phase filters out unsuitable resources, this
phase should determine from this large list the best (set of) resource(s) chosen
to map the application. This selection requires to gather detailed dynamic
information from resources (Information Gathering), e.g. by accessing local
GRIS of Globus middleware, or querying performance prediction systems such
as Network Weather System (NWS) [130]. This information should be used to
rank resources, and to allow the scheduler to choose the ones that should ensure
high performance in the execution of the application (System Selection).

Job Execution. The last phase is running the job. This phase can be very complex
and can require various intermediary steps:

1. Advance reservation: this is an optional step. Part or all the resources
needed for the job can be reserved in advance.

2. Job submission: the job is submitted to the selected resource for execution.

3. Preparation tasks: preliminary operations needed for the execution of the
jobs. Can include the retrieval of input files, claiming a reservation, etc.

4. Monitoring progress: it is essential for a user to know where and how the
execution is going on. These information are useful also for the scheduling
algorithm, for example by rescheduling the job if it is not making sufficient
progress.

5. Job completion: notification of the result of the execution.

6. Cleanup tasks: retrieving of output files, removing of temporary data and
settings, and so forth.

While many schedulers have begun to address the needs of a true Grid-level scheduler,
none of them currently supports the full range of actions required.

The next section gives on overview of Grid workflows, which have a growing in-
terest and have an important impact in scheduling issues. The rest of the chapter
briefly describes some implementations of scheduling systems.

3.3 Grid Workflows

Grid workflows are an emerging research field in the Grid community. Actually there
is an ongoing effort to define a standard meaning of workflow for the Grid. This
section wants to outline motivations, issues and approaches currently followed.

We said above how Grid is emerging as a service oriented architecture. In particu-
lar, the “software as a service” approach results in a componentized view of software
applications and workflow can naturally be used as a component composition mech-
anism. Traditionally, the main applications of workflow have been in the automation
of administrative and production processes, especially within businesses and large or-
ganizations. In the late 1990s, Enterprise Application Integration (EAI) emerged as
a new application area for workflow. The expansion of workflow towards middleware

3.3. Grid Workflows 37

has since continued, namely within the Web service initiative. The Grid can directly
leverage workflow, both in terms of models and technology.

The users have complex tasks and want to take advantage of the resource-rich en-
vironment provided by the Grid to solve their problems subject to a set of constrains
such as deadlines, cost, quality of the solution. A complex task consists of multi-
ple activities. Activities are units of work to be performed by the agents, humans,
computers, sensors, and other man-made devices involved in the workflow enactment.
A process description, also called a workflow schema, is a structure describing the
activities to be executed and the order of their execution [91]. A workflow has three
dimensions:

1. The process: the process dimension refers to the creation and the possible mod-
ification of the process description.

2. The case: the case dimension refers to a particular instance of the workflow
when the attributes required by the process enactment are bound to specific
values.

3. The resource: the resource dimension refers to discovery and allocation of re-
sources needed for the enactment of a case.

Workflow enactment is the process of carrying out the activities prescribed by the
process description for a particular case.

Two types of workflows can be distinguished: static and dynamic. The process
description of a static workflow is invariant in time. The process description of a
dynamic workflow changes during the workflow enactment phase due to circumstances
unforeseen at the process definition time.

There are several distinctions between Grid-based workflows and traditional work-
flows encountered in business management, office automation, or production manage-
ment [92]:

• The emphasis in a traditional workflow model is placed on the contractual aspect
of a transaction. For a Grid-based workflow the enactment of a case is sometimes
based on a ”best-effort model” where the agents involved do their best to attain
the goal state but there is no guarantee of success.

• An important aspect of a transactional model is to maintain a consistent state of
the system. A Grid is an open system, thus, the state of a Grid is considerably
more difficult to define than the state of a traditional system.

• A traditional workflow consists of a set of well-defined activities that are unlikely
to be altered during the enactment of the workflow. However, the process
description for a Grid-based workflow may change during the lifetime of a case.
After a change, the enactment of a case may continue based on the older process
description, while under some circumstances it may be based on the newer
process description. In addition to static workflows we have to support dynamic
ones.

38 3. Grid scheduling

• The activities of a Grid-based workflow could be long lasting. Some of the
activities supported by the Grid are collaborative in nature and the workflow
management should support some form of merging of partial process descrip-
tions.

• The individual activities of a Grid workflow may not exhibit the traditional
properties of transactions. Consider, for example, durability; at any instance of
time before reaching the goal state a workflow may roll back to some previously
encountered state and continue from there on an entirely different path. An
activity of a Grid workflow could be either reversible or irreversible. Sometimes,
paying a penalty for reversing an activity is more profitable in the long run than
continuing on a wrong path.

• Resource allocation is a critical and very delicate aspect of the Grid-based work-
flow enactment. The Grid provides a resource-rich environment with multiple
classes of resources and many administrative domains; there is a large variabil-
ity of resources in each class; resource utilization is bursty in nature. Thus,
we need: resource discovery services, support for negotiations among multiple
administrative domains, matching and brokerage services, reservations mecha-
nisms, support for dynamic resource allocation, and other sophisticated resource
management mechanisms and services.

• Mobility of various agents involved in the enactment of a case is important for
Grid-based workflows. The agents may relocate to the proximity of the sites
where activities are carried-out to reduce communication costs and latency.

At least four important issues can be identified in order to enable workflows for the
Grid:

1. User Environments or Workflow IDE (Integrated Development Environment).

2. Representation and language to express workflow.

3. Translation or compilation.

4. Execution and runtime support.

Actually, the most common Grid workflow can be modelled as simple Task (Directed
Acyclic) Graphs (DAGs), where the order of execution of tasks (modelled as nodes)
is determined by dependencies (in turn modelled as directed arcs). Each DAG node
represents the execution of a component, characterized by a set of attributes such as
an estimate of its cost and possible requirements on the target execution platform,
while DAG directed edges represent data dependencies between specific application
components. Data dependencies will be usually constituted by large files written by
a component and required for the execution of one or more other components of the
application.

In the following section we will survey the main approaches to scheduling systems,
that considers workflow scheduling, currently followed in the Grid community.

3.4. Grid scheduling systems 39

3.4 Grid scheduling systems

In this section we present a brief description of some Grid scheduling systems that
manages workflows [136, 10].

3.4.1 Condor DAGMan

Condor [86, 119, 120] is a specialized resource management system (RMS) developed
at the University of Wisconsin-Madison for compute-intensive jobs. Like other full-
featured batch systems, Condor provides a job queuing mechanism, scheduling policy,
priority scheme, resource monitoring, and resource management. Users submit their
serial or parallel jobs to Condor, Condor places them into a queue, chooses when
and where to run the jobs based upon a policy, carefully monitors their progress,
and ultimately informs the user upon completion. Condor can be used to manage a
cluster of dedicated compute nodes (such as a “Beowulf” cluster). In addition, unique
mechanisms enable Condor to effectively harness wasted CPU power from otherwise
idle desktop workstations. Some of the enabling mechanisms of Condor are:

• ClassAds: it is a framework for matching resource requests (e.g. jobs) with
resource offers (e.g. machines). It allows jobs and resources to advertise their
characteristics and requirements.

• Job checkpoint and migration: with particular types of jobs, Condor can trans-
parently save the state and subsequently resume the application from the check-
point file. This technique also permits a job to migrate from one machine to
another machine (low-penalty preemptive-resume scheduling [72]).

• Remote system calls: it is a mechanism for preserving the local execution en-
vironment. By redirecting the I/O, for example, the user do not need to make
data files available on remote machines, even in the absence of a shared file
system.

Condor-G [48] represents the link between two technologies: Condor and the
Globus toolkit [42] (see 2.6). With Condor-G it is possible to use Condor inside
a Grid environment. Condor-G can be used as a reliable submission and job man-
agement service for one or more sites, Condor as the fabric management service and
finally the Globus toolkit can be used as the bridge between them.

Another service of Condor is the Directed Acyclic Graph Manager (DAGMan)
[120] for executing multiple jobs with dependencies described as DAGs. Each job
is a node in the graph and the edges identify their dependencies. DAGMan does
not support automatic intermediate data movement, so users have to specify data
movement transfer through pre-processing and post-processing commands associated
with processing job. The DAGMan meta-scheduler processes the DAG dynamically,
by sending to the condor scheduler the jobs as soon as their dependencies are satisfied
and they become ready to execute.

40 3. Grid scheduling

3.4.2 GrADS

The Grid Application Development Software (GrADS) project [11] aims to provide
programming tools and execution environments for ordinary scientific users to de-
velop, execute, and tune applications on the Grid. To achieve this goal they are
conducting research in four main areas:

1. collaboration on the design and implementation in prototype form of important
scientific applications for the Grid;

2. design of programming systems and problem-solving environments;

3. design and implementation of schedulers that dynamically match configurable
applications to available resources;

4. design and construction of hardware and software testbeds for experimentation.

In GrADS applications are encapsulated as configurable object programs (COPs). A
COP includes code for the application (e.g. an MPI program), a mapper that de-
termines how to map an application’s tasks to a set of resources, and an executable
performance model that estimates the application’s performance on a set of resources.
The system relies upon performance contracts that specify the expected performance
of modules as a function of available resources.

The GrADS project has recently included the possibility of scheduling workflow
applications [25]. The implemented workflow scheduling has the objective of minimize
the overall job completion time, or makespan, of the application. The mapping from
the workflow components to the Grid resources is based on the merging of two models:
the model of the Grid resources, determined using Grid services such as the MDS [39]
and NWS [130], and the performance model of the application. For each application
component, the GrADS workflow scheduler ranks each eligible resource, reflecting
the fit between the component and the resource. After ranking the components, the
scheduler uses these information to build a performance matrix and, then, it runs
heuristics on this matrix in order to optimize the mapping of independent jobs when
several DAG nodes become runnable upon the scheduling of their parents in the
graph. Three heuristics have been applied in GrADS; those are Min-Min, Max-Min,
and Sufferage heuristics [89].

The estimate of the performance of a workflow component on a machine is the
base for a good workflow schedule. Performance models are obtained at compile time,
when the characteristics of the resources on which the components will run are not
known. Therefore, performance models do not aim to predict an exact execution
time, but rather provide an estimate resource usage that can be converted to a rough
time estimate based on architectural parameters. To obtain the component models,
they consider both the number of floating point operations executed and the memory
access pattern.

3.5. Summary 41

3.4.3 UNICORE

UNICORE plus [125] provides seamless and secure access to distributed resources
of the German high performance computing centers. UNICORE plus is a follow-
on project of UNICORE (Uniform Interface to Computing Resources) [7] that offers
a ready-to-run Grid system including client and server software. The original UNI-
CORE job model supports jobs that are constructed as a set of directed acyclic graphs
with temporal dependencies. Subsequent versions introduced more sophisticated con-
trol facilities in the workflow language. They have introduced advanced flow controls
such as Do-N, Do-Repeat, If-then-else, and Hold-Job. UNICORE plus offers a graph-
ical user interface to construct the application workflow and to convert it into an
executable object. UNICORE also allows users to explicitly specify the transfer func-
tion as a task through GUI; it is also able to perform the necessary data movement
function without user intervention.

3.5 Summary

The growing computational power requirements of grand challenge applications has
promoted the need for linking high-performance computational resources distributed
across multiple organizations. This is fueled by the availability of the Internet, the
growing performance of the network infrastructure, low cost high-performance ma-
chines such as clusters across multiple organizations, and the rise of scientific problems
of multi-organizational interest.

Computational Grids are expected to offer dependable, consistent, pervasive, and
inexpensive access to high-end resources irrespective of their physical location and
the location of access points. Due to the use of geographically distributed multiorga-
nizational resources, the Grid computing environment needs to dynamically address
issues involved in inter-domain resource usage and should have the following features:
site autonomy, heterogeneity, extensibility, allocation/co-allocation, scheduling, and
online control.

A Grid scheduler (or broker) must make resource selection decisions in an environ-
ment where it has no control over the local resources, the resources are distributed,
and information about the systems is often limited or dated. These interactions are
also closely tied to the functionality of the Grid Information Services. This Grid
scheduling approach has three phases: resource discovery, system selection, and job
execution.

Scientists and engineers are building more and more complex applications to man-
age and process large data sets, and execute scientific experiments on distributed
resources. Such application scenarios require means for composing and executing
complex workflows. Grid is emerging as a service oriented architecture. In particu-
lar, the “software as a service” approach results in a componentized view of software
applications and workflow can naturally be used as a component composition mecha-
nism. Two types of workflows can be distinguished: static and dynamic. The process
description of a static workflow is invariant in time. The process description of a dy-

42 3. Grid scheduling

namic workflow changes during the workflow enactment phase due to circumstances
unforeseen at the process definition time. Actually, the most common Grid workflow
can be modelled as simple Task (Directed Acyclic) Graphs (DAGs), where the order
of execution of tasks (modelled as nodes) is determined by dependencies (in turn
modelled as directed arcs).

In the recent past, several Grid workflow systems have been proposed and devel-
oped. Some examples are the Condor DAGman, the GrADS project, the UNICORE
project.

4
Literature survey of the DAG

scheduling problem

In this chapter we present background and a brief survey of the most representa-
tive DAG scheduling algorithms found in the literature. We first introduce the DAG
scheduling problem giving a general description of the problem statement. This is fol-
lowed by a discussion about the NP-completeness of variants of the scheduling prob-
lem. We describe the DAG model of a parallel program and the computing system
environment which executes the application. A lot of (earlier) works make simplifying
assumption like restricted graph structures, no communication among tasks, etc. We
discuss the difficulties in considering the general problem, in particular in presence
of communication: the concept of granularity of a DAG is defined. In order to intro-
duce the description of the most representative scheduling algorithms, we illustrate
a taxonomy based on the classification of different scheduling environments. Most of
the algorithms work on homogeneous and heterogeneous systems. However, the het-
erogeneity is mostly intended as machine heterogeneity and do not consider network
heterogeneity. This means that a message is transmitted with the same speed on all
links. This assumption cannot be made in a Grid environment. Some recent works
on scheduling parallel applications in heterogeneous systems with a heterogeneous
interconnection network are presented.

4.1 The DAG scheduling problem

The scheduling problem is very important for the effective utilization of distributed
computer systems. The general scheduling problem can be divided into two cate-
gories: independent jobs scheduling and multiple interacting jobs scheduling. In the
former category, independent jobs are to be scheduled among the processors of a dis-
tributed computing system to optimize the overall system performance. The latter
category requires the allocation of multiple interacting tasks (considered like a sin-
gle parallel program) without violating precedence constraints in order to minimize
the completion time on the parallel computer system. The scheduling problem can
be addressed in both static as well as dynamic contexts. When the characteristics

44 4. Literature survey of the DAG scheduling problem

Figure 4.1: Example of precedence-constrained task graph.

of the parallel program (including its task execution times, task dependencies, task
communications and synchronization) and the characteristics of the system (machines
and networks specifications like cpu, memory, latency and bandwidth) are known a
priori, scheduling can be accomplished offline during compile-time. On the contrary,
dynamic scheduling is required when a priori information is not available and schedul-
ing is done on-the-fly according to the state of the system.

In this thesis we consider the problem of scheduling parallel applications formed
by multiple interacting jobs in a dynamic environment formed by a set of heteroge-
neous resources and a non-uniform interconnection network. In this context a parallel
application is generally modeled by a precedence-constrained task graph, which is a
directed acyclic graph (DAG) with node and edge weights (the nodes represent the
tasks and the directed edges represent the execution dependencies as well as the
amount of communication). In this model a task cannot start execution before all of
its parents have finished their execution and sent all of the messages to the machine
assigned to that task. Figure 4.1 shows an example of precedence-constrained task
graph where task n4 cannot start before tasks n1, n2 and n3, edge labels are data
transfer times and node labels are computation times. The scheduling objective is to
minimize the program completion time.

Scheduling of precedence-constrained task graphs is an NP-complete problem in its
general form [51, 68, 80]. To tackle the problem, simplifying assumptions have been
made regarding the task graph structure representing the program and the model
for the parallel processor system. However, the problem is NP-complete even in two
simple cases: (1) scheduling unit-time tasks to an arbitrary number of processors
[58], (2) scheduling one or two time unit tasks to two processors [22]. There are
only three special cases for which optimal polynomial-time algorithms exist. These
cases are: scheduling tree-structured task graphs with identical computation costs on

4.1. The DAG scheduling problem 45

an arbitrary number of processors, scheduling arbitrary task graphs with identical
computation costs on two processors [60, 111] and, finally, scheduling an interval-
ordered DAG with uniform node-weights to an arbitrary number of processors [99]. A
DAG is called interval-ordered if every two precedence-related nodes can be mapped
to two non-overlapping intervals on the real number line [38]. However, even in these
cases, no communication is assumed among the tasks of the parallel program. It has
been shown that scheduling an arbitrary task graph with inter-task communication
onto two processors is NP-complete and scheduling a tree-structured task graph with
inter-task communication onto a system with an arbitrary number of processors is
also NP-complete [84].

In order to solve the scheduling problem, three approaches have been suggested:
state-space search, dynamic programming and heuristics. The first two techniques
give optimal solutions under relaxed constraints, but they are not useful since most
of them work under restricted environments and most importantly they lead to an
exponential time in the worst case. Heuristics are the usual approach to solve the
scheduling problem. They achieve good efficiency, but, on the other side, they usually
cannot generate optimal solutions and there is no guarantee about their performance
in general, since the average, worst, and best case performance of these algorithms
are not known.

Most scheduling heuristics algorithms are based on the list scheduling approach.
The basic idea in list scheduling is to assign priorities to nodes and examine for
scheduling higher priority nodes first, ties are broken using some method specific
to each algorithm. There are numerous variations in how the priority are assigned
and in maintaining the list of ready nodes, and criteria for selecting a processor to
accommodate a task. We describe later in this chapter (section 4.6) some of these
algorithms. There are two approaches used in the list scheduling: static and dynamic.
In static list scheduling the list of nodes is statically constructed before task allocation
begins, and the sequencing in the list is not modified during the other operations.
In dynamic list scheduling priorities are updated after each allocation and the list
of ready tasks is consequently rearranged. Dynamic list scheduling algorithms can
potentially generate better schedules (at the cost of increasing the time-complexity), in
particular if they have to operate in a Grid environment, which is extremely dynamic.
In a Grid the resources are shared by all the users and the load of the network and of
the machines change also during application execution. Moreover, the resources can
come and go and the initial static schedule can become completely useless.

In realistic cases, a scheduling algorithm needs to address a number of issues.
It should exploit the parallelism by identifying the task graph structure, and take
into consideration task granularity (amount of computation with respect to commu-
nication), arbitrary computation and communication costs. Moreover, in order to be
of practical use, a scheduling algorithm should have low complexity and should be
economical in terms of the number of processors used.

46 4. Literature survey of the DAG scheduling problem

Authors Complexity Processors Computation Graph Comm.

Hu [60] O(v) Unlimited Uniform Free-tree No

Coffman and Gra-
ham [23]

O(v2) 2 Uniform Any No

Sethi [111] O(vα(v) + e) 2 Uniform Any No

Papadimitriou and
Yannakakis [99]

O(v + e) Unlimited Uniform Interval-
Ordered

No

Ali and El-Rewini
[4]

O(ve) Unlimited Uniform Interval-
Ordered

Uniform

Papadimitriou and
Yannakakis [99]

NP-Complete Unlimited Any Interval-
Ordered

No

Garey and Johnson
[51]

Open Fixed, > 2 Uniform Any No

Ullman [124] NP-Complete Unlimited Uniform Any No

Ullman [124] NP-Complete Fixed, > 1 = 1 or 2 Any No

Table 4.1: Optimal solutions for the DAG scheduling problem under simplified sit-
uations: the table considers the time complexity of the algorithm, the number of
processors of the environment, computation characteristics, graph structure and com-
munication characteristics.

4.1.1 NP-completeness of the DAG scheduling problem

The DAG scheduling problem is NP-complete and polynomial time solutions were
found only for simple cases. As we mentioned above there are only three simple cases
for which the DAG scheduling problem have been solved in polynomial time. Table
4.1 summarizes these optimal results.

The first case is to schedule tree-structured task graphs with identical computation
costs to an arbitrary number of processors. Hu [60] proposed a linear time solution
for this problem. The second case is to schedule arbitrary task graphs with identical
computation costs to two processors. Coffman and Graham [23] presented a quadratic-
time algorithm to solve this problem. Sethi [111] improved the algorithm proposed
by Coffman and Graham with an almost linear-time solution. The third case is to
schedule an interval-ordered DAG with uniform node weights to an arbitrary number
of processors. To solve this problem Papadimitriou and Yannakakis found a linear-
time algorithm [99]. Ali and El-Rewini [4] showed a polynomial-time solution to
schedule interval-ordered DAGs with uniform edge weights, which are equal to the
node weights.

In its general formulation the DAG scheduling problem is NP-complete [51, 51,
68, 80, 76]. Ullman showed that scheduling a DAG with unit computation costs
to p processors, and scheduling a DAG with one or two unit computation costs to
two processors are NP-complete [22, 124]. Papadimitriou and Yannakakis showed

4.2. Background 47

that scheduling an interval ordered DAG with arbitrary computation costs to two
processors is NP-complete [99] and scheduling a DAG with unit computation costs
to p processors, possibly with task-duplication, is also NP-complete [100]. Finally,
Garey et al. [50] showed that scheduling an opposing forest with unit computation
to p processors is NP-complete.

4.2 Background

A parallel program can be represented by a directed acyclic graph (DAG). A DAG is
a tuple G = (V,E) where V = {nj , j = 1..v} is the set of nodes with |V | = v, E is
the set of communication edges and |E| = e. Nodes and edges are labeled as follows:

• the weight ci,j ∈ C is the communication cost incurred along the edge ei,j =
(ni, nj) ∈ E, which becomes zero if both nodes are mapped to the same proces-
sor;

• the weight τi ∈ T of the node ni ∈ V is the computation cost (or the expected
execution time) of the task represented by the node ni.

A task is a set of instructions that must be executed sequentially in the same processor
without preemption. A task cannot start execution before all of its parents have
finished their execution and sent all of the messages to the machine assigned to that
task. Hereafter we use the terms node and task interchangeably. Two tasks are called
independent if there are no dependence paths between them. The width of a DAG
is the size of the maximal set of independent tasks. A node is a source node if it
has no incoming edges and it is an exit node if it has no outgoing edges.

DAG scheduling algorithms found in the literature usually assume as starting
point a DAG labeled with estimates of computation times and data transfer times. In
practice we have to distinguish between two types of DAGs: abstract and concrete.
The abstract DAG is labelled with relative values, which do not aim to predict an
exact execution time, but rather provide an estimated resource usage that can be
converted to a rough time estimate based on architectural parameters. The abstract
DAG is obtained at compile-time. The concrete DAG is labelled with time estimates
for the execution of the tasks and the transfer of the data. An initial static matching
and scheduling phase is necessary in order to obtain the concrete DAG. As noted in
[90], the initial mapping can be realized using a static mapping algorithm such as
the baseline [126], genetic-algorithm-based mapper [126] or Levelized Min Time [64].
In particular, when we are dealing with a heterogeneous and dynamic environment,
time estimates are not known prior to application execution and the initial mapping
must be done at run-time before the execution of the scheduling algorithm. All the
algorithms described in the following sections assume the initial DAG to be concrete.

If we denote with ST (ni) and with FT (ni), respectively, the start and finish-time
of the task ni, then the schedule length can be defined as maxi{FT (ni)}. The
objective of DAG scheduling is to minimize of the schedule length or makespan

48 4. Literature survey of the DAG scheduling problem

maxi{FT (ni)}, without violating precedence constraints. Just as qualitative defini-
tion, a schedule is considered efficient if the scheduled length is short and the number
of processors used is reasonable.

Node and edge weights are usually obtained by estimation once the characteristics
of the environment (cpu, memory, latency, bandwidth, etc.) are known. Estimates
are computed by considering information such as number of floating point operations
and memory access pattern. Obtaining these estimates is actually an active area of
research. For example, considering Grid context, we can find the GrADS project
[25], where performance models are built at compile time for each task. Performance
models are an architecture-independent model of the workflow component providing
an estimated resource usage that can be converted to a rough time estimate when
architectural parameters of the resource will be available.

The DAG scheduling problem is usually identified by the combination of two
phases: matching which assigns tasks to machines and scheduling which defines
the execution order of the tasks assigned to each machine. The overall problem of
matching and scheduling is referred to as mapping.

4.2.1 The computing system

The computing system, which executes the parallel application, is generally assumed
to be a network of processing elements (PEs), each of which is composed of a proces-
sor and a local memory unit so that the PEs do not share memory and communica-
tion relies solely on message-passing. There can be two types of computing system:
homogeneous and heterogeneous. A heterogeneous computing system consists of a
heterogeneous suite of machines having different speeds or processing capabilities.
The machines are connected by a network. The topology of the network may be
fully-connected or of a particular structure such as a hypercube or a mesh. Although
most of the scheduling algorithms that can be found in the literature assume an envi-
ronment with heterogeneous processors, usually the communication links are assumed
to be homogeneous, i.e., a message is transmitted with the same speed on all links.
In contrast, a Grid has both heterogeneous machines and communication links. The
data communication time between two machines has two components: a fixed mes-
sage latency for the first byte to arrive and a per byte message transfer time. In
such situations, an |M | × |M | communication matrix, where |M | is the number of
machines, is used to hold these values for the heterogeneous computing (HC) suite.

4.2.2 DAG scheduling preliminaries

As we mentioned above, most of the scheduling algorithms are based on the list
scheduling technique. These algorithms assign priorities to the tasks and schedule
them according to a list priority scheme. A node with higher priority is examined for
scheduling before a node with lower priority. This technique is based on the repeated
execution of the following two steps for as long as all the tasks of the DAG are mapped:

1. select the node with higher priority;

4.2. Background 49

1 Create TList , a l i s t o f nodes in t o p o l o g i c a l order .
2 foreach node n o f TList do
3 max = 0
4 foreach parent p o f n do
5 i f (t l e v e l (p) + τp + cp,n) > max then
6 max = t l e v e l (p) + τp + cp,n

7 endif
8 endfor
9 t l e v e l (n) = max

10 endfor

Listing 4.1: Procedure to compute the tlevel.

1 Create RTList , a l i s t o f nodes in r eve r s ed t o p o l o g i c a l order .
2 foreach node n o f RTList do
3 max = 0
4 foreach ch i l d c o f n do
5 i f (cn,c + b l e v e l (c)) > max then
6 max = cn,c + b l e v e l (c)
7 endif
8 endfor
9 b l e v e l (n) = τn + max

10 endfor

Listing 4.2: Procedure to compute the blevel.

2. assign the selected node to a suitable machine.

The various list scheduling algorithms differ in the methods of assigning priorities and
maintaining the ready list, and criteria for selecting a processor to accommodate a
node. Traditionally the list of nodes is statically constructed before node allocation
begins. In dynamic list scheduling priorities are re-computed before the selection
phase. This step is very important for dynamic environments and a lot of care must
be taken since it can increase the time-complexity of the scheduling algorithm. We
describe below some methods used for assigning priorities.

Two major attributes frequently used for assigning priorities are the tlevel (top
level) and the blevel (bottom level). The tlevel of a node ni is the weight of the longest
path from a source node to ni (excluding ni). The length of a path is computed as
the sum of all the node and edge weights along the path. In the computation of the
tlevel of a node ni its execution time τi is not included. The tlevel of ni identifies the
ni’s earliest start time, denoted by TS(ni), which is determined after ni is mapped
to a machine. It is a dynamic attribute because the weight of an edge may be zeroed
when the two incident nodes are mapped to the same processor. Some authors call this
attribute ASAP (As Soon As Possible). Listing 4.1 shows a procedure to compute

50 4. Literature survey of the DAG scheduling problem

(a) (b)

Figure 4.2: (a) A DAG. (b) The static level SL, tlevel, blevel and ALAP of the nodes.

the tlevel in O(v + e) time-complexity.
The blevel (bottom level) of a node ni is the weight of the longest path from ni

(this time τi is included) to an exit node. Listing 4.2 shows a procedure to compute
the blevel in O(v + e) time-complexity.

The critical path (CP) of a DAG is the longest path in that graph, i.e. the path
whose length is the maximum. There can be more than one CP. The tlevel and the
blevel are bounded from above by the length of the critical path.

Most of the scheduling algorithms do not allow the mapping of a child before its
parents. In this case the blevel of a task is a static attribute and does not change
until after the task is mapped to a machine. The procedure in listing 4.2 computes
the blevel using the edge weights in the computation of the heaviest path from the
considered node to an exit node. Some algorithms do not take into account the edge
weights. In this case it is called the static blevel or simply static level (SL). In general,
scheduling in descending order of blevel tends to schedule critical path nodes first,
while scheduling in ascending order of tlevel tends to schedule nodes in topological
order.

A parameter related to the ASAP is the ALAP (As Late As Possible), the ALAP
of a node ni is defined as the difference between the weight of the CP of the DAG
and the blevel of ni. The ALAP measures how far the node’s start-time can be
delayed without increasing the schedule length. Some algorithms use the value given
by the difference between ALAP and ASAP in order to assign priorities to the tasks.
This value is called the mobility of a node. It is sometimes used to schedule the
tasks assigned to the same processor. The execution of already scheduled tasks can
be delayed in order to create a time-slot for accommodate a new task (given that
precedence-constraints are not violated). The amount of delay for a specific task is

4.2. Background 51

(a) (b) (c)

Figure 4.3: (a) A DAG. (b) A Gantt chart for a schedule. (c) A scheduled DAG

given by its mobility attribute.
In figure 4.2 we can see an example of DAG where nodes n1, n7 and n9 belong to

the critical path. In this case the critical path is unique. The edges of the critical
path are shown with thick arrows. If we change, for example, the weight of the edge
(n8, n9) from 5 to 10, then also the nodes n1, n4, n8 and n9 lie on a critical path, two
CPs of weight 23.

Figure 4.3(a) shows an example of weighted DAG, figure 4.3(b) a Gantt chart for
a possible schedule of that DAG and figure 4.3(c) the corresponding scheduled DAG.
The Gantt chart defines the processor assignment, the starting and the completion
times for each task. A scheduled DAG is a DAG with included precedence con-
straints given an assigned schedule. In figure 4.3(c) the two clusters are circled and the
edges (drawn with thick lines) corresponding to task execution ordering information
for tasks assigned to the same processor are: (n3, n4) and (n5, n3).

A cluster with only one task is called a unit cluster. Clusters can be divided
into two groups: linear and nonlinear. A cluster is called nonlinear if there are
at least two independent tasks in the same cluster, otherwise it is called linear. For
example, in figure 4.3(c) there are two clusters: one is a linear cluster and contains the
nodes n1 and n2, the other is nonlinear because nodes n3, n4 and n5 are independent
in the original DAG (figure 4.3(a)). Since a schedule imposes an ordering of tasks
in nonlinear clusters, the nonlinear clusters of a DAG can be thought of as linear
clusters in the scheduled DAG if execution orders between independent tasks are
counted as edges. It is important to note that liner clusters preserve the parallelism
of the DAG while nonlinear clusters reduces parallelism by sequentializing parallel
tasks. The core point of the DAG scheduling problem is to find the best tradeoff

52 4. Literature survey of the DAG scheduling problem

Symbol Definition
V The set of nodes (tasks) in the DAG.
E The set of edges (communication links) in the DAG.
ni Node (task) of the DAG (ni ∈ V).

ei,j or (ni, nj) Edge from task ni to task nj (ei,j∈E).
τi The execution time of node (task) ni.
ci,j The communication time between the tasks.

CCR Communication to computation ratio.
tlevel(ni) Top level of task ni (earliest start time).
blevel(ni) Bottom level of task ni.

CP Critical Path (longest path in the DAG).
DS Dominant Sequence (critical path of the scheduled DAG).

ASAP (ni) As Soon As Possible (same as tlevel(ni) or earliest start time).
ALAP (ni) As Late As Possible.

Table 4.2: Some notations and their definitions

between sequentialization and parallelization. A discussion about this issue can be
found in [54]. In section 4.2.3 we briefly summarize that work.

A task is free if it has no predecessors or if all its predecessors have been examined
and mapped to a resource. A task is partially free if some of its predecessors have
been examined and mapped to a resource.

A ready task is a task that can immediately start its execution because all the
data it is waiting for (from its parents) are available on the assigned machine. A task
is not ready if it is still waiting for data. A ready task is also a free task, but a free
task can be ready or not.

The Dominant Sequence (DS) is the critical path of the scheduled DAG and its
weight is called the parallel time. The following formula can be used to determine
the parallel time of a scheduled DAG:

PT = max
ni∈V

{tlevel(ni) + blevel(ni)}.

Table 4.2 summarizes some notations and their definitions.

4.2.3 Clustering of a DAG: communication and granularity

In presence of communication the scheduling problem is much harder [134, 54], mainly
because the edge weights are no longer deterministic before the processor assignments
have been done. Communication is zero when two tasks are mapped in the same pro-
cessor, and nonzero when they are mapped in two different processors. Since the
scheduling objective is the minimization of the makespan, assigning different tasks
to the same processors can lead to a better schedule. The process of grouping dif-
ferent tasks is called clustering. Every task in a cluster must execute in the same

4.2. Background 53

(a) (b)

Figure 4.4: (a) Fork set. (b) Join set.

processor. Intuitively a graph is coarse-grained if the amount of computation is rel-
atively large with respect to communication. Since with the clustering process we
zero the communication edges by the assignment of the tasks to the same processor,
clustering increases the grain of a DAG. Linear clustering groups tasks that are se-
quential in the original DAG, i.e. they belong to a simple directed path. Nonlinear
clustering, instead, sequentializes parallel tasks and can improve the schedule length
if communication is slow. So, a tradeoff must be found between parallelization (lin-
ear clustering) and sequentialization (nonlinear clustering). To study this problem a
definition of granularity of a DAG must be given. Unfortunately in literature there
is no consensus on this definition.

In [117] Stone studies the granularity by considering a task graph in which every
task computes R units of time and communicates with all other tasks at a cost of C.
He defines the task granularity as the ratio R/C and shows that this value determines
the optimum tradeoff point between parallelization and sequentialization. In [52]
Gerasoulis and Venugopal extend Stone’s granularity definition for arbitrary DAGs.
They introduce a quantity called granularity of a DAG defined as

g = min
x=1:v

{τx/ max
j
{cx,j}}

where τx is the computation cost of node nx and cx,j are the communication costs
from node nx to node nj .

In [54] Gerasoulis and Yang study the determination of the tradeoff point between
parallelization and sequentialization of tasks in arbitrary DAGs with the introduction
of a different granularity definition for a DAG. With this granularity they prove that
linear clustering is better than nonlinear clustering for arbitrary coarse grain DAGs.
This is not true for other granularity definitions.

The building blocks of a DAG are the fork and join structures, as shown in Figure
4.4. In figure 4.4(a) is represented a fork primitive where the set Fx = {n1, n2, ..., nn}
consists of all immediate successors of node nx. Figure 4.4(b) shows a join primitive
and the set Jx = {n1, n2, ..., nm} consists of all immediate predecessors of node nx.

54 4. Literature survey of the DAG scheduling problem

Given the following definitions:

g(Fx) = min
k=1:n

{τk}/ max
k=1:n

{cx,k}

g(Jx) = min
k=1:m

{τk}/ max
k=1:m

{ck,x}

where n = |Fx| and m = |Jx|, the grain of a task is defined as:

gx = min{g(Fx), g(Jx)}.

Finally the expression for the granularity of a DAG is:

g(G) = min
x=1:v

{gx}. (4.1)

A DAG is coarse grain if g(G) ≥ 1. For coarse grain DAGs each task receives or send
a small amount of communication compared to the computation of its adjacent tasks.
Equation 4.1 defines the granularity for arbitrary DAGs. Applying this definition to
the class of DAGs studied by Stone [117], i.e. uniform computation times and uniform
communication times, this granularity is equivalent to the one proposed by Stone. In
fact, with τk = R and ci,k = C, the equation 4.1 reduces to the ratio R/C.

With this definition of granularity, Gerasoulis and Yang [54] prove the following
two theorems.

Theorem 4.2.1. For any nonlinear clustering of a coarse grain DAG, there exists a
linear clustering with less or equal parallel time.

Theorem 4.2.2. For any linear clustering algorithm we have:

PTopt ≤ PTlc ≤
(
1 +

1
g(G)

)
PTopt

where PTopt is the optimum parallel time and PTlc is the parallel time of the linear
clustering.
Moreover for a coarse grain DAG we have:

PTlc ≤ 2× PTopt.

Theorem 4.2.1 proves that for coarse grain DAGs the optimum clustering is a linear
clustering, but without giving any performance bounds. This theorem is true only
for the fork/join granularity definition 4.1. Theorem 4.2.2, instead, gives performance
bounds for linear clustering and it is the one proposed by Gerasoulis and Venugopal
[52]. Theorem 4.2.2 was originally formulated with another definition for granularity,
but still holds for the granularity definition 4.1.

The bound given by theorem 4.2.2 relates to the result obtained by Graham [57].
He proposed a bound on the schedule length obtained by general list scheduling
methods. Using a level-based approach for generating a list for scheduling, he found
the following relation between the schedule length SL and the optimal schedule length
SLopt:

SL ≤
(
2− 1

p

)
SLopt

In this case, however, communication edge costs are assumed to be either zero or
additive to the task cost, Sarkar [107].

4.3. Scheduling of Primitive Graph Structures 55

1 k = 1
2 while (

∑k
j=1 τj ≤ τk + ck,x) do

3 ck,x = 0
4 k = k+1
5 endwhile
6 k = k−1

Listing 4.3: Optimal algorithm for scheduling the primitive join structure.

4.3 Scheduling of Primitive Graph Structures

The building blocks of a DAG are the fork and join components, also called primitive
graph structures. Figure 4.4 shows an example of these two structures: the fork
primitive in figure 4.4(a) and the join primitive in figure 4.4(b). In this section we
report an algorithm for computing the optimal schedule of the fork and the join
primitives in homogeneous computing systems. The study of the optimal schedule
of the primitive graph structures gives some intuitive feeling on the meaning of the
tradeoff between parallelization and sequentialization.

Now we consider the join set Jx of Figure 4.4(b). Without loss of generality,
assume that for the join structure we have: τj + cj,x ≥ τj+1 + cj+1,x, j = 1..m − 1,
i.e. the pairs (τj , cj,x) are sorted in descending order of their sum from left to right.
The algorithm in listing 4.3 determines the optimum clustering for the join structure.
At the beginning all tasks are mapped on separate processors. At each step k of the
algorithm, the edge ek,x is visited and, if zeroing that edge reduces the parallel time,
then this edge is zeroed. As can be seen from figure 4.5(b), zeroing an edge means
sequentializing the corresponding task. Figure 4.5(a) shows the corresponding Gantt
chart. Therefore, the task nj for j = 1..k will be mapped in the same cluster as long
as the execution time for this cluster τx +

∑k
j=1 τj remains less than τx + ck,x + τk.

(a) (b)

Figure 4.5: (a) Gantt chart and (b) scheduled DAG for the optimum clustering algo-
rithm of the join primitive.

56 4. Literature survey of the DAG scheduling problem

1 k = 1
2 while (

∑k
j=1 τj ≤ τk + cx,k) do

3 cx,k = 0
4 k = k+1
5 endwhile
6 k = k−1

Listing 4.4: Optimal algorithm for scheduling the primitive fork structure.

The algorithm will stop at some step k when the condition in the while loop becomes
false, thus implying the following inequalities:

k∑
j=1

τj ≤ ck,x + τk,

k+1∑
j=1

τj > ck+1,x + τk+1.

Given such k satisfying the previous inequalities, the optimal schedule length for a
join primitive is:

max
{

τx +
k∑

j=1

τj , τx + ck+1,x + τk+1

}
The optimum scheduling algorithm and schedule length for the fork primitive

graph structure can be derived in an analogous way. Consider the fork set Fx of
Figure 4.4(a) and assume that nodes and edges are sorted such that cx,j + τj ≥
cx,j+1 + τj+1, j = 1..n − 1. Listing 4.4 shows the algorithm that computes the
optimal schedule for the fork primitive. It computes the tradeoff point k for which
the following two inequalities hold:

k∑
j=1

τj ≤ cx,k + τk,

k+1∑
j=1

τj > cx,k+1 + τk+1.

Finally, the optimal schedule length for the fork primitive is given by:

max
{

τx +
k∑

j=1

τj , τx + cx,k+1 + τk+1

}
4.4 Taxonomy of DAG scheduling algorithms

This section outlines a taxonomy of scheduling algorithms for DAGs. A general tax-
onomy of scheduling in general-purpose distributed computing systems was presented
by Casavant and Kuhl in [18]. Here we want to focus only on DAG scheduling al-
gorithms, therefore this summary is by no means complete. We base our description
on the taxonomy presented by Kwok and Ahmad [79, 80, 76]. Figure 4.6 shows a
graphical description of the classification. The scheduling of parallel applications in

4.4. Taxonomy of DAG scheduling algorithms 57

Figure 4.6: A taxonomy of the DAG scheduling problem.

a multiprocessor environment is divided into two main categories: scheduling of in-
dependent tasks and scheduling of not independent tasks. Independent tasks do not
have precedence relations among each other and, therefore, they can start execution
simultaneously [49, 55]. Also this part of the general scheduling problem was shown
to be NP-complete [63]. In [13, 114, 12] some works describing the scheduling of
independent tasks in a Grid environment can be found. Since we are interested in
the other category of scheduling algorithms, we do not discuss further the schedul-
ing of independent tasks. Earlier works on DAG scheduling have made simplifying
assumptions about the model representing the parallel program and the intercon-
nection network [22, 56]. Since we are dealing with an NP-complete problem, these
simplifications, which assume special graph structures such as trees, fork-join, uniform
computational costs, uniform communication costs or absence of communication, etc.,
were necessary in order to find polynomial solutions and for a better comprehension of
the problem. In real life cases, however, parallel programs come in a variety of struc-
tures and as such many recent algorithms are designed to tackle arbitrary graphs and
interconnection networks.

Scheduling with communication may be done with or without duplication. Task-
duplication based (TDB) algorithms allow the duplication of tasks by redundantly
allocating some nodes to multiple processors. The objective is to reduce the com-
munication overhead and to increase the fault tolerance. Different strategies can be
employed to select ancestor nodes for duplication. Some of the algorithms duplicate
only the direct predecessors while others try to duplicate all possible ancestors [101, 2].

With respect to the multiprocessor model, some of the scheduling algorithms as-

58 4. Literature survey of the DAG scheduling problem

sume an unlimited availability of processors, while other scheduling algorithms as-
sume an environment with a limited number of processors. The algorithms belong-
ing to the former class are called UNC (Unbounded Number of Clusters) schedul-
ing algorithms [67, 74, 78, 107, 131, 135, 76, 74], and the ones belonging to the
latter class are called BNP (Bounded Number of Processors) scheduling algorithms
[116, 98, 97, 93, 75, 66, 9, 1, 76, 74]. In both UNC and BNP the network is assumed
to be fully-connected and no attention is paid to link contention or routing strategies
used for communication. The technique employed by the UNC algorithms is also
called clustering [53]. When the algorithm starts, each node is considered a cluster
itself. In the subsequent steps, two clusters are merged if the merging reduces the
completion time. This merging procedure continues until no cluster can be merged.
One of the motivations behind the UNC algorithms is that they can take advantage
of using more processors to further reduce the schedule length. However, the clus-
ters generated by the UNC may need a post-processing step for mapping the clusters
onto the processors because the number of processors available may be less than the
number of clusters.

A few algorithms have been designed to take into account the most general model
in which the system is assumed to consist of an arbitrary network topology, whose
links are not contention-free. These algorithms are called APN (arbitrary processor
network) and in addition to scheduling tasks they also schedule messages on the
network communication links [3, 127, 115, 110, 103, 94, 73, 69, 62, 35, 32, 77].

4.5 Properties of list scheduling

Since the scheduling problem is NP-complete, considerable attention has been paid on
the performance analysis of the heuristics used to solve this problem, e.g. Sarkar [107],
El-Rewini and Lewis [35], Kim and Browne [67], Wu and Gajski [132], Consrad et
al. [24], Darte [31], Yang and Gerasoulis [134] and many others. At an early stage of
research the scheduling problem was simplified by assuming that communication cost
is zero. In this context, Graham [57] proved that any list scheduling heuristic is within
50% of the optimum. Adam, Chandy and Dickson [1] demonstrated experimentally
that the critical path (CP) list scheduling heuristic is within 5% of the optimum
in 90% of the times. If communication is considered then list scheduling no longer
provides the above mentioned performance characteristics.

In [134] Yang and Gerasoulis identify important properties of list scheduling heuris-
tics. First they consider the case of list scheduling without communication and give
a bound for the CP heuristic. We briefly summarize their result.

Consider the list scheduling as a sequence of merging operations. Initially all tasks
are assigned to a unit cluster. At each step the selected task is left in its own cluster
or merged to another cluster. Assume that PT i is the parallel time at step i, then
the merging sequence produces a sequence of parallel times PT 0, PT 1, ..., PTn. This
means that, after the last step n, the parallel time is: PT = PTn.

Definition 4.5.1. Let PT i
opt be the optimal parallel time at step i, which is the

solution of min{PT i, PT i−1} where the minimum is taken over all possible choices of

4.6. DAG scheduling algorithms 59

free tasks at step i. Then a heuristic is called δ−opt if maxi{PT i−PT i
opt} ≤ δ where

δ is a given constant. If δ = 0 then the δ − opt heuristic is called a local optimum.

They can prove the following theorem which gives an upper bound for δ for the
CP heuristic.

Theorem 4.5.1. The CP heuristic is δ − opt with δ ≤ ∆T = maxni,nj∈V |τi − τj |.

The important question is if local optimality implies near-optimality. It is very
difficult to prove this result theoretically. Anyway, we do know that the CP heuristic
is near optimal [1]. As a consequence of theorem 4.5.1 there is the following corollary,
which proves that the CP heuristic is also locally optimal.

Corollary 4.5.1. CP scheduling is locally optimal for DAGs with equal weights.

In general, of course, local optimality does not imply optimality but a near optimal
performance of heuristics that possess this property can be expected.

The scheduling problem is much harder if communication is considered. Yang
and Gerasoulis extended their analysis in order to see what type of results can be
obtained in the more interesting case of the list scheduling with communication. In
this case, if a free, but not ready, task is scheduled it must wait for the data to
arrive before it can start its execution and an idle gap is created in the schedule. On
the other hand, if a ready task is chosen for scheduling then it can start its execution
immediately. Therefore, there are two choices for list scheduling: Free List Scheduling
(FLS) and Ready List Scheduling. In FLS the highest priority free task is selected for
mapping, while in RLS the highest priority ready task is selected for mapping. Yang
and Gerasoulis extended the δ − opt analysis to the ready list scheduling. RLS uses
the CP heuristic, i.e. the ready tasks with highest priority are selected for mapping.
Now the δ − opt definition is slightly different than the one given for list scheduling
without communication. The local optimum parallel time PT i

opt is derived over all
possible schedules of ready tasks for a selected processor. Given this definition, the
following theorem is true.

Theorem 4.5.2. The RCP heuristic is δ − opt with δ ≤ ∆T = maxnj ,ni∈V |τj − τi|.

4.6 DAG scheduling algorithms

In this section we survey some of the DAG scheduling algorithms that can be found
in the literature. We start with earlier optimal algorithms which assume a restricted
DAG model and/or a restricted processor network model, e.g. unit computation
weights and no communication. These are the Hu’s algorithm [60] to schedule tree-
structured task graphs with identical computation cost to an arbitrary number of
processors, the Coffman and Graham [23] algorithm to schedule arbitrary task graphs
with identical computation costs to two processors and the Papadimitriou and Yan-
nakakis [99] algorithm to schedule an interval-ordered DAG with uniform node weights
to an arbitrary number of processors.

60 4. Literature survey of the DAG scheduling problem

We continue with the description of algorithms that were designed for homo-
geneous systems (Sarkar, HLFET, ETF, ISH, FLB, DSC, CASS-II, DCP, MCP and
MD). Almost all the algorithms found in the literature work on homogeneous systems.
Although the purpose of this thesis is to consider a heterogeneous and dynamic envi-
ronment, studying these algorithms is very useful. The heuristics that they define can
be used also in heterogeneous systems, at the cost of increasing the time-complexity
of the algorithm.

We conclude with the Hybrid Remapper, an algorithm designed to work in het-
erogeneous systems.

4.6.1 Polynomial-time algorithm for Tree-Structured DAGs

This algorithm was proposed by Hu [60]. It is a linear time algorithm that assumes the
following simplifications: the graph is an in-tree structured DAG, unit computations,
without communication and a limited number of processors equal to p. Remember
that an in-tree is an oriented tree in which a single vertex is reachable from every other
one. Each node ni is labeled with αi, where αi = xi + 1 and xi is the length of the
path from ni to the exit node in the DAG. Since there is no communication and unit
computational labels, the length xi is the number of edges in the path. The algorithm
constructs an optimal schedule for p processors by visiting the tree-structured graph
in the following steps:

1. Schedule the first p (or fewer) nodes with the highest numbered label to the
processors, i.e. at the beginning the algorithm schedules, at least, all the entry
nodes of the DAG.

2. Remove the p scheduled tasks from the DAG and consider all the nodes without
predecessors as entry nodes.

3. Repeat steps (1) and (2) until all nodes are scheduled.

In [60] Hu proves the optimality of the algorithm under the stated constraints.

4.6.2 Arbitrary graphs for a two-processor system

Coffman and Graham [23] proposed an algorithm for generating optimal schedules in
case of arbitrary structured graphs with unit computation costs, no communication
and a system with two processors. The first step of the algorithm is to assign labels
(with increasing values) to the nodes. The graph is visited bottom-up in a way that
considers as candidates for the assignment of the next label all the nodes whose
successors have already been assigned a label. When this step is complete, the nodes
are ordered by decreasing label numbers . The optimal schedule is computed by
mapping ready tasks to idle processors. The algorithm is summarized in the following
steps:

1. Choose one exit node and assign to it the label 1.

4.6. DAG scheduling algorithms 61

(a) (b)

Figure 4.7: (a) An interval-ordered graph with unit computational costs. (b) An
optimal schedule produced by the algorithm of Pappadimitrou and Yannakakis

2. At step j, labels 1, 2, ..., j−1 have been assigned. Let S be the set of unassigned
nodes with no unlabeled successors. The label j have to be assigned to an
element of S as follows. For each node x ∈ S, consider the nodes yx

1 , yx
2 , ..., yx

k

to be the immediate successors of x. Let l(x) be the decreasing sequence of
integers given by the set of y’s labels. If l(x) ≤ l(x′), ∀x′ ∈ S, then assign the
label j to the node x.

3. After the labeling process is complete, consider the list of tasks in descending
order of labels and schedule each task to one of the two processors that allows
the earlier execution of the task.

Using counter-examples, Coffmand and Graham demonstrated the their algorithm
can generate sub-optimal schedules when the number of processors is increased to
three or more or when the tasks are allowed to have arbitrary computation costs.
Both the labeling process and the scheduling process take O(v2) time.

In [111] Sethi improved the complexity of the algorithm by the formulation of a
O(v + e) procedure to assign the labels and the use of data structures, for which v
access operations can be performed in O(vα(v)) (with α(v) be the inverse Ackermann’s
function), in the scheduling process. He observes that the labels of a set of nodes with
the same height only depend on their children and he uses such information through
visiting the edges connecting the nodes and their children, thus without constructing
the lexicographic ordering. The final time complexity of the algorithm is O(vα(v)+e).

4.6.3 Scheduling of Interval-Ordered DAGs

A linear time algorithm that computes optimal solutions for scheduling a unit com-
putational interval-ordered DAG to multiprocessors, was proposed by Pappadimitrou
and Yannakakis [99]. In an interval-ordered DAG, two nodes are precedence-related if
and only if the nodes can be mapped to non-overlapping intervals on the real line [38].
Given this property, the number of successors of a node can be used as a priority to
construct a list. Figure 4.7 shows an example of interval-ordered graph. The optimal
schedule can be constructed in O(v+e). If the constraint of unit computational tasks

62 4. Literature survey of the DAG scheduling problem

is removed (allowing the tasks to have arbitrary computational weights), the problem
becomes NP-complete.

A linear time algorithm to schedule interval-ordered graphs with unit computa-
tional costs and unit edge weights was proposed by Ali and El-Rewini [4].

4.6.4 Sarkar’s algorithm

The first clustering algorithm that we consider is the Sarkar’s algorithm [107], that is
not a list scheduling algorithm. Initially it sorts the edges of the DAG in descending
order of weights. Then at each clustering step the edges are visited in the sorted list
order and zeroed if the parallel time does not increase. The computation of the parallel
time must be done at each clustering step topologically traversing the scheduled DAG.
Since there are e such traversals, the complexity is O(e(v + e)) (which dominates the
O(e log e) time necessary to sort the edges).

Gerasoulis and Yang [54] noted that imposing the linearity constraint the com-
plexity reduces from O(e(v + e)) to O(e log e). At each step the edges that will create
nonlinear clusters, if they are zeroed, do not have to be visited. The linearity con-
straint ensures that the parallel time at each zeroing step does not increase and it
must not be computed. Therefore, the cost for sorting the edges now dominates the
time complexity of the algorithm. It is a BNP algorithm.

4.6.5 The HLFET algorithm

The HLFET (Highest Level First with Estimated Times) [1] is a list scheduling algo-
rithm. It first computes the static blevel for each node and then makes a ready list
in descending order of static blevel (ties are broken randomly). Then it repeatedly
schedules the first node in the ready list to a processor that allows the earliest start
time and updates the list with the new ready nodes. It is a BNP algorithm with
O(v2) time complexity.

4.6.6 The ETF algorithm

In ETF (Earliest Time First) [61, 105] the main idea is to keep the processor busy,
and in this respect being close to a load balancing scheme. At each scheduling step,
the priorities for ready unmapped tasks are computed. The task priority is the earli-
est start time, which is determined by tentatively mapping the given task to all the
processors. The selected task is the one with the lowest priority and the selected
processor is the one corresponding to this priority. Ties are broken considering stat-
ically computed priorities. The time complexity of the algorithm is O(v2p). This is
not a critical path based heuristic and the algorithm does not always map the most
important ready task first. Therefore, it may not be able to reduce the partial sched-
ule length at every scheduling step. It is a BNP algorithm, since the earliest start
time of a node is computed by examining the start-time of a node on all processors
exhaustively.

4.6. DAG scheduling algorithms 63

4.6.7 The ISH algorithm

The ISH (Insertion Scheduling Heuristic) algorithm [71, 80] tries to fill, as much as
possible, the idle time slots of the processors. It selects ready nodes giving priority to
the ones with higher blevel value (the blevels of the nodes are computed statically at
the beginning of the algorithm). The selected node is assigned to the processor that
allows the earliest execution, using the non-insertion algorithm (the task is scheduled
to the processor using a FIFO queue). If the scheduling of this node causes an idle
time slot, then the algorithm schedules as many nodes as possible into this idle time
slot, providing that these nodes cannot be scheduled earlier on other processors. Then
it selects a new ready node and repeats all these steps. The time complexity of the
ISH algorithm is O(v2). It is a BNP algorithm.

4.6.8 The FLB algorithm

The FLB (Fast Load Balancing) algorithm [104] is an improvement of the ETF al-
gorithm. It uses the same task selection criteria but the preferred task is identified
in O(log p) instead of O(wp), where w is the width of the DAG and p the number
of processors. The width of a DAG is the maximum number of independent tasks.
Although essentially similar, there is a small difference in the task selection scheme.
Throughout the scheduling process it may happen that several ready tasks can start
at the same earliest time. ETF and FLB have different criteria to break this tie. It
is a BNP algorithm.

4.6.9 The DSC algorithm

The Sarkar’s algorithm described above, zeroes the highest communication edge. The
edge, however, might not be in a DS that determines the parallel time and as a
result the parallel time might not be reduced at all. The main idea behind the DSC
(Dominant Sequence Clustering) algorithm is to perform a sequence of edge zeroing
steps with the goal of reducing a DS at each step [135].

The initial step assumes that each node is mapped in a unit cluster, then the
algorithm tries to merge appropriate clusters by zeroing the edge which connects
them. During the initialization step the blevel is computed for each node and the
tlevel is computed for each free node. Two lists are initialized: a free task list (FL)
and a partially free task list (PFL). The free task list is ordered in descending order
considering this priority definition:

PRIO(nx) = tlevel(nx) + blevel(nx).

Hence, a DS node can be identified as the one with the highest priority. The tlevel of
a partially free task is defined as:

ptlevel(ny) = max
nj∈PRED(ny)∩EG

{tlevel(nj) + τj + cj,y}

64 4. Literature survey of the DAG scheduling problem

where EG is the set of examined nodes. The priority for the nodes in the partially
free task list can be defined as:

pPRIO(ny) = ptlevel(ny) + blevel(ny).

The priority of a partially free node ny is computed considering only the examined
parents of ny. The subsequent steps of the algorithm are briefly described below:

1. Initialization:

• Add all free entry nodes to FL.

• Compute blevel for each node.

• Set tlevel = 0 for each free node.

2. nx = head(FL) and ny = head(PFL).

3. If PRIO(nx) ≥ pPRIO(ny) then minimize tlevel(nx) else minimize tlevel(nx)
under constraint DSRW.

4. Update the priorities of nx’s successors.

5. Repeat steps 1-3 until all nodes are examined.

Minimization procedure To reduce tlevel(nx) the minimization procedure zeroes
multiple incoming edges of the free task nx. If no zeroing results in a lowering of the
tlevel then the node remains in a single node cluster. Major details can be found in
[135]. The cost of the minimization algorithm is O(m log m), where m is the number
of predecessors of nx.

Dominant Sequence Length Reduction Warranty (DSRW) The DSRW con-
straint is applied when there is no DS going through any free task and there is one DS
passing through a partially free node ny. In this case zeroing non-DS incoming edges
of free nodes could affect the reduction of tlevel(ny) in the future steps. Thus, the
DSRW states that zeroing edges of a free node should not affect the future reduction
of the tlevel(ny), if it is reducible by zeroing an incoming DS edge of ny. If np is
one examined predecessor of ny and zeroing ep,y would reduce ptlevel(ny), then the
DSRW constraint is implemented by imposing that no other nodes are allowed to be
mapped to the resource assigned to np until ny becomes free.

The time complexity of the DSC algorithm is O((e + v)log v). It is an UNC
algorithm.

4.6.10 The CASS-II algorithm

The CASS-II (Clustering And Scheduling System II) algorithm [85] is analogous to
the DSC algorithm with the difference that it constructs the clusters bottom up, i.e.,
starting from the sink nodes. It employs a two step approach. In the first step,

4.6. DAG scheduling algorithms 65

CASS-II computes for each node its tlevel. These values are computed in topological
order of the graph.

The second step is the clustering step. First the algorithm computes the blevel for
each node. The algorithm begins by placing every sink node nx in its own cluster, and
by setting blevel(nx) = τx. The algorithm then goes through a sequence of iterations,
where at each iteration it considers for clustering every node ny whose immediate
successors have been clustered (call such a node current). For each ny, blevel(ny)
can be easily computed since all the successors of ny are clustered and hence been
assigned blevels. The current nodes are considered for clustering in non-increasing
order of their tlevel + blevel. For a given current node ny, let nx be its dominant
successor (the one that determines blevel(ny)) and let Cx be the cluster containing nx.
Then, ny is included in the cluster Cx if doing so does not increase both blevel(ny) and
blevel(Cx) (the maximum of all the blevels of the nodes belonging to Cx). Otherwise,
ny is placed in a new cluster.

It is an UNC algorithm.

4.6.11 The DCP algorithm

The DCP (Dynamic Critical Path) algorithm [78][80] is based on the mobility at-
tribute, the difference between ALAP (As Late As Possible, the authors use the term
ALST, i.e. Absolute Latest Start Time) and ASAP (As Soon As Possible, the au-
thors use the term AEST, i.e. Absolute Earliest Start Time). The mobility attribute
for a node nx can be defined as: DS −

(
blevel(ni) + tlevel(ni)

)
. Nodes with lower

mobility are selected first. The minimum mobility value is zero and a node with zero
mobility belongs to the CP. Then, the DCP algorithm uses a lookahead strategy to
find a better cluster for a given node. The algorithm is described below:

1. Compute ALAP and ASAP for all nodes.

2. Select the node nx with lower mobility. Let nc be the unscheduled child of nx

with the largest communication.

3. Select a processor P such that ASAP(nx)+ASAP(nc) is the smallest among
all processors holding nx’s parents or children. In examining a processor, first
try to find an idle time slot. If this is unsuccessful try to create an idle time
slot pulling some already scheduled nodes downward (considering the mobility
in order to not increase the schedule length). In case of failure select a new
processor.

4. Schedule nx to P.

5. Update ALAP and ASAP for all nodes.

6. Repeat 2-4 until all nodes are scheduled.

The lookahead strategy aims to avoid scheduling a node to a processor that has no
room to accommodate a heavily communicated child of the node. All attributes are
computed dynamically, that means that they are processor dependent and updated
after each step of the algorithm. The time complexity of DCP is O(v3).

66 4. Literature survey of the DAG scheduling problem

4.6.12 The MCP algorithm

The MCP (Modified Critical Path) algorithm [133] selects a node using the ALAP
(As Late As Possible) time as a priority, allowing to find nodes belonging to the CP.
It first computes the ALAP times of all the nodes and then constructs a list of nodes
in ascending order of ALAP times (ties are broken by considering the ALAP times of
the children f a node). Finally, the nodes on the list are scheduled one by one such
that the selected processor is the one that allows the earliest start time using the
insertion approach. The time complexity of the MCP algorithm is O(v2 log v). It is
an UNC algorithm.

4.6.13 The MD algorithm

The MD (Mobility Directed) algorithm [133][80] defines a priority criteria called rel-
ative mobility, which is defined as:

DS −
(
blevel(nx) + tlevel(nx)

)
τx

where τx is the execution time of task x. If a node is on the current CP of the partially
scheduled DAG, the sum of its blevel and tlevel is equal to the current CP length and,
therefore, the relative mobility of a CP node is zero.

The algorithm works like this: at each step, the MD algorithm schedules the node
with the smallest mobility to the first processor which has a large enough time slot
(eventually pulling already scheduled nodes downward in a way that respects their
mobility) to accommodate the node, but without considering the minimization of the
node’s start-time. This processor selection procedure has an evident drawback, it can
increase the schedule length. The time complexity of the algorithm is O(v3). It is an
UNC algorithm.

4.6.14 The Hybrid Remapper algorithm

The Hybrid Remapper [90] is a dynamic list scheduling algorithm specifically designed
for heterogeneous environments. Like the other algorithms its starting point is an
initial DAG labeled with execution and data transfer times (obtained by an initial
static matching and scheduling). Then, the algorithm executes in two phases. In the
first phase the set of tasks is partitioned into blocks such that the tasks in a block do
not have any data dependencies among them. However, the order among the blocks
is determined by the data dependencies that are present among the tasks of the entire
DAG (it is a kind of level decomposition). In particular, all tasks that send data to
a child task in block k must be in any of blocks 0 to k − 1 and for each task in block
k there exists at least one incident edge such that the corresponding parent task is in
block k− 1. Once the tasks in the DAG are partitioned, each task is assigned a rank
by examining the tasks from block B−1 to block 0, where B is the number of blocks.
The rank is computed as follows:

rank(nx) = τx,i + max
ny∈iss(nx)

{cx,y + rank(ny)} (4.2)

4.6. DAG scheduling algorithms 67

where τx,i is the expected computation time of the task nx on machine mi and cx,y is
the data transfer time from nx to ny. The specification of the machine in the notation
of the expected computation time is needed because the algorithm is considering a
heterogeneous environment. The rank is equivalent to the blevel. The second phase
is executed during application run-time and involves remapping the tasks considering
changes to the initial informations (statically determined).

The hybrid remapper algorithm is presented in three variants. In all the three
versions the execution of the tasks proceed from block 0 to block B − 1. The hybrid
remapper starts examining the block k tasks when the first block (k− 1) task begins
its execution. There may be some tasks from blocks 0 to k − 2 that are still running
or waiting execution when tasks from block k are being considered for remapping.
For such tasks, expected completion times are used.

Version 1. Minimum Partial Completion Time Static Priority (PS). The
priority of a node nx is equal to the blevel(nx) computed statically in the first phase.
Node’s selections proceed considering high priority nodes. The matching criterion
used is the minimization of the partial completion time. The partial completion time
of a node nx is essentially the expected finishing time of the node in the considered
machine. Let ips(nx) be the immediate predecessor set for task nx and ny ∈ ips(nx)
is mapped onto machine mj . For any task nx with no incoming edges mapped in
machine mi, pct(nx, i) = τx,i. dr(nx) is the time at which the last data item required
by nx arrives at mi, then the partial completion time of task nx mapped onto machine
mi is defined as:

dr(nx) = max
ny∈ips(nx)

{cy,x + pct(ny, j)}

pct(nx, i) = τx,i + max{A[i], dr(nx)}
where A[i] is the time at which the machine mi is available. This definition considers
changes in data transfer time from predecessors, while choosing the best machine for
the task.

Version 2. Minimum Completion Time Static Priority (CS). This variant
maintains the same criteria as the previous one (PS) for node’s selection. The differ-
ence lies in the matching criteria. Now it attempts to minimize the overall completion
time by remapping each task nx in block k such that the length of the critical path
through task nx is reduced. The PS variant is faster but CS attempts to derive a
better mapping because it considers the whole critical path through nx. Machine
mi is selected for task nx if it minimizes the completion time ct(nx, i), and A[i] is
updated using pct(nx, i). The completion time ct(nx, i) is the weight of the critical
path passing through nx which is mapped on mi.

ct(nx, i) = max
ny∈iss(nx)

{pct(nx, i) + cx,y + rank(ny)}

= pct(nx, i) + max
ny∈iss(nx)

{cx,y + rank(ny)}

This time changes in transfer times with nx and its children are considered.

68 4. Literature survey of the DAG scheduling problem

Version 3. Minimum Completion Time Dynamic Priority (CD). In the
previous two versions the priority was computed statically, in particular the rank of a
task nx is computed prior to application execution. This version considers the same
matching criteria as the one used in the CS version, but it introduces a dynamic
priority for node selection. A node nx is selected from block k if ct(nx, i) is the
greatest among all block k nodes (this time the selected nx is in the CP). mi is the
machine assigned to nx in the initial mapping.

4.7 Summary

In this chapter we have presented background and a brief survey of the most repre-
sentative DAG scheduling algorithms found in the literature and considered both the
static and the dynamic DAG scheduling problem. The DAG describes the parallel
application that have to be scheduled to the target multiprocessor system. A node
represents a task which is a set of instructions that must be executed sequentially
in the same processor. An edge denotes the communication and data dependency
between two program tasks. Nodes and edges are labeled with values representing
the execution time and the data transfer time respectively. The computing system,
which executes the parallel application, is generally assumed to be a network of pro-
cessing elements (PEs). There can be two types of computing system: homogeneous
and heterogeneous. In heterogeneous systems usually the communication links are
assumed to be homogeneous, i.e. a message is transmitted with the same speed on all
links. In Grid this assumption cannot be made and a heterogeneous interconnection
network must be considered. The objective of scheduling is to minimize the schedule
length by properly allocating the nodes to the computing system without violating
precedence constraints.

We have presented a brief report of the NP-completeness results of various simpli-
fied variants of the problem, thereby illustrating that scheduling is a hard optimiza-
tion problem. Then we have showed how the problem becomes even more complicated
when communication is taken into consideration. In this case the DAG scheduling
problem consists in finding the tradeoff between parallelization and sequentialization.
Depending on its granularity, which is a measure of the communication to computation
ratio, a DAG can be coarse grained (the computation dominates the communication)
or fine grained (the communication dominates the computation).

As the problem is intractable even for moderately general cases, heuristic ap-
proaches are commonly sought. The most popular implementation schema is the list
scheduling approach: higher priority nodes are selected first and mapped to a suitable
resource. With this technique the task graph structure is carefully exploited to deter-
mine the relative importance of the nodes in the graph. More important nodes get a
higher consideration priority for scheduling first. Experimentally, priority heuristics
based on the Critical Path are the ones that give better results.

The chapter concludes with a description of the most representative DAG schedul-
ing algorithms. All the considered algorithms accept a general DAG. Whereas with
respect to the computing system some of them assume a homogeneous system, oth-

4.7. Summary 69

ers a heterogeneous system with homogeneous interconnection network and others a
heterogeneous system with a heterogeneous interconnection network.

70 4. Literature survey of the DAG scheduling problem

5
A DAG scheduling algorithm for

Grid computing systems

Today’s parallel and distributed systems are changing in their organization and the
concept of Grid computing, a set of dynamic and heterogeneous resources connected
via Internet and shared by many users, is nowadays becoming a reality. A large
number of scheduling heuristics for parallel applications described by directed acyclic
graphs (DAGs) have been presented in the literature, but most of them assume a
homogeneous network, i.e. a message is transmitted with the same speed on all the
links. In a Grid environment this assumption cannot be done. In this chapter we
tackle the problem of scheduling directed acyclic dags in metacomputing or Grid
systems, i.e. heterogeneous systems with a heterogeneous interconnection network.
We present two dynamic task scheduling algorithms: the first one is called CCF, it is
a list scheduling algorithm and uses a two phase selection of nodes giving priority to
ready children of a task; the second one is a variant of the well known DSC algorithm.

5.1 The computing system environment

We have seen in the previous chapter that the DAG scheduling problem is NP-
complete in its general formulation and that polynomial time optimal solutions are
known only for special cases assuming simplifying conditions. These simplifying con-
ditions regards the DAG structure and the fact that communication is (mostly) not
taken into account. Due to the intractability of the general scheduling problem, many
heuristics have been suggested to tackle the problem under more generic situations.
A heuristic produces an answer in less than exponential time but does not guarantee
an optimal solution. A heuristic is said to be better than another heuristic if solutions
approach optimality more often, or if a near-optimal solution is obtained in less time.
The effectiveness of these scheduling heuristics depends, in most cases, on both the
parallel application and the target machine.

In the literature many algorithms working on homogeneous and heterogeneous sys-
tems can be found. However, many of the works, even considering communication and
a heterogeneous environment, assume a homogeneous interconnection network, i.e. all

72 5. A DAG scheduling algorithm for Grid computing systems

the links have the same latency and bandwidth and, therefore, messages are trans-
mitted with the same speed on all the links. In the design of a scheduling algorithm
for the Grid, simplifying assumptions concerning the computing system environment
cannot be made: all the resources must be heterogeneous, both the machines and
the network. In fact, the Grid consists of heterogeneous workstations connected by
local-area networks (LANs) and/or wide-area networks (WANs). Moreover, Grid is
a dynamic environment where resources come and go and are shared by many differ-
ent users. Given these assumptions, the scheduler have to be dynamic and flexible,
i.e. schedules have to be computed using updated values and a regular monitoring
of the system is necessary in order to change the computed schedule if the external
conditions have significantly changed. Such a kind of heterogeneous and dynamic
environment leads to relevant consequences on the design of a scheduler, in particular
from a time complexity point of view. For example, when we want to find the best
resource for a task we have to “test” this task on each machine belonging to a set of
candidate resources. Every time a resource is considered, estimates on task execution
time, together with estimates on incoming and outgoing data transfer times, must be
computed. In a homogeneous system this step can be done only once at the beginning
and in a heterogeneous system with a homogeneous interconnection network only the
estimates on task execution times have to be computed, data transfer times do not
depend upon the source and the target machines. Fortunately, in a Grid-like system
where tasks usually take more than few seconds to execute and the middleware over-
head is significant, if the scheduler is designed to run in parallel with the application,
i.e. computing the schedule in an incremental way, time constraints to compute the
schedule of the application can be relaxed.

Grid computing technologies enable wide-spread sharing and coordinated use of
networked resources. Sharing relationships may be static and long-lived, e.g. among
the major resource centers of a company or university, or highly dynamic, e.g. among
the evolving membership of a scientific collaboration. In either case, the fact that users
typically have little or no knowledge of the resources contributed by participants in
the “virtual organization” (VO) poses a significant obstacle to their use. For this
reason, information services designed to support the initial discovery and ongoing
monitoring of the existence and characteristics of resources, services, computations,
and other entities are a vital part of a Grid system. The Globus Monitoring and
Discovery Service [26] is an example of Grid service that allows the monitoring and
the discovery of the resources. Another example is the Network Weather System
[130] that is a distributed monitoring system designed to track and forecast dynamic
resource conditions, e.g. it allows a user or a program (such as a scheduler) to request
information (latency, bandwidth, load, estimates, etc) for entities corresponding to
network links connecting specified endpoints, retrieve the fraction of CPU available
to a newly started process, retrieve the amount of memory that is currently unused in
a remote host, etc. These services can be used by the scheduler in order to discover
the resources and to compute the estimates of task execution times and data transfer
times.

5.2. Considerations on the design of the algorithm 73

5.2 Considerations on the design of the algorithm

A Grid scheduler can use the GIS (Grid Information System) to discover the resources
and to find specific information about these resources. Grid scheduling involves three
main phases [109]:

resource discovery: generation of a set of potential resources;

system selection: determines from the possibly large set of resources obtained in the
previous phase the best set of resources, gathering detailed dynamic information;

job execution: once the task is mapped to a resource it is submitted for execution.

The parallel application is initially described by the abstract DAG (section 4.2)
and the derivation of the concrete DAG should be done during or after the first two
phases reported above. In this step there is no submission of tasks to the resources.
The concrete DAG is the starting point of the scheduling algorithm.

We characterize the proposed algorithm as an application-level scheduler [13].
More generally, if a programmer wants to take advantage of Computational Grids,
they are responsible for all transactions that require knowledge of the application at
hand and, while many scientists could benefit from the extensive resources offered by
Computational Grids, application development remains a daunting proposition. One
solution is to develop software that frees the user of these responsibilities by provid-
ing an integrated Grid application development solution that incorporates activities
such as compilation, scheduling, staging of binaries and data, application launch, and
monitoring of application progress during execution. One example of a project final-
ized to the realization of this objective is the Grid Application Development Software
(GrADS) project [11, 29]. An application-level scheduler is a scheduling algorithm
integrated into the application, it can use low-level application specifications deter-
mined at compile-time in order to compute time estimates once the characteristics of
the resouces are know at run-time. In the GrADS project these information are called
performance models [25, 28]. Performance models are an architecture-independent
model of the workflow component providing an estimated resource usage that can be
converted to a rough time estimate when architectural parameters of the resource will
be available. Both the number of cpu operations executed and the memory access
pattern are considered for building up the component model.

There are also other possibilities than the application-level approach. In a more
general Grid environment context a scheduler can be part of a RMS and in this case
the structure of the scheduler depends on the number of resources on which jobs
and computations are scheduled, and the domain in which resources are located. In
this context there are three different models for structuring schedulers: centralized,
decentralized and hierarchical [14]. We do not consider further the general character-
ization of the scheduler since our intention is to focus on the scheduling algorithm,
that is rather independent from the context in which it is inserted. Obviously, if the
scheduler is not integrated into the application and performance characteristics are
needed by the scheduling algorithm, then the performance model of the application
must be given as input.

74 5. A DAG scheduling algorithm for Grid computing systems

5.3 Preliminaries

In this section we briefly recall and define some basic concepts and terms. We start
with the description of the environment. The considered system is composed by
heterogeneous workstations connected by local-area networks (LANs) and/or wide-
area networks (WANs). Let M be the set of resources, which we refer to also as
machines, hosts or processors. |M | is the total number of machines and hi denotes
the i-th host. τx,i is the expected computation time of task nx on host hi. The
earliest time at which host hi is available is given by aval(hi), which returns zero if
the machine is free (immediate available). With hnx we denote the host assigned to
the task nx.

The parallel application to be scheduled is described by a DAG (defined in section
4.2). We briefly recall some notation: let cx,y be the communication cost incurred
along the edge ex,y = (nx, ny) ∈ E, which becomes zero if both nodes are mapped to
the same processor. The values cx,y and τx,i are estimates computed on the given hosts
hnx and hny . In order to compute these values the scheduling algorithm must know
performance characteristics of the parallel application (e.g. amount of operations for
the tasks and size of data to be transferred between two tasks) and architectural
characteristics of machines and links (like cpu speed, links latency and bandwidth,
loads, etc.). The latter can be retrieved using the GIS.

The objective of the scheduling process is to minimize the schedule length or
makespan without violating precedence constraints.

5.4 The CCF algorithm

5.4.1 Considerations

It is evident from the literature that algorithms based on CP heuristics are the ones
giving, on average, the best results in terms of quality of the schedule produced.
However, while the CP length provides a lower bound on the schedule length, making
all the nodes on the CP start at the earliest possible time (or finish the execution as
soon as possible in case of heterogeneous environments) does not guarantee an optimal
schedule. One motivation of this fact is that in the course of scheduling, the CP can
change and the set of nodes constituting the CP at a certain scheduling step may be
different from that at an earlier step. Indeed, the algorithms that dynamically select
nodes for scheduling such as the MD, DLS, DSC and DCP algorithms (discussed in
Chapter 4), are designed based on this observation. They consider the nodes belonging
to the DS, therefore tracking dynamical changes in the CP. Unfortunately, as we have
seen, the general DAG scheduling problem is NP-complete and even these dynamic
heuristics can get trapped in a locally optimal decision, leading to a non-optimal
global solution. This means that scheduling at each step a DS node may not be the
correct choice.

The proposed CCF (Cluster ready Children First) algorithm belongs to the class
of the dynamic list scheduling algorithms. In particular, in order to keep track of

5.4. The CCF algorithm 75

Figure 5.1: The conversion from a general DAG to an equivalent DAG with one
entry node is done by adding one entry node with computation time set to zero and
connecting, with zero communication cost links, all the nodes of the original DAG
with no incoming edges.

application execution and environment changes, the DAG is visited in topological
order and tasks are submitted as soon as definitive scheduling decisions are taken for
the considered tasks. The algorithm runs in parallel with the application execution. It
follows the schema of the list scheduling approach: the task with the highest priority
is selected and then it is mapped to the most suitable resource. The algorithm is
based on a heuristic that tries to schedule nodes that are “near”, but not necessarily
on, the DS. All the details are given in the following sections.

5.4.2 Assumptions

Without loss of generality we consider DAGs with one entry node. A general DAG
can be transformed in an equivalent DAG of that form by adding one entry node with
computation time set to zero and connecting, with zero communication cost links, all
the nodes with no incoming edges (figure 5.1). This is a realistic assumption since
the first node can be typically identified with the user machine.

DAG scheduling algorithms usually assume, as starting point, a concrete DAG.
Therefore, the proposed algorithms runs after an initial static matching and scheduling
phase that produces the concrete DAG.

We assume the availability of a GIS (Grid Information System) that provides
services for the discovery and monitoring of the resources. These services are used by
the initial mapping phase for finding the set of resources to be assigned to the tasks
and for the definition of the concrete DAG. More specifically, these services, together
with the performance model of the application, are necessary in order to obtain the

76 5. A DAG scheduling algorithm for Grid computing systems

1 Compute tlevels and blevels
2 I n s e r t sourceTask i n t o RUNNING QUEUE
3 while (RUNNING QUEUE i s not empty) do
4 task = ext ra c t (RUNNING QUEUE)
5 foreach child o f task do
6 I n s e r t child i n t o CHILD QUEUE
7 endfor
8 while (CHILD QUEUE i s not empty) do
9 childTask = ext ra c t (CHILD QUEUE)

10 i f (childTask i s ready) then
11 ass ignResource (childTask)
12 updateSuggestedResource (childTask)
13 I n s e r t childTask i n t o RUNNING QUEUE
14 else
15 suggestResource (childTask)
16 endif
17 endwhile
18 endwhile

Listing 5.1: Outline of the CCF algorithm.

estimates of task execution times on a given host (τx,i) and of data transfer times
between source and target hosts (cs,t).

5.4.3 First version of the algorithm

We are going to present the algorithm in two steps, we give a first initial version
and perform some analysis on its behavior on the primitive graph structures fork and
join. The final version of the algorithm will take into consideration the results of this
analysis.

Given an initial mapping, CCF is a dynamic list scheduling algorithm that assigns,
at run-time, resources to tasks described by a DAG. It is run-time and dynamic
because the algorithm executes in parallel with the application and the information
on which scheduling decisions are taken are regularly updated. Following the list
scheduling schema, the CCF algorithm selects tasks considering a particular priority
definition and assigns resources according to some cost minimization criteria. The
algorithm is outlined in listing 5.1. The DAG is visited in topological order and a two
phase task priority selection is implemented. When a task is assigned to a resource it
is submitted for execution and inserted into the RunningQueue. The entry task of
the DAG is assumed to be statically mapped (for example to the user machine) and
it is automatically inserted into that queue at the beginning of the algorithm.

The first selection phase is based on the extraction of tasks from the RunningQueue,
i.e., on the selection of tasks already mapped to a resource. The priority used by the

5.4. The CCF algorithm 77

RunningQueue is defined as:

Prio RQ(nx) = max
{

tlevel(nx, hnx) + blevel(nx, hnx), DSdesc(nx)
}

(5.1)

where hnx is the host assigned to the task nx and DSdesc(nx) is the value of the
longest path passing through a partially free descendant of nx. The value DSdesc

is set by the suggestResource() procedure and will be discussed later. The extract
operation returns (and removes from the queue) the task with the highest priority
value, which is the node belonging to the Dominant Sequence if the priority value is
not given by DSdesc(nx), otherwise it selects a node having a partially free DS node
as descendant. Once a task is extracted from that queue all its children are inserted
into the ChildQueue.

The second selection phase empties this queue and assigns a resource for each
ready child. The ChildQueue orders the tasks using the following priority:

Prio CQ(ny) = tlevel(ny, hny) + blevel(ny, hny) (5.2)

where hny
is the host assigned to ny by the initial mapping. The while loop in line 8

(listing 5.1) considers each child ny and checks if it is ready or not (i.e. all its parents
are mapped or not). In the first case (lines 11-13) a resource is assigned to the task
and it is inserted into the RunningQueue. The function updateSuggestedResouce()
in line 12 will be explained later. If the task is not ready (line 15), this means that
some of its parents are not mapped and the procedure suggestResource() suggests a
resource (hnx

, the resource assigned to the father nx extracted in line 4) to all the
unmapped parents.

Following this schema, children with one parent are immediately mapped to an
appropriate resource, whereas children with more than one parent wait until all par-
ents are scheduled. It should be noted that the first selection phase considers high
priority tasks in the RunningQueue, i.e. tasks with an already assigned resource
that are, potentially, running. It is the second selection phase that looks for ready
tasks needing a resource. This approach is different from all the others used in list
scheduling algorithms. In particular, the priority definition (5.1) needs some more
explanation. The main objective is to select DS nodes. However, if the heaviest
child nh of a selected DS node is not ready, then it is not assigned to a resource
and waits until all its parents are mapped. Therefore, it is not guaranteed that the
next selected node from the RunningQueue will be a DS node, unless there is more
than one DS. The idea is to stay “near” the DS by making nh ready as soon as
possible. This happens when a task is selected from the RunningQueue because the
value DSdesc is the maximum. DSdesc is initially set to zero for all the tasks and is
possibly updated by the suggestResource() procedure, which is discussed later. If nh

is not ready the second selection phase can choose non-DS tasks for mapping. This
makes this heuristic a hybrid between CP-based and non-CP-based heuristic. The
next paragraphs describe the mapping function assignResource() and the functions
suggestResource() and updateSuggestedResouce().

78 5. A DAG scheduling algorithm for Grid computing systems

The mapping function assignResource()

This function assigns a suitable resource to a task. There are two important aspects:
the set of candidate resources and the cost function to minimize.

The set of the candidate resources C is composed by:

• the resource assigned by the initial static mapping to the task;

• the resources of the task parents;

• one suggested resource.

The suggested resource, if present, is defined by the functions suggestResource() and
updateSuggestedResource. The resource assigned by the initial static mapping is the
reference resource, i.e. the one that gives the cost that have to be minimized. The
cost function of the task ny on a given host h, is defined as:

Cost(ny, h) = tlevel(ny, h) + blevel(ny, h).

The function assignResource() selects the resource that minimize this cost function,
by testing ny on all the resources hi belonging to the set of candidate resources. When
the task ny is tested on the machine hi the cost function Cost(ny, hi) is computed as
follows:

1. the estimate of execution time of task ny on the host hi is computed (τy,i);

2. if a predecessor np is assigned to hi the edge (np, ny) is zeroed, otherwise the
estimate of the data transfer time cp,y is recomputed.

3. if a successor ns is assigned (by the initial mapping) to hi the edge (ny, ns) is
zeroed, otherwise the estimate of the data transfer time cy,s is recomputed.

For selected resource hny holds:

Cost(ny, hny
) = min

hj∈C

{
Cost(ny, hj)

}
.

The suggestResource() and updateSuggestedResource() functions

The rationale behind the suggested resource is to increase the probability of zeroing
multiple incoming edges. Obviously, in order for a task to zero multiple incoming edges
when assigned to a machine, there must be more than one of its parents assigned to
the same machine. In figure 5.2 task n1 is selected from the RunningQueue and task
n6 is its heaviest child (the one laying on the CP, indicated by the thick arrow). n6

is not ready and it will be considered for scheduling only when all its parents are
definitively assigned to a resource. At the moment of scheduling the task n6, there
could be an advantage if tasks n3, n4 and n5 are also assigned to hn1 . In some way,
tasks n2, n3, n4 and n5 should be aware that they are converging towards one task
(n6 in this case).

5.4. The CCF algorithm 79

Figure 5.2: Task n6 suggests the resource of task assigned to n1 to all its ascendants.

So, when a not ready child ny is extracted from the ChildQueue the scheduling
decision is delayed for as long as all its parents are mapped to a resource. The
suggested resource tries to influence the selection of a resource for all the ascendants
of ny, i.e. if more fathers of ny are clustered in the same resource then more incoming
edges of ny can be zeroed choosing that resource. This method tries to exploit the
information associated to the early visit of a not ready task. At the time of the first
visit of such a task ny we broadcast the resource hnx

to all its unscheduled ascendants.
The reason for choosing hnx is that its father nx (extracted in line 4 of listing 5.1)
belongs to the DS, and it is the zeroing of the edge ex,y that leads to a reduction of
the makespan. This procedure visits all the ascendants of ny and stops when it finds
a task nk with an already assigned resource. It sets all the DSdesc values of the tasks
nk to the value tlevel(ny, hny)+ blevel(ny, hny) that is the weight of the longest path
passing through ny.

The suggested resource is not mandatory, therefore it is possible that one task
might not be assigned to the suggested resource. If this happens the suggested re-
source is changed to the new resource assigned to that task. Note that the modification
must affect all the chain of nodes visited during the suggestion process. This step
can easily be performed in O(1) if all the nodes receiving a suggested resource use
pointers to the task that originally broadcasted the resource itself.

5.4.4 Analysis of the algorithm

Now we study the performance of the algorithm on the two primitive DAG structures:
fork and join. Since any DAG can be decomposed into a collection of forks/joins and
optimal schedule lengths are known for these primitives [54][80], this analysis is usually
done in order to examine the approximate optimality of the algorithm. The known
algorithms for computing optimal fork/join schedules work on homogeneous systems.
Therefore, we restrict the analysis to the case of a homogeneous system environment.
In this context there is no need to specify a particular machine, therefore we simplify
the notation using τi in order to identify the computation time of task ni.

80 5. A DAG scheduling algorithm for Grid computing systems

Figure 5.3: Fork DAG primitive.

Behavior on fork DAGs

Let nx be the root node, nj (j = 1...m) the children of nx and cx,j the communication
cost between nx and nj (figure 5.3). Assume that nodes and edges are sorted such
that:

τj + cx,j ≥ τj+1 + cx,j+1, j = 1..m. (5.3)

The optimum clustering [54] is given by the schedule that assigns the same resource
to the first k children, where k must satisfy the following inequalities:

k∑
j=1

τj ≤ τk + cx,k,

k+1∑
j=1

τj ≥ τk+1 + cx,k+1. (5.4)

This can be easily explained like that. Call the optimal parallel time of the fork
primitive PTopt. Let h for h = 1..m be the greatest h for which τx +τh +cx,h > PTopt,
then cx,i must have been zeroed for i = 1..h, otherwise we have a contradiction.
Consider that all other edges i > h need not to be zeroed because in doing so they

(a) Initial mapping, at the beginning of the
CCF algorithm.

(b) Step k + 1 of the CCF algorithm.

Figure 5.4: Clustering of the fork DAG primitive produced by the CCF algorithm
(homogeneous systems).

5.4. The CCF algorithm 81

do not decrease the current PT , instead they could increase it. Assume that τm+1 =
cx,m+1 = 0, then the optimal PT is: PTopt = τx + max

{ ∑h
j=1 τj , cx,h+1 + τh+1

}
.

Now we intuitively discuss the behavior of the algorithm on a fork primitive,
then we will give a formal characterization. At step 1 each node is in a unit cluster
(figure 5.4(a)), task nx is mapped on host hx and child nj is assigned to the host
hj by the initial mapping. nx is the only task in the RunningQueue, it is extracted
and its children are inserted into the ChildQueue. Each child is then extracted for
mapping, according to the order given by the priority definition (5.2) that corresponds
to the ordering defined in (5.3). For each child nj the resource of nx is selected if
tlevel(nj , hx) + blevel(nj , hx) is reduced in a maximum degree. At step k (figure
5.4(b)) the tlevel of the child task nk, for which the resource of nx is chosen, is given
by:

tlevel(nk, hx) = τx +
k−1∑
j=1

τj .

Follows that the first k children of nx are sequentialized in host hx if
∑k−1

j=1 τj ≤ cx,k.

Theorem 5.4.1. The CCF algorithm computes optimal schedules for fork DAGs in
homogeneous systems.

Proof. Task nx is selected from the RunninQueue and all its children are inserted
into the ChildQueue. Tasks are extracted from the ChildQueue in descending order
of their priorities, therefore they are ordered such that: τj + cx,j ≥ τj+1 + cx,j+1,
j = 1..(m− 1).

For the fork primitive all the children of nx are ready and the CCF algorithm
performs a sequence of edge zeroing steps from left to right up to the point k such
that:

∑k−1
j=1 ≤ cx,k and

∑k
j=1 τj > cx,k+1. The proof that PTopt = PTCCF is done

by contradiction. Suppose that k 6= h (h is the optimal edge zeroing stop point and
k is the optimal edge zeroing stop point determined by CCF) and PTopt < PTCCF ,
then we can distinguish two cases:

1. If h < k then
∑h

j=1 τj <
∑k

j=1 τj ≤ cx,k + τk ≤ cx,h+1 + τh+1. But PTopt =

τx+cx,h+1+τh+1 ≥ τx+cx,k+τk ≥ τx+max
{ ∑k

j=1 τj , cx,k+1+τk+1

}
= PTCCF ,

which is a contradiction.

2. If h > k then
∑h

j=1 τj ≥
∑k+1

j=1 τj > cx,k+1 + τk+1 ≥ cx,h+1 + τh+1. But

PTopt = τx +
∑h

j=1 τj ≥ τx + max
{ ∑k

j=1 τj , cx,k+1 + τk+1

}
= PTCCF , which

is a contradiction.

Therefore PTopt = PTCCF .

Behavior on join DAGs

The algorithm assumes DAGs starting with one task, therefore we consider a join
primitive as described by figure 5.5. A zero computation task is added, which connects
with zero cost communication links the m tasks of the join primitive.

82 5. A DAG scheduling algorithm for Grid computing systems

Figure 5.5: Join DAG primitive.

Remember that this analysis considers a homogeneous environment. Now we
show that this first version of the proposed CCF algorithm does not produce optimal
schedules for the join DAG primitive.

At step 1 node nr is extracted from the RunningQueue and its children are
inserted into the ChildQueue. Then n1 is extracted and left in its own resource (the
one assigned by the initial mapping) because there is no improvement in moving it to
the resource of nr, i.e its completion time does not change. The same happens with
all the other children. Therefore, each child nj is assigned to a unit cluster and the
task nx is mapped to the host assigned to the parent laying on the CP. Follows that
the proposed algorithm is not optimal for join DAGs. In order to derive an optimal
schedule the algorithm should implement a kind of look-ahead procedure, which checks
for zeroing not only incoming edges of a task but also outgoing edges. In section 5.4.5
we will describe the final version of the algorithm which achieves optimality also for
this primitive.

Identification of DS nodes

The heuristic implemented in the CCF algorithm is based on the identification of the
DS nodes. So, we must be sure that DS nodes are correctly identified. The purpose
of this subsection is to analyze the node selection process of the proposed algorithm.

Lemma 5.4.1. Assume that nx = head(RunningQueue) at the beginning of step i,
then one DS must go through one descendant of nx.

Proof. At the beginning of step i the parallel time is PTi = tlevel(nds, hnds
) +

blevel(nds, hnds
), where nds is a DS node. Let RNC be the set of tasks already ex-

tracted from the RunningQueue but with at least one child not mapped to a resource
(because it is not ready yet) and let be Prio RNC = maxnj∈RNC

{
Prio RQ(nj)

}
We can distinguish two cases, RNC = ∅ and RNC 6= ∅:

5.4. The CCF algorithm 83

1. If RNC = ∅ then Prio RQ(nx) = tlevel(nx, hnx) + blevel(nx, hnx) is the maxi-
mum on all the nodes in the RunningQueue and nx is a DS node itself. Follows
that at least one child of nx must lay in one DS.

2. If RNC 6= ∅ then Prio RQ(nx) ≤ Prio RNC. Now we have two cases:

(a) If Prio RQ(nx) = Prio RNC then either nx is a DS node itself (and there
is more than one DS) or Prio RQ(nx) is given by the value DSdesc, set
by the heaviest child nh (which is not ready) of a task in the set RNC,
through the suggestResource() procedure. nh is also a descendant of nx.

(b) If Prio RQ(nx) < Prio RNC then if Prio RQ(nx) = tlevel(nx, hnx) +
blevel(nx, hnx) nx is a DS node itself. Otherwise, if Prio RQ(nx) =
DSdesc(nx) then the DS passes through a not ready child nk of a task
in the set RNC, but, since DSdesc(nx) was set by the suggestResource()
procedure starting from nk, nk is a descendant of nx.

Lemma 5.4.1 states that the first selection phase considers nodes belonging to the
DS or nodes having, as descendant, a partially free DS node. In the latter case, the
purpose is to make a partially free DS node ready as soon as possible.

Monotone reduction of the schedule length

The node ni extracted from the RunningQueue has the maximum value of tlevel +
blevel. The mapping phase assigns resources to all the ready children of ni, each
time zeroing one or more incoming edges, provided that the schedule length does not
increase. If one step of the algorithm is identified with both the extraction of a DS
node from the RunningQueue and the mapping of all the ready children, then the
property of monotone reduction of the schedule length holds, i.e. for each step i of
the algorithm PTi−1 ≥ PTi, where PTi is the parallel time at step i (weight of the
DS at a given step i).

Theorem 5.4.2. For each step i of the CCF algorithm PTi ≥ PTi+1

Proof. The parallel time at step i can be computed as: PTi = maxnj∈V

{
tlevel(nj , hnj)+

blevel(nj , hnj
)
}
. At step i a node nx is extracted from the RunningQueue. All chil-

dren of nx are assigned to a temporary resource and now the algorithm tries to assign
a definitive resource to all the ready children nr. The temporary resource ht of a child
is going to change to a new resource hn if:

tlevel(nr, hn) + blevel(nr, hn) < tlevel(nr, ht) + blevel(nr, ht).

Given this, since PT = maxnj∈V

{
tlevel(nj , hnj

) + blevel(nj , hnj
)
}

and PTi and
PTi+1 are computed, respectively, before and after the definitive mapping of the
ready children, follows that: PTi ≥ PTi+1.

84 5. A DAG scheduling algorithm for Grid computing systems

5.4.5 Final version of the algorithm

The final version of the algorithm aims at reaching the optimality also for the join
DAG structure. As we will see in the experimental results section this modification,
combined with the suggestResource() process (section 5.4.3), leads to an improve-
ment of the quality of the scheduling produced, i.e., to a reduction of the makespan. To
achieve this goal the final version of the algorithm implements, in the assignResource()
function, a look-ahead strategy, similar to the one used in the DCP algorithm [78]. In
particular, we first try to select a resource basing the decision on the minimization of
the cost function tlevel + blevel of the task nj (described in section 5.4.3) then, if the
schedule length is not reduced, the assignResource() procedure is repeated, but this
time trying to virtually schedule the heaviest child nhc of nj (the one that determines
the blevel of nj) in the same resource. Finally, a suggestResource() is called from
nhc suggesting the resource selected for nj to all the unmapped ascendants. The
look-ahead strategy defines the cost function as follows:

Cost(nj , h) = tlevel(nj , h) + blevel(nj , h)
+ tlevel(nhc, h) + blevel(nhc, h)

where nhc is the heaviest child of nj and h the resource that is under examination.
In this way, the selected resource for nj tries to maximize the probability of zeroing
multiple edges for its heaviest child. With this look-ahead strategy, combined with the
resource suggestion process, the algorithm achieves the optimality for the DAG join
primitive and experimental tests show improvements on the length of the schedule
produced. On the other side, the monotone reduction property does not hold anymore.
This happens because the resource is selected considering the estimate reduction of the
schedule length, given by virtually mapping the heaviest child on the same resource.
The mapped task is nj (not nhc) and the variation in tlevel(nj , h) + blevel(nj , h) is
the one that concretely affects the schedule length. Therefore, when mapping nj it
can happen that the total schedule length increases. Since the future mapping of
the heaviest child does not guarantee a reduction greater than the increment possibly
obtained before, the monotone reduction property does not hold anymore. We have
experimentally found that if the look-ahead strategy is applied systematically each
time a resource is selected (like in the DCP algorithm) then there is no improvement
by using this technique. Otherwise, if it is used only on a restricted class of events then
good results can be obtained. The proposed algorithm uses the look-ahead strategy
only in the case in which the schedule length is not reduced by the mapping function,
and experimental results show a good improvement in the quality of the schedule
produced.

The optimality for the fork DAG primitive still holds for this final version and the
next paragraph shows how the optimality for the join primitive is obtained.

The suggestResource() function

In the final version of the algorithm, with the introduction of the look-ahead process,
the suggested resource plays a central role. Now we can see why its effect is to

5.4. The CCF algorithm 85

(a) Initial mapping, at the beginning of the CCF
algorithm.

(b) Step k + 1 of the CCF algorithm.

Figure 5.6: Clustering of the join DAG primitive produced by the CCF algorithm
(homogeneous systems).

increase the probability of zeroing multiple incoming edges. The look-ahead strategy
tries to map a task to a resource by looking forward, i.e. considering the outgoing
edge of the task belonging to the DS. In this way, the value of the cost function can
be considerably reduced by the “virtual” zeroing of edges connecting the DS child to
parents mapped in the same resource. For example, consider figure 5.2. Task n6 is
the first one considered for mapping, but it is not ready, thus it waits and suggests
the resource hn1 to all its ascendants. When tasks n2, n4 and n5 are considered for
mapping, the algorithm first tries to schedule them on their parents resources (giving
priority to the zeroing of the incoming edge) but if it is not successful in doing this,
it tries with the look-ahead strategy, this time giving priority to the zeroing of the
outgoing edge. For task n2 there is no improvement in using the suggested resource
because it is duplicated, since the reference task is n1, which is the parent of n2. For
tasks n4 and n5, instead, the suggested resource may represent a real alternative. If
the communication is heavy the improvement in moving these tasks, together with
the child n6, to the resource hn1 could be high. In fact, edges e1,6, e4,6, e5,6 and
eventually e2,6 (if n2 is mapped to hn1) can be zeroed.

5.4.6 Join DAG analysis for the final version of the algorithm

The algorithm assumes DAG with one entry node and figure 5.5 shows the join prim-
itive considered for the analysis: a root node nr with zero computation time connects
all the entry nodes of the join primitive with zero cost transfer times. Assume that

86 5. A DAG scheduling algorithm for Grid computing systems

nodes and edges are sorted such that:

τj + cj,x ≥ τj+1 + cj+1,x j = 1..m− 1. (5.5)

As for the fork primitive, the optimum clustering [80] is a tradeoff between paral-
lelization and sequentialization; it is given by the schedule that clusters together the
first k nodes nj , where k must satisfy the following inequalities:

k∑
j=1

τj ≤ τk + ck,x,

k+1∑
j=1

τj ≥ τk+1 + ck+1,x.

The first node in the RunningQueue, nr, is extracted and all its children nj (j = 1..m)
are inserted into the ChildQueue. Since all the communication costs cr,j are zero,
tasks nj are extracted from the ChildQueue following the order given by their blevel
that corresponds to the order defined in (5.5). Task n1 is extracted and, since there is
no improvement in assigning it to hr, the look-ahead strategy is called. The resource
assigned to n1 is still hn1 but this time the suggestResource() suggests resource hn1

to all the nj . The look-ahead strategy is called for all the remaining tasks and cj,x

is checked for zeroing by virtually mapping nx to the suggested resource. The first
k nodes are sequentialized on the suggested resource if

∑k−1
j=1 τj,hn1

≤ ck,x. Finally,
task nx is assigned to hn1 since its first k incoming edges can be zeroed.

Theorem 5.4.3. The final version of the CCF algorithm computes optimal schedules
for join DAGs in homogeneous systems.

Proof. Task nr is selected from the RunninQueue and all its children are inserted
into the ChildQueue. Tasks are extracted from the ChildQueue in descending order
of their priorities, therefore they are ordered such that: τj + cj,x ≥ τj+1 + cj+1,x,
j = 1..(m − 1). The ChildQueue orders the tasks on the sum tlevel + blevel. Since
the incoming edges of the tasks nj have a label value of zero, the blevel, and hence
the outgoing edge weight, is the one that affects the ordering.

The first task n1 is extracted from the ChildQueue and the assignResource()
function tries to schedule it on the resource of its father. There is no improvement in
moving n1, therefore the look-ahead procedure is called. Also this time the resource
of the father nr and the resource hn1 , assigned to n1 by the initial mapping, give
the same value for the cost function and task n1 is definitively mapped to hn1 . The
suggestResource() function is called and the resource hn1 is suggested to all the
other tasks nj , j = 1...n. Now task n2 is extracted from the ChildQueue and, like
was happened for n1, it tested of its father resource with no improvements and the
look-ahead strategy is called. The algorithm finds that the cost function is minimized
on the suggested resource hn1 , because nx is virtually mapped to hn1 and two edges
can be zeroed. This process goes on by mapping tasks nj to the resource hn1 while
performing a sequence of (virtual) edge zeroing steps from left to right up to the point
k such that:

∑k−1
j=1 ≤ ck,x and

∑k
j=1 τj > ck+1,x.

The proof that PTopt = PTCCF is done by contradiction. Suppose that k 6= h (h
is the optimal edge zeroing stop point and k is the optimal edge zeroing stop point
determined by CCF) and PTopt < PTCCF , then we can distinguish two cases:

5.5. A variant of the DSC algorithm 87

1. If h < k then
∑h

j=1 τj <
∑k

j=1 τj ≤ ck,x + τk ≤ ch+1,x + τh+1. But PTopt =

τx+ch+1,x+τh+1 ≥ τx+ck,x+τk ≥ τx+max
{ ∑k

j=1 τj , ck+1,x+τk+1

}
= PTCCF ,

which is a contradiction.

2. If h > k then
∑h

j=1 τj ≥
∑k+1

j=1 τj > ck+1,x + τk+1 ≥ ch+1,x + τh+1. But

PTopt = τx +
∑h

j=1 τj ≥ τx + max
{ ∑k

j=1 τj , ck+1,x + τk+1

}
= PTCCF , which

is a contradiction.

Therefore PTopt = PTCCF .

5.5 A variant of the DSC algorithm

In this section we propose a variant of the DSC (Dominant Sequence Clustering)
algorithm. First of all we briefly recall how the original algorithm works. The DSC
[135] selects at each step a node belonging to the DS, the critical path of the scheduled
DAG computed as the maximum value of tlevel + blevel, and assigns it to the resource
that allows the minimum start time. In this first version the algorithm is simple and
it achieves good results but it is not optimal for join DAGs. The authors formulate a
final version adding two features: the possibility to cluster together already scheduled
parents of a node and the possibility to book a resource for a partially free node
(a node for which only some of its parents are visited) belonging to the DS. The
final version of the algorithm achieves optimality also for join DAGs (in homogeneous
systems). We have adapted the DSC algorithms in order to work in a heterogeneous
environment and we have tested the two versions of the algorithm with random DAGs
and different network topologies. The results showed no real improvements from the
first and the final version of the algorithm, on average the first version performs better
than the final one.

Here we propose a variant of the DSC algorithm that leverages from some con-
cepts used in the final version of the CCF algorithm. In particular, we take the first
version of the DSC algorithm and we add the look-ahead strategy together with the
suggestResource() function. These two features are integrated as follows:

1. Like for the CCF algorithm the look-ahead process is called only when the
algorithm does not find a better resource than the one assigned by the initial
mapping.

2. The suggestResource() function is used only when a resource is selected with
the look-ahead process. In particular, the child task that is virtually mapped to
the resource just assigned to the father task, is the one that calls this function.

The result is a variant of the DSC algorithm for which some of the properties of
the original DSC algorithm still holds, like optimal behavior on fork and join DAGs
in homogeneous systems and the correctness in locating DS nodes. Due to the look-
ahead strategy, like for the CCF algorithm, the monotone reduction property of the
schedule length does not hold anymore and the time complexity of this new variant
of the DSC algorithm is no longer O((v + e) log v).

88 5. A DAG scheduling algorithm for Grid computing systems

As can be seen in the next chapter experimental results show significant improve-
ments on the length of the schedules produced, i.e. reduction of the makespan.

5.6 Summary

In this chapter we have presented two new DAG scheduling algorithms designed to
work in a Grid computing system, which is a heterogeneous computing system with
a heterogeneous interconnection network.

The first proposed algorithm is called CCF (Cluster ready Children First)and it
is a list scheduling algorithm. It visits the DAG in topological order and uses a two
step node selection phase based on a priority that identifies tasks belonging to the
Dominant Sequence, if it is possible, otherwise means that the next DS task is blocked
because it is not ready and in this case it is selected the task (or a sequence of tasks)
allowing the DS node to become ready as soon as possible. More specifically, the first
step selects a running task (i.e., already mapped) and then all the ready children of
that task are selected for mapping. This selection of tasks is different from all the other
list scheduling approaches. The first selection step considers already mapped tasks
and in the second step can happen that only non-DS tasks are mapped. This makes
this heuristic a hybrid between CP-based and non CP-based. Then, the final version
of the algorithm, introduces a process for adding a particular resource to the set of
candidate resources (the set from which the best resource for a task is drawn) and
a look-ahead strategy is invoked when the algorithm does not find a better resource
other than the initial mapping.

Some properties of the proposed CCF algorithm are identified and analyzed, such
as the optimal behavior on fork and join DAGs in homogeneous systems, monotone
reduction of the schedule length (first version of the algorithm) and the correct iden-
tification of DS nodes.

The second proposed algorithm, the DSC VAR, is a variant of the famous DSC.
DSC VAR adds to the first version of the original algorithm the resource suggestion
process and the look-ahead strategy used in the CCF algorithm. Some of the proper-
ties of the original version still hold for this variant, like the optimal behavior on fork
and join DAGs in homogeneous systems.

The next chapter describes experimental results conducted with these two algo-
rithms. Random DAGs and different network topologies are used in order to compare
the results of the proposed algorithms with other two algorithms: the original DSC
and the Hybrid Remapper. The platforms describing the heterogeneous computing
environment used in the simulations are created using the GridG toolkit. As we will
see, the performance comparison shows improvements on the length of the schedules
produced by the two proposed algorithms, both for poor and good initial mappings.

6
Experimental Results

Scheduling the tasks of a distributed application has been an active field of research for
several decades. The classic scheduling problem is to find an assignment of application
tasks onto a set of distributed resources with the aim of minimizing the makespan, i.e.
the overall completion time of the parallel application. As we have seen in previous
chapters, it has been shown that non-trivial instances of the DAG scheduling problem
are NP-complete. As a result, the researchers have proposed different approaches to
solve the problem. However it is difficult to determine which solutions are practical
for real scenarios. Given the NP-completeness nature of the problem, it is really hard
to make a theoretical evaluation of the different proposed heuristics. On the other
hand, studying the behavior of scheduling algorithms on real platforms, although
providing accurate and undoubtedly realistic results, is not practical due the dynamic
availability of the resources. The main problem is that experiments on real platforms
are often non-reproducible, this means that results of different scheduling algorithms
are not comparable. Therefore, simulation is the best choice in order to test and
compare scheduling algorithms.

This chapter presents experimental results obtained with the simulation of the
proposed algorithms CCF and DSC VAR, which are compared to the original DSC
[135] and the Hybrid Remapper [90] algorithms.

6.1 Simulation framework

We have conducted extensive simulations to evaluate the performance of the two
proposed scheduling algorithms. In particular, we present a comparison of the per-
formance results of the CCF and DSC VAR algorithms with other two scheduling
algorithms, the original DSC [135] described in section 4.6.9 and the Hybrid Remap-
per [90] described in section 4.6.14. The Hybrid Remapper is presented by its authors
in three versions called PS, CS and CD. Here we use the third version (CD), which
is the one that considers dynamic values in the computation of priorities.

The input to the simulator consists of a set of DAGs and an environment descrip-
tion of the network and the resources (the platform). Each scheduling algorithm can
retrieve informations like: machine characteristics, latency and bandwidth. In the
following the experimental session will be described considering three main areas: the

90 6. Experimental Results

simulator, DAG generation and platform generation. Finally results and comments
of the performance comparison are presented.

6.1.1 The simulator

We evaluated three simulators: GridSim [15], Simgrid [17, 81, 65] and MetaSimgrid
[82]. With Simgrid it is possible to model a platform and defining arbitrary topology
for the interconnection network, whereas with GridSim this cannot be done. On
the other hand with Simgrid the platform model must be constructed by hand; it
can be done for few hosts, but for more realistic cases it is practically impossible.
Furthermore, Simgrid lacks a number of convenient features to craft simulations of a
distributed application where scheduling decisions are not taken by a single process.
MetaSimgrid is a Grid simulation tool build on top of Simgrid that overcomes to some
limitations of Simgrid. For example, it is possible to import an existing platform. In
this way, it is possible to use existing tools for building platforms with approximately
realistic topology, including switches and routers, and to gather data on its available
resources. Examples of such a tools are:

• ENV with NWS: ENV (Effective Network View) [113] allows to discover the
effective topology of a network from a given host, whereas NWS (Network
Weather System) [130] can be used to gather all the traces (link latency, band-
width, cPU load, etc.) needed to simulate external load.

• GridG with Tier: GridG [88] is a toolkit based on Tier [16, 33]. With this toolkit
it is possible to easily generate approximately realistic plaforms with arbitrary
network topology and resources characteristics.

Our final choice was to use MetaSimgrid for the simulation of the algorithms and the
GridG toolkit for the generation of the test platforms.

6.1.2 DAG generation

Due to the NP-completeness of this scheduling problem, heuristic ideas used in CCF
and DSC VAR cannot always lead to an optimal solution. Thus it is necessary to
compare the average performance of different algorithms using randomly generated
graphs.

We have generated each DAG at random, starting from he following input pa-
rameters: number of nodes, number of edges, range (minimum and maximum) of
computation values and range of data transfer values. These values are abstract la-
bels (number of operations and size of data). We are dealing with DAGs, therefore
the number of edges |E| is limited by:

|E| ≤ |V |(|V | − 1)/2

where |V | is the number of nodes. Random edges (i, j) are generated with i < j.
Nodes and edges labels are generated at random and their values are drawn from the
corresponding ranges given as input. Abstract labels are transformed in time values

6.1. Simulation framework 91

by the scheduling algorithm once the characteristics of the resources are known. In
particular, in order to obtain the estimate of the execution time of a task, we have
to retrieve the CPU speed (given in mips) and to divide the abstract label associated
to that task by the CPU speed. Analogously, in order to obtain the estimate of the
transfer time we have to retrieve the link characteristics (latency and bandwidth) and
to perform this simple operation:

Transfer time estimate = latency + (data size/bandwidth).

The Communication Computation Ratio (CCR) is defined as the average edge
weight divided by the average node weight. DAGs with a CCR smaller than 1 are
called coarse grain DAGs and DAGs with a CCR grater than 1 are called fine grain
DAGs. All the DAGs used for the tests are divided into two groups: the first group
contains coarse grain DAGs with a CCR ranging from 0.05 up to 1 and the second
group contains fine grain DAGs with a CCR ranging from 1 up to 20. Each group
is divided into 30 subgroups, each containing 20 DAGs with (approximately) the
same CCR. The CCR of the 30 subgroups progressively increases from subgroup 1 to
subgroup 30, i.e. from 0.05 to 1 for the coarse grain DAGs and from 1 to 20 for the
fine grain DAGs.

6.1.3 Platform generation

A realistic platform is essential in evaluating middleware for computational grids.
The platform is the raw Grid, an annotated graph representing the network topology
and the hardware and software available on each node and link within it. For the
generation of the network topology and the definition of the characteristics of the
resources we have used the GridG toolkit [88]. It leverages from Tier [16, 33], a
tool for network topology generation, extending it in order to produce graphs that
conform to recently discovered power laws of Internet topology [37]. In general, a
Grid generator has to produce a grid of a given number of hosts and must meet the
following requirements:

• Realistic network topology : real network topologies are connected and have hi-
erarchical structures. Furthermore recent studies found that wide area network
topologies follow certain topological power laws.

• Realistic annotations for hosts and network components: that means providing
fundamental characteristics for hosts, links, routers and switches. For hosts
such characteristics are: architecture type, processor type and speed, number
of processors, memory size, disk size, hardware vendor, operating system, and
available software. For a link, it should provide the hardware bandwidth and
latency. For routers and switches, it should specify the aggregate backplane or
switching fabric throughput and latency. Furthermore, characteristics of differ-
ent components are often correlated, e.g. memory size increases with processor
speed, a high speed router is unlikely to be connected only to a few slow links,
and so on.

92 6. Experimental Results

Rank exponent dv ∝ rR
v

Power Laws Outdegree exponent fd ∝ dO

Eigen exponent λi ∝ iε

Approximation Hop-plot exponent P (h) ∝ hH

Table 6.1: Power laws of Internet topology [88, 37].

GridG starts with the output of a structure-oriented topology generator (they cur-
rently use Tiers [16, 33]) and adds redundancy to it in such a way as to make it
conform to the power laws. Table 6.1 summarizes the three power laws identified by
Faloutsos et al. in [37]. Faloutsos defines the rank of a node in the following way.
First the nodes are sorted in decreasing order of out-degree, then ranks are assigned
according to this ordering and the number of nodes in each equivalence class (classes
group nodes with the same out-degree). Nodes belonging to the highest out-degree
class have rank rv = 1, nodes belonging to the second highest out-degree class have
rank rv = 1 + (number of nodes in the previous class).

The rank exponential law says that the out-degree dv of a node v, is proportional
to the rank of the node (rv) raised to the power of a constant R.

The out-degree exponent law says that the frequency fd of an out-degree d is
proportional to the out-degree raised to the power of a constant O.

The Eigen exponent power law says that the eigenvalues λi of a graph are propor-
tional to the order i raised to the power of a constant ε.

The hop-plot exponent power law is considered as an approximation and says that
the total number of pairs of nodes P (h), within h hops, is proportional to the number
of hops raised to the power of a constant H.

With the GridG toolkit we have created different platforms with the number
of resources ranging from 90 to 614. In order to consider different conditions of
environment load, for each platform we have generated 10 variants with weights (cpu
and bandwidth) reduced at random by a percentage that ranges from 10% (for the
first variant) to 95% (for the last variant). Final execution times for a platform are
an average of the execution times on the variants.

6.2 Performance comparisons

As mentioned above the performance comparison of the proposed algorithms is made
using two input sets: the first containing coarse grain DAGs (CCR smaller than 1) and
the second containing fine grain DAGs (CCR greater than 1). Tests were performed
over different network topologies; here we present results for a platform formed by
160 resources. For each single simulation the execution times are computed as an
average of the execution of the 20 DAGs of each subgroup, having different number
of nodes and edges but with, approximately, the same CCR. In order to consider
different loads of the environment, each simulation is repeated 10 times with different

6.2. Performance comparisons 93

(a) Results for InitMap, DSC, CD, DSC VAR
and CCF.

(b) Results for DSC, CD, DSC VAR and CCF.

Figure 6.1: Results for CCR ranging from 0.05 to 1.

values of loads for the machines and the network, and the final execution time, for a
given CCR, is the average of the 10 simulations.

All the algorithms considered run over an initial mapping, which assigns a resource
to each task. We call the algorithm that implements this initial step the InitMap. All
the considered scheduling algorithms try to improve this initial schedule. We use an
implementation of the InitMap that visits the DAG in topological order and assigns
to each task the resource that allows the earliest start time for that task. In order to
study how the proposed heuristics can improve an initial bad mapping we have added
the constraint of using a resource only once. At the end of this section we will consider
how the scheduling algorithms behave on an improved version of the InitMap.

Figure 6.1 shows the results for an increasing CCR ranging from 0.05 to 1. In
particular, figure 6.1a considers all the tested algorithms, whereas figure 6.1b excludes

(a) Results for Initial mapping, ETF, DSC,
CD, DSC VAR and CCF.

(b) Results for DSC, CD, DSC VAR and
CCF.

Figure 6.2: Results for CCR ranging from 1 to 20.

94 6. Experimental Results

(a) Coarse grain DAGs (CCR smaller than 1). (b) Fine grain DAGs, (CCR greater than 1).

Figure 6.3: Comparison between the first version and the final version of the CCF
algorithm.

the InitMap algorithm in order to focus on the results of the other algorithms. The
results for DSC, CD, DSC VAR and CCF are close to each other, but the proposed
CCF and DSC VAR outperform, on average, all the other algorithms, as can be
seen from figure 6.1b. For coarse grain DAGs the difference is small, in particular
the DSC VAR is very close to the CD algorithm. The original version of the DSC
algorithm perform worse than proposed variant DSC VAR.

Figure 6.2 considers simulation results for fine grain DAGs, where the average
communication time is greater than the average computation time. Figure 6.2a shows
the results of all the tested algorithms and figure 6.2b focuses on the DSC, CD,
DSC VAR and CCF algorithms. Also for this class of DAGs the DSC VAR and
CCF algorithms outperform, on average, all the other algorithms. In particular the
improvement gained by these two algorithms is higher than in the case of coarse grain
DAGs. This result is mainly due to the application of the looking-ahead strategy,
which optimizes the selection of a resource considering the amount of communication
between a task and its heaviest child, together with the suggestion resource process,
which tracks the resource that allows to increase the probability of zeroing multiple
incoming edges of the heaviest child. As can be seen, the improvement gained increases
with the CCR. The DSC VAR still performs better of the original version of DSC.

Figure 6.3 shows the performance results of the first and final version of the CCF
algorithm. Remember that the final version differs from the first version because
it implements the looking-ahead strategy, with the aim to reduce the makespan by
reducing communication times. For coarse grain DAGs (figure 6.3(a)), where the
average computation is higher than the average communication, the two versions
perform almost the same but, as the CCR increases, and hence the communication
gets higher, the final version of the algorithm outperforms the first version (figure
6.3(b)). The looking-ahead strategy is applied only when the normal selection phase
do not find a better resource than the one chosen by the initial mapping. This point
is crucial. As we noted in section 5.4.5, the DCP algorithm [78] implements a similar

6.2. Performance comparisons 95

(a) Coarse grain DAGs, i.e. CCR smaller than
1.

(b) Fine grain DAGs, CCR greater than 1.

Figure 6.4: Comparison between the CCF algorithm and CCF SYST, a version of
CCF that uses the looking-ahead strategy systematically on each resource selection.

technique every time a resource is tested for mapping. When using the looking-
ahead strategy, the monotone reduction property of the schedule length does not hold
anymore. Therefore, another interesting analysis of the CCF algorithm, considers
the comparison of the first version and a version where the looking-ahead strategy is
applied systematically in each selection phase. This comparison is presented in figure
6.4. CCF SYST is the version that applies the looking-ahead strategy systematically
at each selection phase. Figure 6.4(a) considers DAGs with CCR less than one,
whereas figure 6.4(b) considers DAGs with CCR greater than one. The result is that
the CCF SYST performs significantly worse than the first basic versions of CCF. In
particular, it is very close to the InitMap algorithm. Remember that this version of
the InitMap is the one designed to obtain poor schedules.

These results confirm that this kind of strategy must be applied with care. This

(a) Coarse grain DAGs, CCR smaller than 1. (b) Fine grain DAGs, CCR greater than 1.

Figure 6.5: Tests with an improved initial mapping.

96 6. Experimental Results

can be explained by the fact that in this case the monotone reduction of the schedule
length does not hold anymore. In particular, tests using an improved version of the
InitMap show that sometimes the schedule produced by the CCF SYST are worse
than the one obtained with the InitMap.

Finally we have tested the algorithms with a modified version of the InitMap that
removes the constraint of using a resource only once and assigns to each task the
resource allowing the smallest completion time (start time plus execution time). The
results can be seen in figure 6.5(a) (for DAGs with CCR smaller than one) and figure
6.5(b) (for DAGs with CCR greater than one). This time the difference among the
initial mapping and the other scheduling algorithms is lower, and the same is true
also comparing the algorithms to each other. Anyway, the CCF and DSC VAR still
outperform the DSC and the Hybrid Remapper and their behavior is close to each
other.

We also tested the proposed algorithms with other different platform definitions.
The obtained results in these cases are similar. On average the DSC VAR and CCF
algorithms give better performance results in particular for fine grain DAGs. In some
cases improvements are lower, and in other cases they are higher.

6.3 Summary

In this chapter we have presented the results of the experimental tests performed
with the proposed algorithms CCF and DSC VAR. We have launched the algorithms
in a simulated Grid environment. In fact, given the NP-completeness nature of the
problem, it is really hard to make a theoretical evaluation of the different proposed
heuristics. Evaluation on real platforms is very hard, since this kind of experiments are
often non-reproducible and, in order to compare the results of different algorithms,
same environment conditions are needed. This is the main reason for choosing a
simulated environment as testbed for the comparison of the algorithms.

We have evaluated different simulators and finally we decided to use MetaSimgrid.
This simulator allows to import platforms, consisting in an annotated graph repre-
senting the network topology and the hardware and software available on each node
and link within it, from external tools.

The definition of the platform is also a crucial point. In fact, in order to produce
meaningful results, the platform should describe a realistic Grid. To generate the
environment description we have used the GridG toolkit, that leverages from the
network topology generator Tier. Basically, GridG extends Tier in order to produce
graphs that conform to recently discovered power laws of Internet topology.

The input test set is formed by random generated DAGs grouped by their Com-
munication Computation Ratio (CCR). Two main groups can be identified: one con-
taining coarse grain DAGs, i.e. with CCR less than one, and one containing fine grain
DAGs, i.e. with CCR greater than one. Each group is divided into 30 subgroups, each
formed by DAGs with approximately the same CCR, ordered by increasing CCR. The
input to the simulator consists of the set of DAGs and the platform.

We have executed different tests comparing the results of the four algorithms DSC,

6.3. Summary 97

Hybrid Remapper, CCF and DSC VAR considering different platforms and different
initial mappings. On average, the two proposed algorithms CCF and DSC VAR have
outperformed the other two reference algorithms Hybrid Remapper and DSC. We
have also proposed some tests with the aim to analyze the techniques implemented
in the CCF algorithm.

98 6. Experimental Results

Conclusions

In this thesis we have investigated the problem of scheduling parallel applications
described by directed acyclic graphs (DAGs) in Grid computing systems. Grid is
evolving as a service oriented architecture. In this context, the “software as a ser-
vice” approach results in a componentized view of software applications and workflow
can naturally be used as a component composition mechanism. Actually, the most
common Grid workflow can be modelled as a DAG, where the order of execution of
tasks (modelled as nodes) is determined by dependencies (in turn modelled as directed
arcs). The DAG scheduling problem is showed to be NP-complete, therefore the most
popular approach to compute solutions is to use heuristics. Usually these heuristics
are implemented using the so called list scheduling technique. In list scheduling each
task is assigned to a priority value and higher priority tasks are selected for mapping
first. An algorithm is static if it computes priorities once at the beginning, otherwise
it is dynamic and priority values are updated during the execution of the algorithm.

The main result of the thesis is the design of a DAG scheduling algorithm for Grid
computing systems. The proposed algorithm is called CCF (Cluster ready children
first) and it belongs to the class of dynamic list scheduling algorithms. We have first
implemented and simulated some algorithms found in the literature. After an analysis
of the results we have identified the algorithm showing better performance, in terms of
reduction of the schedule length. These algorithms was the DSC (Dominant Sequence
Clustering) and the Hybrid Remapper. Both these algorithms implements a heuristic
based on the identification of nodes belonging to the DS (Dominant Sequence). The
DS nodes are the most important because they define the makespan (length of the
schedule) of the DAG. Although these kind of heuristics are the ones that give, on
average, the best results in terms of quality of the schedule produced, they can get
trapped in a locally optimal decision, leading to a non-optimal global solution. Our
approach was to formulate an heuristic that is a mixture between a CP-based and a
non-CP-based heuristic. In particular, the DAG is visited in topological order and we
implemented a two step task selection. In the first step the algorithms selects a node
belonging to the DS. What is different from all the other approaches is that the DS
node is drawn from a set of already mapped nodes, i.e. a set containing frontier nodes
that are visited nodes with non-visited children. The second step maps all the ready
children of the selected task to a suitable resource. Children which are not ready wait
for as long as all their parents are mapped. DS nodes in the first step are identified
by the value of the sum of their top level plus bottom level. With this method three
possible situations can happen:

• The selected node belongs to the DS and the next step maps the heaviest child.

• The selected node belongs to the DS and the next step doesn’t map the heaviest
child because it is not ready.

100 Conclusions

• The selected node doesn’t belong to the DS because the DS node is partially
free.

To address the last case where the DS node is partially free, we have implemented
a technique that give higher priority to tasks that allows the partially free DS node
to become ready as soon as possible. In its final version, the proposed algorithm
implements a looking-ahead strategy to guide the selection of a resource considering
not only the minimization of incoming data transfers of a task, but also the outgoing
data transfer to its heaviest child.

Some of the techniques implemented in the CCF algorithm were reused leading to
the proposal of a modified version of the DSC algorithm.

In order to evaluate the two proposed algorithms we have conducted extensive
tests by simulating their execution and comparing the results with other two reference
algorithms. One important point of this phase was the definition of the platform, that
is the description of the networked computing system. In order to produce meaningful
results, the platform should describe a realistic Grid. To generate the environment
description we have used the GridG toolkit, that leverages from the network topology
generator Tier. Basically, GridG extends Tier in order to produce graphs that conform
to recently discovered power laws of Internet topology.

Experimental tests showed a good behavior of the two proposed algorithms CCF
and DSC VAR. On average they have outperformed the other reference algorithms
Hybrid Remapper and DSC. These results were confirmed by repeating these tests
under different network topologies, dimensions (number of resources) and load con-
ditions.

Bibliography

[1] T. Adam, K.M. Chandy, and J.R. Dickson. A comparison of list schedules for
parallel processing systems. CACM, 17(12):685–690, 1974.

[2] I. Ahmad and Y.-K. Kwok. On exploiting task duplication in parallel pro-
gram scheduling. IEEE Trans. Parallel and Distributed Systems, 9(9):872–892,
September 1998.

[3] I. Ahmad, Y. K. Kwok, M. Y. Wu, and W. Shu. Automatic parallelization and
scheduling of programs on multiprocessors using CASCH. Proc. 1997 Inter.
Conf. Parallel Processing, pages 288–291, August 1997.

[4] H.H. Ali and H. El-Rewini. The time complexity of scheduling interval or-
ders with communication is polynomial. Parallel Processing Letters, 3(1):53–58,
1993.

[5] W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C. Dumitrescu, I. Raicu,
and I. Foster. The globus striped gridftp framework and server. In Proceedings
of Super Computing 2005 (SC05), November 2005.

[6] G. Allen, T. Dramlitsch, I. Foster, N. Karonis, M. Ripeanu, Ed. Seidel, and
B. Toonen. Supporting efficient execution in heterogeneous distributed com-
puting environments with cactus and globus. Supercomputing 2001, August
2001. Winning Paper for Gordon Bell Prize (Special Category).

[7] J. Almond and D. Snelling. UNICORE: Uniform access to supercomputing
as an element of electronic commerce. Future Generation Computer Systems,
15:539–548.

[8] Sergio Andreozzi, Cristina Vistoli, and Massimo Sgaravatto. Sharing a concep-
tual model of Grid resources and services. In Computing in High Energy and
Nuclear Physics, La Jolla, California, 2003.

[9] F. D. Anger, J. J. Hwang, and Y. C. Chow. Scheduling with sufficiently loosely
coupled processors. Journal of Parallel and Distributed Computing, 9:87–92,
1990.

[10] R. Baraglia, S. Orlando, and R. Perego. Resource Management Systems:
Scheduling of Resource-Intensive Multi-Component Applications. Deliverable
of the Grid.it project - WP 8, January, 29 2004.

[11] F. Berman, A. Chien, K. Cooper, J. Dongarra, I. Foster, D. Gannon, L. Johns-
son, K. Kennedy, C. Kesselman, J. Mellor-Crummey, D. Reed, L. Torczon, and

102 Bibliography

R. Wolski. The grads project: Software support for high-level grid application
development. International Journal of High Performance Computing Applica-
tions, 15(4):327–344, 2001.

[12] F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail, M. Faerman, S. Figueira,
J. Hayes, G. Obertelli, J. Schopf, G. Shao, S. Smallen, S. Spring, A. Su, and
D. Zagorodnov. Adaptive computing on the grid using apples. IEEE Trans. on
Parallel and Distributed Systems (TPDS), 14(4):369–382, 2003.

[13] F.D. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao. Application-
level scheduling on distributed heterogeneous networks. In ACM Press, editor,
Proceedings of the 1996 ACM/IEEE conference on Supercomputing,, 1996.

[14] R. Buyya, D. Abramson, and J. Giddy. An economy driven resource man-
agement architecture for global computational power grids. In Proc. of In-
ternational Conference on Parallel and Distributed Processing Techniques and
Applications (PDPTA 2000), 2000.

[15] R. Buyya and M. Murshed. Gridsim: A toolkit for the modeling and simulation
of distributed resource management and scheduling for grid computing. The
Journal of Concurrency and Computation: Practice and Experience (CCPE),
pages 1–32, May 2002.

[16] K. L. Calvert and M. B. Doar. Modeling internet topology. IEEE Communica-
tions Magazine, 1997.

[17] H. Casanova. Simgrid: A toolkit for the simulation of application scheduling. In
Proceedings of the IEEE International Symposium on Cluster Computing and
the Grid (CCGrid’01), pages 430–437, May 2001.

[18] T.L. Casavant and J.G. Kuhl. A taxonomy of scheduling in general-purpose
distributed computing systems. IEEE Trans. Software Engineering, 14(2):141–
154, February 1988.

[19] David Chappell and Tyler Jewell. Java Web Services. O’Reilly & Associates,
March 2003.

[20] A.L. Chervenak, N. Palavalli, S. Bharathi, C. Kesselman, and R. Schwartzkopf.
Performance and scalability of a replica location service. In Proceedings of the
International IEEE Symposium on High Performance Distributed Computing
(HPDC-13), June 2004.

[21] V. Ciaschini, A. Ferraro, A. Ghiselli, G. Rubini, R. Zappi, and A. Caltroni.
G-pbox: A Policy Framework for Grid Environments. In Computing in High
Energy and Nuclear Physics, 2004.

[22] E.G. Coffman. Computer and Job-Shop Scheduling Theory. Wiley, 1976.

Bibliography 103

[23] E.G. Coffman and R.L. Graham. Optimal scheduling for two-processor systems.
Acta Informatica, 1:200–213, 1972.

[24] M. Consrad, M. Marrakchi, Y. Robert, and D. Trystram. Parallel gaussian
elimination on an mimd computer. Parallel Computing, 6:275–296, 1988.

[25] K. Cooper, A. Dasgupta, K. Kennedy, C. Koelbel, A. Mandal, G. Marin,
M. Mazina, J. Mellor-Crummey, F. Berman, H. Casanova, A. Chien, H. Dail,
X. Liu, A. Olugbile, O. Sievert, H. Xia, L. Johnsson, B. Liu, M. Patel, D. Reed,
W. Deng, C. Mendes, Z. Shi, A. YarKhan, and J. Dongarra. New grid schedul-
ing and rescheduling methods in the grads project. In IPDPS Next Generation
Software Program - NSFNGS - PI Workshop, 2004.

[26] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid information
services for distributed resource sharing. In Proceedings of the 10th IEEE Sym-
posium on High-Performance Distributed Computing, 2001.

[27] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith, and
S. Tuecke. A resource management architecture for metacomputing systems.
In Proc. IPPS/SPDP ’98 Workshop on Job Scheduling Strategies for Parallel
Processing, pages 62–82, 1998.

[28] H. Dail, F. Berman, and H. Casanova. A decoupled scheduling approach for grid
application development environments. J. Parallel Distrib. Comput., 63(5):505–
524, 2003.

[29] H. Dail, F. Berman, and H. Casanova. A modular scheduling approach for
grid application development environments. Journal of Parallel and Distributed
Computing, 63(5), 2003.

[30] Holly Dail, Otto Sievert, Fran Berman, Henri Casanova, Asim YarKhan, Sathish
Vadhiyar, Jack Dongarra, Chuang Liu, Lingyun Yang, Dave Angulo, and Ian
Foster. Scheduling in the grid application development software project. In
Grid Resource Management: State of the Art and Future Trends, chapter 6,
pages 73–98. Kluwer Academic Publishers, Norwell, MA, USA, 2004.

[31] A. Darte. Two heuristics for task scheduling, laboratoire lip-imag, ecole normale
superieure de lyon, 69364. 1991.

[32] V. A. Dixit-Radiya and D. K. Panda. Task assignment on distributed-memory
systems with adaptive wormhole routing. Proceedings of International Sympo-
sium of Parallel and Distributed Systems, pages 674–681, December 1993.

[33] M. B. Doar. A better model for generating test networks. IEEE GLOBECOM,
1996.

[34] EGEE Project. http://public.eu-egee.org/.

104 Bibliography

[35] H. El-Rewini and T.G. Lewis. Scheduling parallel program tasks onto arbitrary
target machines. Journal of Parallel and Distributed Computing, 9:138–153,
1990.

[36] FAFNER. http://www.npac.syr.edu/factoring.html.

[37] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On powerlaw relationships of the
internet topology. In Proceedings of SIGCOMM, 1999.

[38] P.C. Fishburn. Interval Orders and Interval Graphs. John Wiley & Sons, 1985.

[39] S. Fitzgerald, I. Foster, C. Kesselman, G. Von Laszewski, W. Smith, and
S. Tuecke. A directory service for configuring high-performance distributed
computations. In 6th IEEE Symposium on High-Performance Distributed Com-
puting, pages 365–375. IEEE Computer Society Press, August 1997.

[40] A. Forti, S.R. Bavikadi, H. Hornmayer, A. De Angelis, and the MAGIC collab-
oration. Grid services for the magic experiment. In Proceedings of the 6th Inter-
national Symposium ”Frontiers of Fundamental and Computational Physics”,
pages 333–337, 2004.

[41] I. Foster, J. Geisler, W. Nickless, W. Smith, and S. Tuecke. Software infras-
tructure for the i-way high performance distributed computing experiment. In
Proc. 5th IEEE Symposium on High Performance Distributed Computing, pages
562–571, 1997.

[42] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit.
Intl. J. Supercomputer Application, 11(2):115–128, 1997.

[43] I. Foster and C. Kesselman. The Grid: Blueprint for a New Computing Infras-
tructure. Morgan Kaufmann, San Francisco, CA, 1998.

[44] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The physiology of the grid: An
open grid services architecture for distributed systems integration. Open Grid
Service Infrastructure WG, Global Grid Forum, June 2002.

[45] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid: Enabling
scalable virtual organizations. International Journal of Supercomputer Applica-
tions, 15(3), 2001.

[46] Ian Foster. The grid: A new infrastructure for 21st century science. Physics
Today, February 2002.

[47] Ian Foster. What is the grid? a three point checklist. Grid Today, 1(6), July
2002.

[48] James Frey, Todd Tannenbaum, Ian Foster, Miron Livny, and Steve Tuecke.
Condor-G: A computation management agent for multi-institutional grids. Clus-
ter Computing, 5:237–246, 2002.

Bibliography 105

[49] D.K. Friesen. Tighter bounds for lpt scheduling on uniform processors. SIAM
Journal on Computing, 16(3):554–560, June 1987.

[50] M.R. Garey, D. Johnson, R. Tarjan, and M. Yannakakis. Scheduling opposing
forests. SIAM Journal on Algebraic Discrete Methods, 4(1):72–92, 1983.

[51] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman and Company, 1979.

[52] A. Gerasoulis and S. Venugopal. Linear clustering of linear algebra task graphs
for local memory systems. Technical report.

[53] A. Gerasoulis and T. Yang. A comparison of clustering heuristics for scheduling
directed directed acyclic graphs on multiprocessors. Journal of Parallel and
Distributed Computing, 16:276–291, 1992.

[54] A. Gerasoulis and T. Yang. On the granularity and clustering of directed acyclic
task graphs. IEEE Transactions on Parallel and Distributed Systems, 4:686–701,
June 1993.

[55] C.A. Glass, C.N. Potts, and P. Shade. Unrelated parallel machine scheduling
using local search. Mathematical and Computer Modelling, 20(2):41–52, July
1994.

[56] M.J. Gonzalez. Deterministic processor scheduling. ACM Computing Surveys,
9(3):173–204, September 1977.

[57] R.L. Graham. Bounds on multiprocessing timing anomalies. SIAM J. Appl.
Math., 17:416–429, 1969.

[58] R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnoy Kan. Optimiza-
tion and approximation in deterministic sequencing and scheduling: A survey.
Annals of Discrete Mathematics, (5):287–326, 1979.

[59] A. Grimshaw and et al. The legion vision of a worldwide virtual computer.
Communications of the ACM, 40(1):39–45, 1997.

[60] T.C. Hu. Parallel sequencing and assembly line problems. Oper. Research,
19(6):841–848, November 1961.

[61] J. J. Hwang, Y. C. Chow, F. D. Anger, and C. Y. Lee. Scheduling precedence
graphs in systems with interprocessor communication times. SIAM Journal on
Computing, 18(2):244–257, April 1989.

[62] Kai Hwang. Advanced Computer Architecture: Parallelism, Scalability, Pro-
grammability. McGraw Hill, 1993.

[63] O. Ibarra and C. Kim. Heuristic algorithms for scheduling independent tasks
on nonidentical processors. Journal of the ACM, 77(2):280–289, April 1977.

106 Bibliography

[64] M. A. Iverson, F. Ozguner, and G. J. Follen. Parallelizing existing applica-
tions in a distributed heterogeneous environment. 4th Heterogeneous Computing
Workshop (HCW’95), pages 93–100, April 1995.

[65] Aubin Jarry, Henri Casanova, and Francine Berman. Dagsim: A simulator for
dag scheduling algorithms. Technical Report RR2000-46, LIP, 2000.

[66] D. Kim and B.G. Yi. A two-pass scheduling algorithm for parallel programs.
Parallel Computing, 20:869–885, 1994.

[67] S. J. Kim and J. C. Browne. A general approach to mapping of parallel computa-
tion upon multiprocessor architectures. Proc. Int’l. Conf. on Parallel Processing,
pages 1–8, 1998.

[68] W.H. Kohler and K. Steiglitz. Characterization and theoretical comparison of
branch-and-bound algorithms for permutation problems. Journal of the ACM,
21(1):140–156, January 1974.

[69] S. Konya and T. Satoh. Task scheduling on a hypercube with link contentions.
Proceedings of International Parallel Processing Symposium, pages 363–368,
April 1993.

[70] H. Kornmayer, M. Hardt, M. Kunze, C. Bigongiari, M. Mazzucato, A. De Ange-
lis, G. Cabras, A. Forti, M. Frailis, M. Piraccini, and M. Delfino. A distributed,
grid-based analysis system for the magic telescope. In CHEP04, 2004.

[71] B. Kruatrachue and T.G. Lewis. Duplication scheduling heuristics (dsh): A
new precedence task scheduler for parallel processor systems. Technical report,
Oregon State University, Corvallis, OR 97331, 1987.

[72] P. E. Krueger. Distributed scheduling for a changing environment. Technical
Report UW-CS-TR-780, Universtity of Wisconsin, Computer Science Depart-
ment, June 1988.

[73] Y. K. Kwok. Efficient algorithms for scheduling and mapping of parallel pro-
grams on parallel architectures. Master’s thesis, HKUST, Hong Kong, 1994.

[74] Y. K. Kwok and I. Ahmad. A static scheduling algorithm using dynamic crit-
ical path for assigning parallel algorithms onto multiprocessors. Proceedings of
International Conference on Parallel Processing, 2:155–159, August 1994.

[75] Y. K. Kwok, I. Ahmad, and J. Gu. Fast: A low-complexity algorithm for efficient
scheduling of dags on parallel processors. Proceedings of 25th International
Conference on Parallel Processing, 2:150–157, August 1996.

[76] Yu-Kwong Kwok. High-performance algorithms of compile-time scheduling of
parallel processors. PhD thesis, Hong Kong University of Science and Technol-
ogy, 1997.

Bibliography 107

[77] Yu-Kwong Kwok and I. Ahmad. Bubble scheduling: A quasi dynamic algorithm
for static allocation of tasks to parallel architectures. In Proceedings of the 7th
IEEE Symposium on Parallel and Distributeed Processing, page 36, Washington,
DC, USA, 1995. IEEE Computer Society.

[78] Yu-Kwong Kwok and Ishfaq Ahmad. Dynamic critical-path scheduling: An
effective technique for allocating task graphs to multiprocessors. IEEE Trans-
actions on Parallel and Distributed Systems, 7(5):506–521, 1996.

[79] Yu-Kwong Kwok and Ishfaq Ahmad. Benchmarking and comparison of the task
graph scheduling algorithms. Journal of Parallel and Distributed Computing,
59:381–422, 1999.

[80] Yu-Kwong Kwok and Ishfaq Ahmad. Static scheduling algorithms for allocating
directed task graphs to multiprocessors. ACM Computing Surveys, 31(4):406–
471, 1999.

[81] A. Legrand, L. Marchal, and H. Casanova. Scheduling distributed applications:
the simgrid simulation framework. In Proc. of the 3rd International Symposium
on Cluster Computing and the Grid, pages 138–145, 2003.

[82] Arnaud Legrand and Julien Lerouge. Metasimgrid : Towards realistic scheduling
simulation of distributed applications. Technical report, LIP, July 2002.

[83] H. Levy and E. Tempero. Modules, objects and distributed programming: Is-
sues in rpc and remote object invocation. Software Practice and Experience,
21(1):77–90, January 1991.

[84] T.G. Lewis and H. El-Rewini. Introduction to Parallel Computing. Prentice-
Hall, 1992.

[85] Jing-Chiou Liou and Michael A. Palis. An efficient task clustering heuristic for
scheduling dags on multiprocessors. In Symposium of Parallel and Distributed
Processing, 1996.

[86] M. Litzkow, M. Livny, and M. Mutka. Condor - A hunter of idle workstations.
In 8th International Conference of Distributed Computing Systems (ICDCS),
pages 104–111, Los Alamitos, CA, USA, June 1988. IEEE Computer Society
Press.

[87] Eckart Lorenz and the MAGIC collaboration. Status of the 17m diameter magic
telescope. New Astronomy Reviews, 48(5-6):339–344, April 2004.

[88] Dong Lu and Peter A. Dinda. Gridg: Generating realistic computational grids.
Performance Evaluation Review, 30(4):33–40, March 2003.

[89] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. Freund. Dynamic
matching and scheduling of a class of independent tasks onto heterogeneous
computing systems. In 8th Heterogeneous Computing Workshop (HCW’99).
IEEE Computer Society, April 12 1999.

108 Bibliography

[90] M. Maheswaran and H. J. Siegel. A dynamic matching and scheduling algo-
rithm for heterogeneous computing system. In the 7th Heterogeneous Computing
Workshop(HCW ’98), pages 57–69. IEEE Computer Society Press, March 1998.

[91] Dan C. Marinescu. A Grid Workflow Management Architecture. GGF White
Paper, 2002.

[92] Dan C. Marinescu. Internet-Based Workflow Management: Toward a Semantic
Web. Wiley, 2002.

[93] C. McCreary and H. Gill. Automatic determination of grain size of efficient par-
allel processing. Communications of ACM, 32(9):1073–1078, September 1989.

[94] N. Mehdiratta and K. Ghose. A bottom-up approach to task scheduling on
distributed memory multiprocessor. Proceedings of International Conference
on Parallel Processing, 2:151–154, August 1994.

[95] Distributed Net. http://www.distributed.net/.

[96] B. Neuman. Scale in distributed systems. In T. Casavant and M. Singhal, ed-
itors, Readings in Distributed Computing Systems, pages 463–489. IEEE Com-
puter Society Press, 1994.

[97] M.A. Palis, J.-C. Liou, and D.S.L. Wei. Task clustering and scheduling for
distributed memory parallel architectures. IEEE Transactions on Parallel and
Distributed Systems, 7(1):46–55, January 1996.

[98] Santosh Pande, Dharma P. Agrawal, and Jon Mauney. A scalable scheduling
scheme for functional parallelism on distributed memory multiprocessor sys-
tems. IEEE Transactions on Parallel and Distributed Systems, 6(4):388–399,
April 1995.

[99] C.H. Papadimitriou and M. Yannakakis. Scheduling interval-ordered tasks.
SIAM J. Computing, 8:405–409, 1979.

[100] C.H. Papadimitriou and M. Yannakakis. Towards an architecture-independent
analysis of parallel algorithms. SIAM Journal on Computing, 19(2):18–29, April
1990.

[101] G.L. Park, B. Shirazi, and J. Marquis. Dfrn: A new approach for duplication
based scheduling for distributed memory multiprocessor systems. Proc. 11th
Inter. Parallel Processing Symposium, pages 157–166, April 1997.

[102] Rosario M. Piro, Andrea Guarise, and Albert Werbrouck. An Economy-based
Accounting Infrastructure for the DataGrid. In Proceedings of the 4th Interna-
tional Workshop on Grid Computing (GRID2003), 2003.

[103] M.J. Quinn. Parallel Computing: Theory and Practice. McGraw-Hill, 1994.

Bibliography 109

[104] A. Radulescu and A. J. C. van Gemund. Flb: Fast load balancing for
distributed-memory machines. In Proc. Int’l Conf. on Parallel Processing, 1999.

[105] Andrei Radulescu and Arjan J.C. van Gemund. On the complexity of list
scheduling algorithms for distributed-memory systems. In ACM Press, editor,
ICS ’99: Proceedings of the 13th international conference on Supercomputing,
pages 68–75, New York, NY, USA, 1999.

[106] David De Roure, Mark A. Baker, Nicholas R. Jennings, and Nigel R. Shadbolt.
The evolution of the grid. In Grid Computing - Making the Global Infrastructure
a Reality, pages 65–100. John Wiley and Sons Ltd, 2003.

[107] V. Sarkar. Partitioning and Scheduling Parallel Programs for Execution on
Multiprocessors. The MIT Press, 1989.

[108] J. Schopf and F. Berman. Stochastic scheduling. In Proceedings of Super Com-
puting (SC99), 1999.

[109] Jennifer M. Schopf. Ten actions when grid scheduling. In Grid resource man-
agement: state of the art and future trends, chapter 2, pages 15–23. Kluwer
Academic Publishers, 2003.

[110] S. Selvakumar and C.S.R. Murthy. Scheduling precedence constrained task
graphs with non-negligible intertask communication onto multiprocessors. IEEE
Transactions on Parallel and Distributed Systems, 5(3):328–336, March 1994.

[111] R. Sethi. Scheduling graphs on two processors. SIAM Journal of Computing,
5(1):73–82, March 1976.

[112] SETI@Home. http://setiathome.ssl.berkeley.edu/.

[113] Gary Shao, Francine Berman, and Richard Wolski. Using effective network
views to promote distributed application performance. In PDPTA, pages 2649–
2656, 1999.

[114] Howard Jay Siegel and Shoukat Ali. Techniques for mapping tasks to machines
in heterogeneous computing systems. J. Syst. Archit., 46(8):627–639, 2000.

[115] Gilbert C. Sih and Edward A. Lee. A compile-time scheduling heuristic
for interconnection-constrained heterogeneous processor architectures. IEEE
Trans. on Parallel Distributed Systems, 4(2):175–187, 1993.

[116] M. Srinivas and L.M. Patnaik. Adaptive probabilities of crossover and mutation
in genetic algorithms. IEEE Transactions on Systems, Man and Cybernetics,
24(4):656–667, April 1994.

[117] H. Stone. High-Performance Computer Architectures. Reading, Mass.:Addison-
Wesley, 1987.

110 Bibliography

[118] Andrew S. Tanenbaum and Maarten van Steen. Distributed systems : principles
and paradigms. 2002.

[119] Todd Tannenbaum, Derek Wright, Karen Miller, and Miron Livny. Condor
– A distributed job scheduler. In Thomas Sterling, editor, Beowulf Cluster
Computing with Linux. MIT Press, October 2001.

[120] Douglas Thain, Todd Tannenbaum, and Miron Livny. Condor and the grid.
In Fran Berman, Geoffrey Fox, and Tony Hey, editors, Grid Computing: Mak-
ing the Global Infrastructure a Reality, chapter 11. John Wiley & Sons Inc.,
December 2002.

[121] The DataGrid Project. http://eu-datagrid.web.cern.ch/.

[122] W3C The World Wide Web Consortium. http://www.w3.org/.

[123] B. Tierney, R. Aydt, D. Gunter, W. Smith, M. Swany, V. Taylor, and R. Wolski.
A grid monitoring architecture. Technical report GFD-I.7, Global Grid Forum
(GGF), 2003.

[124] J. Ullman. NP-Complete Scheduling Problems. Journal of Computer and Sys-
tem Sciences, 10:384–393, 1975.

[125] UNICORE Forum. UNICORE Plus Final Report: Uniform Interface to Com-
puting Resource. 2003, http://www.unicore.org/documents/UNICOREPlus-
Final-Report.pdf [December 2004].

[126] L. Wang, H. J. Siegel, V. P. Roychowdhury, and A. A. Maciejewski. Task
matching and scheduling in heterogeneous computing environments using a
genetic-algorithm-based approach. Joural of Parallel and Distributed Comput-
ing, 47(1):8–22, November 1997.

[127] M.-F. Wang. Message routing algorithms for static task scheduling. Proceedings
of the 1990 Symposium on Applied Computing, pages 276–281, 1990.

[128] V. Welch, I. Foster, C. Kesselman, O. Mulmo, L. Pearlman, S. Tuecke, J. Gawor,
S. Meder, and F. Siebenlist. X.509 proxy certificates for dynamic delegation.
In 3rd Annual PKI R&D Workshop, 2004.

[129] V. Welch, F. Siebenlist, I. Foster, J. Bresnahan, K. Czajkowski, J. Gawor,
C. Kesselman, S. Meder, L. Pearlman, and S. Tuecke. Security for grid services.
Twelfth International Symposium on High Performance Distributed Computing
(HPDC-12), June 2003.

[130] Rich Wolski, Neil Spring, and Jim Hayes. The network weather service: A dis-
tributed resource performance forecasting service for metacomputing. Journal
of Future Generation Computing Systems, 15(5-6):757 – 768, October 1999.

[131] W.S. Wong and R.J.T. Morris. A new approach to choosing initial points in
local search. Information Processing Letters, 30(2):67–72, January 1989.

Bibliography 111

[132] Min-You Wu and D. Gajski. A programming aid for hypercube architectures.
The journal of Supercomputing, 2:349–372, 1988.

[133] Min-You Wu and Daniel D. Gajski. Hypertool: A programming aid for message-
passing systems. IEEE Transactions on Parallel and Distributed Systems,
1(3):330–343, July 1990.

[134] T. Yang and A. Gerasoulis. List scheduling with and without communication
delays. Parallel Computing, 19(12):1321–1344, 1993.

[135] T. Yang and A. Gerasoulis. Dsc: Scheduling parallel tasks on an unbounded
number of processors. IEEE Transactions on Parallel and Distributed Systems,
5(9):951–967, September 1994.

[136] Jia Yu and Rajkumar Buyya. A taxonomy of scientific workflow systems for
grid computing. SIGMOD Rec., 34(3):44–49, 2005.

