
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Computing In-Memory, Revisited

Dejan Milojicic

Systems Lab

Hewlett Packard Labs

Palo Alto, CA, USA

dejan.milojicic@hpe.com

Kirk Bresniker

Office of CTO

Hewlett Packard Labs

Palo Alto, CA, USA

kirk.bresniker@hpe.com

Gary Campbell

Security Lab

Hewlett Packard Labs

Palo Alto, CA, USA

gary.campbell@hpe.com

Paolo Faraboschi

Systems Lab

Hewlett Packard Labs

Palo Alto, CA, USA

paolo.faraboschi@hpe.com

John Paul Strachan

Systems Lab

Hewlett Packard Labs

Palo Alto, CA, USA
john-paul.strachan@hpe.com

Stan Williams

Systems Lab

Hewlett Packard Labs

Palo Alto, CA, USA
stan.williams@hpe.com

Abstract—The Von Neumann’s architecture has been the

dominant computing paradigm ever since its inception in the mid-

forties. It revolves around the concept of a “stored program” in

memory, and a central processing unit that executes the program.

As an alternative, Processing-In-Memory (PIM) ideas have been

around for at least two decades, however with very limited

adoption. Today, three trends are creating a compelling

motivation to take a second look. Novel devices such as memristor

blur the boundary between memory and compute, effectively

providing both in the same element. Power efficiency has become

very important, both in the datacenter and at the edge. Machine

learning applications driven by a data-flow model have become

ubiquitous. In this paper, we sketch our Computing-In-Memory

(CIM) vision, and its substantial performance and power

improvement potential. Compared to PIM models, CIM more

clearly separates computing from memory. We then discuss the

programming model, which we consider the biggest challenge. We

close by describing how CIM impacts different reliability, scale,

configurability, and security.

Keywords—Architecture, computing, memory, interconnects,

accelerators, programming, configuring, performance, scaling.

I. INTRODUCTION

The Von Neumann model has dominated computing systems

ever since its introduction [1] in 1945. It has proven to be

exceptionally useful for almost seven decades [2][3][4]. Its

strength is based on simplicity: data and instructions are stored

and accessed from memory by loading them into the central

processing unit (CPU), which executes control and

arithmetic/logic operations (see Fig 1). Over time, memory

access latency started to become a problem as CPUs became

faster than memory. As a result cache hierarchies appeared to

bring major benefits (improved memory access latency), but

also problems (cache coherence complexity and security flaws).

Alternative ideas, such as Processing in Memory (PIM), have

been proposed in the last two decades, with relatively little

success outside of limited domains like databases and storage

systems [5][6][7][8].

One consequence of the challenges faced by a Von Neumann
architecture is the steady reduction of computing systems’

ability to effectively operate on large data. This is visible in the
ratio of the memory bandwidth (bytes/s) over computing speed
(flops/s). Fig. 2 shows the steady drop over time from a byte/flop
ratio of 1.0 (where all data in memory is readily available at
processor speeds) to several orders of magnitude lower.

The combination of increased data volumes and data mining
applications with limited compute intensity and locality are
making this imbalance even more challenging today. There is a
strong interest to find ways to reverse the historical trend and
significantly increase the bytes/flops ratio. The introduction of
novel memory devices that can combine storage and computing
in the same cell provides an opening for such a reversal. With
these devices, it makes much more sense to bring the
computation to memory. This is also the basis of what at HPE
we call “memory driven computing” [9].

The rest of the paper is organized as follows. In Section II
we provide background and motivation, and we try answering
the question why CIM will be successful, when so many
previous similar efforts have not resulted in broad adoption.
Section three III presents the CIM model, including logic and
core architecture, analogy to object oriented systems,
programming languages and run-times/operating systems. In
Section IV, we discuss security, virtualization and resource
management. In Section V we explore non-functional
characteristics, such as fault tolerance, scaling, configurability,
and supportability. Finally, Section VI discusses the next steps.

Input
Device

Output
Device

Central Processing Unit

Memory Unit

Control Unit

Arithmetic/Logic Unit

Fig 1. Von Neumann Architecture

mailto:dejan.milojicic@hpe.com
mailto:kirk.bresniker@hpe.com
mailto:paolo.faraboschi@hpe.com
mailto:john-paul.strachan@hpe.com
mailto:stan.williams@hpe.com

Fig 2. Memory bandwidth per processor floating point operations (FLOP)

II. BACKGROUND AND MOTIVATION

A. Hardware

The status quo relationship between compute and memory,
referring back to the EDVAC paper [1], is shifting due to the
emerging memory technologies, that’s where we started. The
persistence of memory is shifting the temporal and energy
scalability of techniques that trade space and compute, such as
memoization. The realization that the current economic forces,
the end of Dennard’s Law [10][11], and the imminent challenges
of Moore’s [12][13] and Rocks’s Laws [14], have led us to
consolidation and monoculture, which in turn has left us
exposed. Several generations of performance improvements
may have to be yielded back due to fundamental insecurity, as
exemplified by some of the recent vulnerability discoveries
around Meltdown and Spectre [15][16].

The problems we wish to tackle, which are not dominated by
algorithmic velocity but by data throughput, are also shifting
rapidly. As data intensity near the processing elements
increases, photonics interconnects grow in importance, since
they enable communications from centimeters to kilometers at
the same energy per bit, varying only in the time of flight.
Finally, there is the realization that the Turing symbolic model,
as instantiated by von Neumann, forces us perhaps unnaturally
to the digital domain. In many cases, we constrain ourselves to
very inefficiently solve approximate problems with high digital
accuracy. This comes at expense of linear and non-linear analog
systems that, while complex and even borderline chaotic, may
be far more efficient than conventional digital approaches, and
ultimately a better fit for the underlying problem.

 Add all of these together and we end up wanting a novel
solution for the optimization of in-memory models of complex,
real time physical and economic systems, where the scale of data
necessitates approaches where data movement must be the
fundamental cost. In this new world, compute is free (the last
few Moore’s Law steps will see to that), but data is priceless,
abundant, and we can finally deal with that abundancy.

There are a number of approaches to these new types of
computing, and the new IEEE “Rebooting Computing” initiative
was started as a focal point for researchers in this field [17].
Specific attempts at CIM using technologies, such as ReRAM
[18], STT MRAM [19], Memristor [20], DRAM [21][22][23],
and SRAM [24], have recently been developed.

B. Use Cases

CIM is well suited to address a variety of fields, such as
sensors, robotics, control, and scientific computing. In this paper
we focus on edge computing and memory intensive
applications. The following characteristics are common across
them.

 Data is close to computation, there is no need to move it,

which results in power and performance optimization. In the

past, other approaches used offloading [25] and migration

[26] towards the data, but not as effectively and breaking

programming models.

 Data is persistent. The idea is that the application state can

be constantly captured over time and upon reboot or restart

(due to failure) it will be available to continue computation.

This naturally leads to storing data in non-volatile devices

(such as NVM), but also opens the door to other forms of

distributed persistence based on data replication schemes.

 Applications employ dataflow. Data manipulation,

understanding and mining matches well dataflow

programming models. These also better suit the notion of

data collocated with computing elements.

Edge computing. We typically consider edge computing

close to the data generation sources, such as sensors, or other
devices. We contrast “edge” with “cloud”, where data is
processed in a (logically) centralized location. Edge computing
assumes that moving all the data to the cloud is too onerous, and
enough computing power at the edge is necessary to consolidate
the data prior to passing it on to a cloud-centralized phase. This
is also the place where some analytics and learning can take
place to filter out (triage) redundant data and extract meaningful
information. Edge applications typically consists of streaming
processes taking device data from sensors, such as cameras. For
example, applying deep learning inference at the edge can
convert raw data (e.g., an image or video) into a tagged meta-
data representation (e.g., classified objects or recognized text),
thus massively reducing the size to something that can be
efficiently transferred to the cloud. Computing in memory is
very relevant to edge computing: it lowers cost, improves
performance, and lowers power consumption. These are very
important characteristics in any computing device, but
particularly in edge devices and even more so when devices are
energy constraints or battery operated [27].

 Memory-centric computing. When value and size of data
grows higher than computation, data (and traditional storage) are
treated as first level citizen, surrounded by computation as
needed. This data is harder to move (because of size and security
concerns), so it makes sense to bring computation closer to it.
This field is an ideal match for computing in memory where
computation is literally allocated in physical vicinity to the data.

For example graph-heavy applications (typical in the
intelligence community) need to track information over a long
time, the graphs are hard to reproduce after reboots/failures due
to their sheer size, or the lengthy history that would need to be
repeated. Social networking applications are a variation of graph
problem, with potentially larger scale but lower service level
agreement (SLA) requirements. In both examples the benefits
from CIM are clear and similar.

Finally, a common thread that ties these fields together is Deep
Learning. As content complexity increases, making
representation learning indispensable [28], a growing use of
Artificial Intelligence (AI) and Machine Learning (ML) can
leverage CIM because of the dataflow nature of tensor
operations, and the underlying matrix operations that are
involved. We discuss that in the remainder of the paper.

C. Applications

There are a number of applications that can benefit from the
CIM model. Neural networks, used in pattern recognition, are a
natural fit for the dataflow nature of CIM. The ability to create
layers of networks and (re-)configure them to trained models fits
with how CIM can be organized. Matrix multiplication-based
scientific algorithms are at the foundation of neural networks,
and also map well to the CIM model. Memory-side and storage-
side accelerator functions are commonly optimized using low
power accelerator devices that could be also implemented using
CIM model.

D. Societal Implications

The computing evolution has moved from general to special
purpose ever more so. Purely based on the number of instances
and computing power, most of traditional computing migrated
towards mobile devices (phones) in less than a decade, relatively
a very short time. It is today increasingly moving towards the so
called edge, where a sea of sensor devices are deployed to
control every facet of human life. Some of the sensors are
cameras that are associated with image/video/voice recognition,
others similarly track various physical artefacts with possible
ability to also actuate/control. Processing all of this data can
critically impact human and whole nations’ existence.

In addition, increasingly relying on artificial intelligence
(initially using machine learning and deep learning) takes us to
unchartered territory. The need arises for increased performance
to process all the data at low power both in data centers and even
more so at the edge to reduce data transfer to data centers and
cloud. New ethical approaches to design are being introduced to
standardize ways how to treat artificial intelligence and account
for human being in the first place [29]. In addition, the
approaches to cybersecurity are evaluated for their use of
artificial intelligence and machine learning [30].

E. Can CIM Be Successful?

Computing in Memory was attempted many times in the past
in various incarnations (PIM [5][6][7][8][31][32][33][34] and
near memory processing [23][25][35][36][37]). And it has
gained a lot of interest lately [38][39][40][41][42][43][44][45].
Why do we (and other researchers) believe that we stand
chances of gaining adoption?

We believe that earlier attempts were ahead of their time and
the current attempts are timely because of the “perfect storm”
effect caused by the convergence of three trends:

New technologies, such as neuromorphic, bio-inspired,
adiabatic, reversible, approximate, quantum, and combinations
of these. This is the right time to revisit the Von Neumann model
and attempt to overcome problems with caches, security,
complexity, etc.

Application demand. Image, video and audio recognition,
and large scale data analytics are based on increasing processing
power but at less power consumption. These applications
dominate processing compared to general purpose computing
and are becoming center of attention of CPU vendors and IT
companies.

Critical to mankind. Deep learning applications are
increasingly being deployed in every facet of daily life (in
phones, consumer devices, sensors, autonomous vehicles,
manufacturing, industrial control, infrastructure, etc.) and
mankind existence is increasing dependent on automation, IT
and cybersecurity, which in turn is enabled by more powerful
computing.

Economy of scale. In the past, PIM lacked the economy of
scale of IOT, while Von Neumann computers had the lion share
of computing. With the increasing likelihood that hardware
accelerators for AI/ML/DL will be broadly deployed, not just
for gaming, crypto-currencies, and HPC applications, but also
on sensors and mobile devices the economy of scale is turning
to their favor.

III. THE COMPUTING IN-MEMORY MODEL

The CIM approach technologically and architecturally
collocates processing and memory together, for compute
(logical, arithmetic) and control functions (see Fig 3).

In addition to processing and memory functionality,
interconnects also become an integral part of the CIM model,
and programming/configuration becomes the core functionality
above control and arithmetic/logic units (see Fig 4).
Interconnects are critical as they enable reconfiguration of the
paths for the dataflow model, and allow reconnecting individual

Input
Device

Output
Device

Control Unit

Arithmetic/Logic

Processing elements

(Persistent) Memory

Processing elements

(Persistent) Memory

Fig 3. Evolving CIM Model

units into application-specific workflows. Interconnect
standards whose architecture includes accelerators (such as
[46][47][48]) are the prime candidate for success in this domain.

Fig 5 shows a possible organization of a CIM device. A CIM
micro-unit consists of control, data, and processing components
(logic/arithmetic). Multiple CIM micro-units build a CIM unit
when they are connected in a predefined configuration. They can
be organized in tiles, and multiple tiles can be further scaled up
(not shown in the figure).

A. Logic and Core Architecture

Different teams have approached the core operations
differently. Chen et al. rely on AND, OR, and XOR operations
upon which to build all other logic [18]. Borghetti et al. are using
NOT and IMP (material imply) as two core logic operations
[20]. Hardware architectures are based on these operations.
Various approaches to hardware architecture, classified by
Khoram et al. [35], rely on: matrix multiplication (dot products)
combined with shared memory, such as in ISAAC [49] and
memristive Boltzmann machine [50]; neuromorphic systems
mimicking human brain, such as in FlexRAM [51] and work by
Liu [52]; associative processors known as content addressable
memory combined with nonvolatile memory, such as TCAM
[53][66] and Associative Processors [55][56][57]; and coarse
grained reconfigurable architectures [58], such as nonvolatile
FPGA [59] and reconfigurable in-memory computing
architecture [60].

B. Programming CIM

CIM programming adopts static, dynamic, and self-
reprogrammable dataflow concepts. Each programming concept
brings an additional degree of flexibility achieved by
reconfiguring different aspects of the CIM architecture.

Static dataflow is the natural extension of existing dataflow
computational models, such as the ISAAC architecture [49].
Through the instruction set, applications can program the CIM
crossbars to implement a target neural network that would
execute over and over again. With CIM, the inherent colocation
of memory and computation enables additional flexibility in
how computation is configured. This enables more opportunities
for training, as well as feed-forward and closed loops. This is an
evolution from FPGA-like configuration of code, to loading a
binary into processor, such as CUDA code into GPU.

Dynamic dataflow assumes that the data coming in can be
dynamically routed to those parts of the CIM at different
granularity as a function of the state in the CIM and the input
data. The routing could be expressed explicitly as a part of the
incoming packet or it could be implicit as a function of the state
in CIM, or both.

Finally, self-programmable dataflow enables carrying
code as a part of the packets to dynamically program functions
as packets arrive. This allows the highest level of flexibility in
programming. Past research exists on this topic, but no
production-level commercial equivalent exists as yet.

Section D, at a high level, describes the programming
language and system software support to enable these
configuration models.

C. Analogy to Object Oriented and Modular Systems

In many ways, the CIM model resembles some aspects of
object oriented approaches by hiding the internal data and
computation methods, and only exposing external abstract
interfaces that specify the intent. Similarly, CIM holds both data
and operations inside the hardware cells and allows data to flow
in and out of it. Object oriented systems could be mapped on top
of CIM and leverage the additional security protection (see
Section IV.A) and reliability (see Section V.A) that CIM offers.
However, this would require a lot of research, as of now
dataflow languages and systems are obvious match.

D. Programming Languages

Just like neural networks have evolved and are being
supported by a plethora of platforms and development
environments, we also expect that new expressive programming
models will evolve for CIM. They will require programming
languages to map onto the control and processing instruction
sets for CIM.

CIM programming languages will need to understand the
micro-unit level: how data is received from outside of the micro-
unit, how programs are loaded, how micro-units are configured,
how memory is allocated, data decrypted, etc. Compilers will
further need to understand the architecture across micro-units
and across tiles: data locality and how data is streamed across
micro-units and across tiles; how graphs are built and mapped to
physical units; etc. Fortunately, there is substantial work on

Input
Device

Output
DeviceProcessing &

(Persistent) Memory

Interconnect

Control
Unit

Configuration/
Programming

Arithmetic/Logic

Fig 4. Evolving CIM Model, Cont.

CIM unit

C
o

n
tr

o
l u

n
it

packet

program data routing

data
logic+arithm.

CIM micro-unit

CIM unit

CIM unit

CIM unit

CIM unit

CIM unit

CIM unit

CIM unit

CIM unit

CIM unit

CIM unit

CIM unit

CIM unit

CIM unit

CIM unit

CIM unit

CIM unit

CIM tile

ctrl

Fig 5. One possible implementation of the CIM model.

dataflow compilers and programming languages and in support
of CIM [61][62][63][64][65][66][67][68] that can be leveraged.

E. Run-times and Operating Systems

Just like accelerators, initially CIM components will be used
as slave devices, attached to traditional systems running
standard operating system and using traditional runtimes. CIM
binaries compiled from CIM programming languages may be
downloaded into CIM devices, just like CUDA is being used for
GPUs or equivalent tools built for FPGAs.

Over time, we expect that CIM units will evolve from the
master-slave model to a cooperative relationship, where both
traditional and CIM models can co-exist side-by-side. Once
CIM has proven its effectiveness, we can expect integration in
the same hardware module which therefore will require
operating systems support. Finally, CIM computers can start
running natively requiring full run time and operating system
support (Fig 6).

One of the advantages of CIM is the built-in support of
heterogeneous devices. The runtime and operating systems will
need to hide this heterogeneity and expose a common interfaces
to users [69]. For the cooperative, integrated and native models,
we expect that entirely new operating systems will be developed
to support CIM units natively [70][71].

F. Interactions between Von Neumann and CIM models

Von Neumann and CIM systems can coexist through coars
grain, and fine grain architectural interactions. One can be
integrated within the other, beyond the perspective of run times
and operating systems described above.

Von Neumann within CIM model allows for Von
Neumann components executing within CIM, for example, in
support of control functions, or performing more general
operations.

CIM within Von Neumann model can result by using CIM
as Von Neumann system memory, enabling built-in memory
acceleration on an otherwise traditional Von Neumann
architecture.

IV. SECURITY, VIRTUALIZATION, RESOURCE MANAGEMENT

Security has often been considered as an afterthought, with
performance and reliability always dominating the
requirements. As a consequence numerous bugs, leaks, and
exploits are consistently being discovered. A complete new
architecture paradigm opens a terrific opportunity to reconsider

security as a first class requirement. Along with security come
the tightly related requirements for virtualization and resource
management.

A. Security

Security can benefit from several aspects of CIM. Packet
based communication is better understood than the shared
memory model with multiple threads accessing shared memory.
Paths can be better secured by partitioning and data can be
inspected prior and after entering and exiting CIM model, and
therefore making higher security guarantees. A dataflow
architecture can introduce barriers as a containment mechanism
to stop propagation of errors and bugs. Affected stationary data
does not propagate and can be contained where it is stored
without access by other components. Packets in flight can be
encrypted and networking key protection model can be readily
applied. Data can be verified against the processing element and
vice versa [72]. Finally, even though CIM relies on dataflow,
some data sharing may be required to enable common data pools
across the layers of CIM. Fine grained protection, for example
based on capabilities such as CHERI [73], would be the ideal
complement to further enhance the security model.

B. Virtualization and Partitioning

Similarly to security, virtualization and partitioning can
substantially benefit from CIM. An intuitive analogy to the CIM
model is Network Function Virtualization (NFV) in the
networking space. NFV has been well understood and it
supports an equivalent functionality of high end proprietary
boxes running in software on commodity servers. Many network
virtualization approaches can be directly applied to CIM model.
In particular:

Dynamic hardware isolation: similarly to security
containment, parts of the CIM components can be completely
isolated from other parts for security reasons.

Quality of service: minimal performance influence from
one stream to another is achieved by provisioning enough
interconnect. This is equally important for quality of service and
to prevent leaking information across streams.

Failover: should streams be redirected for performance or
reliability reasons, switching to other components would have
minimal impact on performance.

C. Resource Management

Traditional load balancing techniques, such as distributing,
pinning, and measuring loads also apply to CIM

Load information management is required before any
action is undertaken. It assumes measuring latencies and
bandwidth of each stream, as well as usage of individual and
aggregate resources.

Load balancing can be accomplished by redirecting streams
to underutilized SIM components. In certain cases to achieve
guaranteed performance some of the streams may need to be
pinned to given CIM modules. In other cases, they can be free
to dynamically assign or reassign.

Von Neumann

architecture

Operating

System

Computing in

Memory

Accelerators

Runtime and

Libs

Apps, users

Von Neumann

architecture

Operating

System

Computing in

Memory

Accelerators

Operating

System

Apps, users

Computing in

Memory

Accelerators

Operating

System

Apps, users

Master-slave (accelerator) Cooperative Native

Rich DevOps,

runtime stack

DevOps,

runtime stack

DevOps,

runtime stack
DevOps,

runtime stack

Von Neumann

& Computing in

Memory

Operating

System

Apps, users

Integrated

DevOps,

runtime stack

Fig 6. Evolution of Computing in Memory.

Enabling closed loops means that performance of certain
parts of the CIM modules may influence others, which can be
used to manage performance according to given SLA
agreements.

V. NON-FUNCTIONAL CHARACTERISTICS

A. Failure tolerance

Reliability and fault tolerance techniques, such as fault
detection, containment, prevention, and recovery need to be
revisited to take into account the CIM characteristics.

Fault detection can be accomplished at any component
level, starting from the micro-unit in our example, through
higher level components. Detection can use extra bits on data or
instruction states. Faults could be detected from micro-unit to
the largest unit.

Fault containment is required once a fault is detected to
prevent it from spreading it further (and cause silent data
corruption, for example). Boundaries of each component are the
convenient place which can be shut down for exception handling
in case a fault is detected.

Fault prevention can be accomplished through redundancy
of information and components. Any component can be
replicated, just like information can be protected using ECC. In
CIM, redundancy can be achieved at every layer. Compared to
traditional systems, there is more symmetry among layers so
similar techniques could be used.

Fault recovery by failing over to redundant components.
For more reliable computation, the data can be held in preceding
components until computation is completed or in case of failure
redirected to another component.

As we can see, there is a lot of similarity with traditional
resilience approaches. We believe that the dataflow nature of
CIM, and the reliance on implicit message passing rather than
shared memory, results in more reliable systems (Table 1).

B. Scaling

Scaling CIM is relatively straightforward; it is in many ways
similar to scaling web server farms if the individual elements are
stateless and only execute data streams. If the CIM modules are
stateful, scaling is more complicated: it requires scaling of each
class of the modules and then spreading the state across added
modules. It also require interactions with the end-to-end
application.

C. Configurability

There are many design points that enable reconfiguration of
a CIM architecture. Different precision and number of bits can
be configured at the lowest level. Reconnecting components
enables reconfiguration at higher levels. This would be similar
to Coarse Grained Reconfigurable Architectures (CGRA) [58]
and systems, such as ADRES [74], PipeRench [62], and
MorphoSys [75].

D. Serviceability

Deployed equipment is increasingly hard to support, which
is even more important for systems at the edge. This motivates
the need for graceful aging and self-healing at multiple levels of
CIM components. Understanding how individual devices age
can enable switching them out of active configurations
preventing failures from even happening. If nothing else helps,
closed loops enable more reliable functioning of deployed CIM
modules: from device to central management, from
device/management layer to support agents; and from
device/management support agents to design engineers.

E. Discussion

Table 1 compares the different approaches to computing.
Because of its streaming nature, the dataflow and the networking
models are similar. There is no perceived limit on scale other
than in terms of power (and cost), which for CIM is better than
traditional due to the adoption of new technologies used, such as
memristors [20]. Failing components can be replaced by
redundant units and packets resent either from the source or from
cached component. Security is similar to networks, where
packets in flight are encrypted. Compared to other models,
robustness is application-specific because a lot of application
code is built into the silicon.

Table 1 Comparison of Different Approaches to Computing

Comparison

Approaches to Computing

Von Neumann

In-Memory Parallel

(shared memory)
Distributed

programming

model (common)

multi-threaded message passing dataflow

scaling
(per system)

100s of cores
(eg HPE Hawks)

200 racks
(e.g. Exascale)

no perceived

limit, higher

then exascale

failure tolerance whole partition fails
failover to another

machine

stream
redirection to

redundant unit

security whole partition machine boundary
packet and

stream based

robustness OS-dependent cluster dependent
application-

specific

VI. SUMMARY AND NEXT STEPS

In this paper, we have motivated the need for adopting the
new computing architecture, Computing-in-Memory. We
discussed use cases where it could be beneficial, as well as
applications. We then presented the CIM model in more detail,
discussed security and other non-functional characteristics and
compared them against those in von Neumann architecture.

Computing in Memory is already being demonstrated in
research and slowly adopted in product prototypes. Whether it
will take off is something that only future applications will
demonstrate. However, it is important to avoid repeating
mistakes from the past, such as not building in security
requirements. As architects, systems and applications
developers start to develop solutions, security needs to be treated
as first level requirement, if we do not want to be haunted by the
bugs and vulnerabilities of the past.

If the paper gets accepted, we will expand it to a full paper
and provide quantification of functional and non-functional
characteristics, such as performance, power, scale, and
reliability. We will also provide examples of algorithms that are
suitable for CIM and describe technologies behind CIM, such as
memristors. We will also provide a description of the system we
are working on that has some elements of the CIM.

ACKNOWLEDGMENTS

We would like to thank Izzat El Hajj of UIUC and Aayush
Ankit of Purdue, as well as our colleagues from Hewlett Packard
Labs for reviewing the earlier version of the paper and for their
valuable feedback. It helped improved the content and
presentation.

REFERENCES

[1] J. von Neumann, Report on the EDVAC, June 30, 1945.

[2] D.E. Culler, J.P. Singh, and A. Gupta, “Parallel Computer Architecture,
Morgan Kaufmann, 1999.

[3] W.J. Dally and B. Towles, “Principles and Practices of Interconnection
Networks, Morgan Kaufmann, 2004.

[4] D.A. Patterson and J.L. Hennessy, “Computer Organization and Design,
The Hardware/Software Interface,” Morgan Kaufmann, 2009.

[5] Mary Hall, Peter Kogge, Jeff Koller, Pedro Diniz, Jacqueline Chame, Jeff
Draper, Jeff LaCoss, John Granacki, Jay Brockman, Apoorv Srivastava,
William Athas, Vincent Freeh, Jaewook Shin, Joonseok Park, “Mapping
irregular applications to DIVA, a PIM-based data-intensive architecture”,
Proceedings of the 1999 ACM/IEEE conference on Supercomputing, 57.

[6] PM Kogge, JB Brockman, T Sterling, G Gao, “Processing in memory:
Chips to petaflops,” Workshop on Mixing Logic and DRAM: Chips that
Compute and Remember at ISCA 97.

[7] PM Kogge, JB Brockman, VW Freeh, “PIM architectures to support
petaflops level computation in the HTMT machine,” Innovative
Architecture for Future Generation High-Performance Processors and
Systems, 1999. International Workshop, pp 35-44.

[8] D. Patterson et al., “A Case for Intelligent RAM,” IEEE Micro, 1997.

[9] P. Faraboschi, K. Keeton, T. Marsland, D. Milojicic, “Beyond Processor-
centric Operating Systems,” Proceedings of the 15th USENIX Workshop
on Hot Topics in Operating Systems (HotOS XV), 2015, Kartause
Ittingen, Switzerland.

[10] Dennard, Robert H.; Gaensslen, Fritz; Yu, Hwa-Nien; Rideout, Leo;
Bassous, Ernest; LeBlanc, Andre (October 1974). "Design of ion-
implanted MOSFET's with very small physical dimensions". IEEE
Journal of Solid State Circuits. SC–9 (5).

[11] McMenamin, Adrian (April 15, 2013). "The end of Dennard scaling".
Retrieved January 23, 2014.

[12] Moore, Gordon E. (1965-04-19). "Cramming more components onto
integrated circuits". Electronics. Retrieved 2016-07-01.

[13] Moore, Gordon (2006). "Chapter 7: Moore's law at 40". In Brock, David.
Understanding Moore's Law: Four Decades of Innovation. Chemical
Heritage Foundation. pp. 67–84. ISBN 0-941901-41-6. Retrieved March
15, 2015.

[14] B. Schaller. The Origin, Nature, and Implications of “Moore’s Law”
(September 26, 1996). Available at http://research.microsoft.com/en-
us/um/people/gray/Moore_Law.html (Mar 12, 2013).

[15] Brad Chacos and Michael Simon, “Meltdown and Spectre FAQ: How the
critical CPU flaws affect PCs and Macs”, PC World,
https://www.pcworld.com/article/3245606/security/intel-x86-cpu-
kernel-bug-faq-how-it-affects-pc-mac.html

[16] Conte, Thomas A., DeBenedictis, Erik, Mendelson, Avi, Milojicic, D.,
"Rebooting Computers to Avoid Meltdown and Spectre" in Computer,
vol. 51, no. 4, April 2018, to appear.

[17] IEEE Rebooting Computing, https://rebootingcomputing.ieee.org/.

[18] Wei-Hao Chen, Wen-Jang Lin, Li-Ya Lai, Shuangchen Li, Chien-Hua
Hsu, Huan-Ting Lin, Heng-Yuan Lee, Jian-Wei Su, Yuan Xie, Shyh-
Shyuan Sheu, Meng-Fan Chang, “A 16Mb dual-mode ReRAM macro
with sub-14ns computing-in-memory and memory functions enabled by
self-write termination scheme,” Proceedings of the 2017 IEEE
International Conference on Electron Devices Meeting (IEDM),
December 2017.

[19] S. Jain, A. Ranjan, K. Roy and A. Raghunathan, "Computing in Memory
With Spin-Transfer Torque Magnetic RAM," in IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. PP, no. 99, pp. 1-14.
doi: 10.1109/TVLSI.2017.2776954

[20] Julien Borghetti, Gregory S. Snider, Philip J. Kuekes, J. Joshua Yang,
Duncan R. Stewart, R. Stanley Williams, “‘Memristive’ switches enable
‘stateful’ logic operations via material implication,” NATURE, Vol 464/8
April 2010, pp873-876.

[21] Erik P. DeBenedictis ; Jeanine Cook ; Sriseshan Srikanth ; Thomas M.
Conte, “Superstrider associative array architecture: Approved for
unlimited unclassified release: SAND2017-7089 C.,” Proceedings of the
High Performance Extreme Computing Conference (HPEC), 2017 IEEE.

[22] Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan, Amirali
Boroumand, Jeremie Kim, Michael A. Kozuch, Onur Mutlu, Phillip B.
Gibbons, and Todd C. Mowry. 2017. Ambit: in-memory accelerator for
bulk bitwise operations using commodity DRAM technology. In
Proceedings of the 50th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO-50 '17). ACM, New York, NY, USA, 273-
287. DOI: https://doi.org/10.1145/3123939.3124544

[23] H. Asghari-Moghaddam, Y. H. Son, J. H. Ahn and N. S. Kim,
"Chameleon: Versatile and practical near-DRAM acceleration
architecture for large memory systems," 2016 49th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), Taipei, 2016,
pp. 1-13. doi: 10.1109/MICRO.2016.7783753

[24] F. K. Hsueh et al., "TSV-free FinFET-based Monolithic 3D+-IC with
computing-in-memory SRAM cell for intelligent IoT devices," 2017
IEEE International Electron Devices Meeting (IEDM), San Francisco,
CA, USA, 2017, pp. 12.6.1-12.6.4. doi: 10.1109/IEDM.2017.8268380

[25] K. Hsieh et al., “Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU Systems,” ISCA,
2016.

[26] Milojicic, D., Douglis, F., Paindaveine, Y., Wheeler, R., Zhou, S,
“Process Migration Survey”, ACM Computing Surveys, vol 32, no 3,
September 2000, pp 241-299.

[27] C. Dou et al., "Challenges of emerging memory and memristor based
circuits: Nonvolatile logics, IoT security, deep learning and neuromorphic
computing," 2017 IEEE 12th International Conference on ASIC
(ASICON), Guiyang, 2017, pp. 140-143. doi:
10.1109/ASICON.2017.8252431

[28] Goodfellow, Ian, et al. Deep learning. Vol. 1. Cambridge: MIT press,
2016

[29] IEEE Ethically Aligned Design (EAD), Version 2, A Vision for
Prioritizing Human Well-being with Autonomous and Intelligent
Systems.

[30] IEEE Technology Trend Paper: Artificial Intelligence and Machine
Learning Applied to Cybersecurity, 2018.

[31] D. G. Elliott, M. Stumm, W. M. Snelgrove, et al. Computational ram:
implementing processors in memory. IEEE Design Test of Computers,
16(1):32–41, Jan 1999.

[32] Jay B. Brockman, Shyamkumar Thoziyoor, Shannon K. Kuntz, and Peter
M. Kogge. 2004. A low cost, multithreaded processing-in-memory
system. In Proceedings of the 3rd workshop on Memory performance
issues: in conjunction with the 31st international symposium on computer
architecture (WMPI '04). ACM, New York, NY, USA, 16-22.
DOI=http://dx.doi.org/10.1145/1054943.1054946

[33] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung
Choi. 2015. A scalable processing-in-memory accelerator for parallel
graph processing. In Proceedings of the 42nd Annual International
Symposium on Computer Architecture (ISCA '15). ACM, New York,
NY, USA, 105-117. DOI: https://doi.org/10.1145/2749469.2750386

[34] Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi. 2015. PIM-
enabled instructions: a low-overhead, locality-aware processing-in-

javascript:void(0)
javascript:void(0)
https://rebootingcomputing.ieee.org/
https://doi.org/10.1145/3123939.3124544
https://doi.org/10.1145/2749469.2750386

memory architecture. In Proceedings of the 42nd Annual International
Symposium on Computer Architecture (ISCA '15). ACM, New York,
NY, USA, 336-348. DOI: https://doi.org/10.1145/2749469.2750385

[35] Soroosh Khoram, Yue Zha, Jialiang Zhang, and Jing Li. 2017. Challenges
and Opportunities: From Near-memory Computing to In-memory
Computing. In Proceedings of the 2017 ACM on International
Symposium on Physical Design (ISPD '17). ACM, New York, NY, USA,
43-46. DOI: https://doi.org/10.1145/3036669.3038242

[36] Dimitrios Skarlatos, Nam Sung Kim, and Josep Torrellas. 2017.
Pageforge: a near-memory content-aware page-merging architecture. In
Proceedings of the 50th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO-50 '17). ACM, New York, NY, USA, 302-
314. DOI: https://doi.org/10.1145/3123939.3124540

[37] J. Picorel, D. Jevdjic and B. Falsafi, "Near-Memory Address Translation,"
2017 26th International Conference on Parallel Architectures and
Compilation Techniques (PACT), Portland, OR, 2017, pp. 303-317. doi:
10.1109/PACT.2017.56

[38] A. Boroumand, S. Ghose, M. Patel, H. Hassan, B. Lucia, K. Hsieh, K. T.
Malladi, H. Zheng, and O. Mutlu, "LazyPIM: An Efficient Cache
Coherence Mechanism for Processing-in-Memory," IEEE Computer
Architecture Letters (CAL), June 2016.

[39] C. Farabet, B. Martini, B. Corda, P. Akselrod, E. Culurciello and Y.
LeCun, "NeuFlow: A runtime reconfigurable dataflow processor for
vision," CVPR 2011 WORKSHOPS, Colorado Springs, CO, 2011, pp.
109-116. doi: 10.1109/CVPRW.2011.5981829

[40] Amir Morad, Leonid Yavits, Shahar Kvatinsky, and Ran Ginosar. 2016.
Resistive GP-SIMD Processing-In-Memory. ACM Trans. Archit. Code
Optim. 12, 4, Article 57 (January 2016), 22 pages. DOI:
https://doi.org/10.1145/2845084

[41] Pedro Trancoso. 2015. Moving to memoryland: in-memory computation
for existing applications. In Proceedings of the 12th ACM International
Conference on Computing Frontiers (CF '15). ACM, New York, NY,
USA, , Article 32 , 6 pages. DOI:
http://dx.doi.org/10.1145/2742854.2742874

[42] Dong Ping Zhang, Nuwan Jayasena, Alexander Lyashevsky, Joseph
Greathouse, Mitesh Meswani, Mark Nutter, and Mike Ignatowski. 2013.
A new perspective on processing-in-memory architecture design. In
Proceedings of the ACM SIGPLAN Workshop on Memory Systems
Performance and Correctness (MSPC '13). ACM, New York, NY, USA,
Article 7 , 3 pages. DOI=http://dx.doi.org/10.1145/2492408.2492418

[43] Dongping Zhang, Nuwan Jayasena, Alexander Lyashevsky, Joseph L.
Greathouse, Lifan Xu, and Michael Ignatowski. 2014. TOP-PIM:
throughput-oriented programmable processing in memory. In
Proceedings of the 23rd international symposium on High-performance
parallel and distributed computing (HPDC '14). ACM, New York, NY,
USA, 85-98. DOI=10.1145/2600212.2600213
http://doi.acm.org/10.1145/2600212.2600213

[44] Leibin Ni, Hantao Huang, Zichuan Liu, Rajiv V. Joshi, and Hao Yu. 2017.
Distributed In-Memory Computing on Binary RRAM Crossbar. J. Emerg.
Technol. Comput. Syst. 13, 3, Article 36 (March 2017), 18 pages. DOI:
https://doi.org/10.1145/2996192

[45] J. Zhan et al., "A unified memory network architecture for in-memory
computing in commodity servers," 2016 49th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), Taipei, 2016,
pp. 1-14.doi: 10.1109/MICRO.2016.7783732

[46] CCIX, Cache Coherent Interconnect for Accelerators,
www.ccixconsortium.com.

[47] GenZ Consortium, http://genzconsortium.org/.

[48] OpenCAPI, Open Coherent Accelrerator Processor Interface,
opencapi.org.

[49] Ali Shafiee, Anirban Nag, Naveen Muralimanohar, Rajeev
Balasubramonian, John Paul Strachan, Miao Hu, R. Stanley Williams,
and Vivek Srikumar. 2016. ISAAC: a convolutional neural network
accelerator with in-situ analog arithmetic in crossbars. In Proceedings of
the 43rd International Symposium on Computer Architecture (ISCA '16).
IEEE Press, Piscataway, NJ, USA, 14-26. DOI:
https://doi.org/10.1109/ISCA.2016.12

[50] G. Khodabandehloo, M. Mirhassani, and M. Ahmadi.Analog
implementation of a novel resistive-type sigmoidal neuron. IEEE

Transactions on Very Large Scale Integration (VLSI) Systems,
20(4):750{754,April 2012.

[51] J. Torrellas, "FlexRAM: Toward an advanced Intelligent Memory system:
A retrospective paper," 2012 IEEE 30th International Conference on
Computer Design (ICCD), Montreal, QC, 2012, pp. 3-4. doi:
10.1109/ICCD.2012.6378607

[52] Chenchen Liu, Bonan Yan, Chaofei Yang, Linghao Song, Zheng Li,
Beiye Liu, Yiran Chen, Hai Li, Qing Wu, and Hao Jiang. 2015. A spiking
neuromorphic design with resistive crossbar. In Proceedings of the 52nd
Annual Design Automation Conference (DAC '15). ACM, New York,
NY, USA,, Article 14, 6 pages. DOI:
http://dx.doi.org/10.1145/2744769.2744783

[53] Caxton C. Foster. 1976. Content Addressable Parallel Processors. John
Wiley & Sons, Inc., New York, NY, USA

[54] Qing Guo, Xiaochen Guo, Yuxin Bai, and Engin İpek. 2011. A resistive
TCAM accelerator for data-intensive computing. In Proceedings of the
44th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO-44). ACM, New York, NY, USA, 339-350.
DOI=http://dx.doi.org/10.1145/2155620.2155660.

[55] Isaac D. Scherson and Sener Ilgen. 1989. A Reconfigurable Fully Parallel
Associative Processor. J. Parallel Distrib.Comput. 6, 1 (Feb. 1989), 69–
89. DOI:https://doi.org/10.1016/0743-7315(89)90043-9

[56] L. Yavits, S. Kvatinsky, A. Morad, and R. Ginosar. 2015. Resistive
Associative Processor. 14, 2 (July 2015), 148–151.
DOI:https://doi.org/10.1109/LCA.2014.2374597

[57] L. Yavits, A. Morad, and R. Ginosar. 2015. Computer Architecture with
Associative Processor Replacing Last-Level Cache and SIMD
Accelerator. IEEE Trans. Comput. 64, 2 (Feb 2015), 368–381.
DOI:https://doi.org/10.1109/TC.2013.220

[58] M. Wijtvliet, L. Waeijen and H. Corporaal, "Coarse grained
reconfigurable architectures in the past 25 years: Overview and
classification," 2016 International Conference on Embedded Computer
Systems: Architectures, Modeling and Simulation (SAMOS), Agios
Konstantinos, 2016, pp. 235-244. doi: 10.1109/SAMOS.2016.7818353

[59] J. Cong and B. Xiao, "FPGA-RPI: A Novel FPGA Architecture With
RRAM-Based Programmable Interconnects," in IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 22, no. 4, pp. 864-877,
April 2014. doi: 10.1109/TVLSI.2013.2259512

[60] Yue Zha and Jing Li. 2016. “Reconfigurable in-memory computing with
resistive memory crossbar.” In Proceedings of the 35th International
Conference on Computer-Aided Design (ICCAD '16). ACM, New York,
NY, USA, Article 120, 8 pages. DOI:
https://doi.org/10.1145/2966986.2967069

[61] M. Budiu, G. Venkataramani, T. Chelcea et al. Spatial computation.
ASPLOS XI, pages 14–26, New York, NY, USA, 2004. ACM.

[62] S. C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe and R. R.
Taylor, "PipeRench: a reconfigurable architecture and compiler," in
Computer, vol. 33, no. 4, pp. 70-77, Apr 2000. doi: 10.1109/2.839324

[63] S. C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe and R. R.
Taylor, "PipeRench: a reconfigurable architecture and compiler," in
Computer, vol. 33, no. 4, pp. 70-77, Apr 2000. doi: 10.1109/2.839324

[64] The OpenSPL Consortium. Openspl: Revealing the power of spatial
computing. Technical report, Dec. 2013.

[65] Jintao Yu, Tom Hogervorst, and Razvan Nane. 2017. A Domain-Specific
Language and Compiler for Computation-in-Memory Skeletons. In
Proceedings of the on Great Lakes Symposium on VLSI 2017 (GLSVLSI
'17). ACM, New York, NY, USA, 71-76. DOI:
https://doi.org/10.1145/3060403.3060474

[66] Sparsh Mittal. 2016. A Survey of Techniques for Approximate
Computing. ACM Comput. Surv. 48, 4, Article 62 (March 2016), 33
pages. DOI:https://doi.org/10.1145/2893356

[67] P. Dlugosch, D. Brown, P. Glendenning, et al. An efficient and scalable
semiconductor architecture for parallel automata processing. TPDS,
25(12):3088–3098, Dec 2014.

[68] O. Pell, O. Mencer, K. H. Tsoi et al. Maximum Performance Computing
with Dataflow Engines, pages 747–774. Springer New York, New York,
NY, 2013.

https://doi.org/10.1145/2749469.2750385
https://doi.org/10.1145/3036669.3038242
https://doi.org/10.1145/3123939.3124540
http://dx.doi.org/10.1145/2742854.2742874
http://doi.acm.org/10.1145/2600212.2600213
https://doi.org/10.1145/2996192
http://www.ccixconsortium.com/
http://genzconsortium.org/
https://doi.org/10.1109/ISCA.2016.12
https://doi.org/10.1145/2966986.2967069
https://doi.org/10.1145/3060403.3060474

[69] W-m. Hwu (edited by), “Heterogeneous System Archtiecture,” Morgan
Kaufmann, 2016.

[70] Bruel, P., Chalamalasetti, S., Dalton, C., El Hajj, I., Goldman, A., Graves,
C., Hwu, W.-M., Laplante, P., Milojicic, D., Ndu, G., Strachan, J.P.,
“Generalize or Die: Operating Systems Supportfor Memristor-based
Accelerators,” paper invited at the 2nd International Conference on
Rebooting Computing, Washington DC, November 2017.

[71] D. Milojicic and T. Roscoe, "Outlook on Operating Systems," in
Computer, vol. 49, no. 1, pp. 43-51, Jan. 2016. doi: 10.1109/MC.2016.19

[72] Achermann, R., Dalton, C., Faraboschi, P., Hoffmann, M., Milojicic, D.,
Ndu, G., Richardson, A., Roscoe, T., Watson, R..N.M., “Separating
Translation from Protection in Address Spaces with Dynamic
Remapping,” Proceedings of the ACM 16th Workshop on Hot Topics in
Operating Systems, 118-124.

[73] Robert N. M. Watson, Jonathan Woodruff, Peter G. Neumann, Simon W.
Moore, Jonathan Anderson, David Chisnall, Nirav Dave, Brooks Davis,
Khilan Gudka, Ben Laurie, Steven J. Murdoch, Robert Norton, Michael

Roe, Stacey Son, and Munraj Vadera. CHERI: A Hybrid Capability-
System Architecture for Scalable Software Compartmentalization,
Proceedings of the 36th IEEE Symposium on Security and Privacy
("Oakland"), San Jose, California, USA, May 2015.

[74] Mei B., Vernalde S., Verkest D., De Man H., Lauwereins R. (2003)
ADRES: An Architecture with Tightly Coupled VLIW Processor and
Coarse-Grained Reconfigurable Matrix. In: Y. K. Cheung P.,
Constantinides G.A. (eds) Field Programmable Logic and Application.
FPL 2003. Lecture Notes in Computer Science, vol 2778. Springer,
Berlin, Heidelberg.

[75] H. Singh, M.-H. Lee, G. Lu, F. J. Kurdahi, N. Bagherzadeh, and E. M. C.
Filho, “MorphoSys: an integrated reconfigurable system for data-parallel
and computation-intensive applications,” IEEE Transactions on
Computers, vol. 49, no. 5, May 2000.

