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Abstract—The Von Neumann’s architecture has been the 

dominant computing paradigm ever since its inception in the mid-

forties. It revolves around the concept of a “stored program” in 

memory, and a central processing unit that executes the program. 

As an alternative, Processing-In-Memory (PIM) ideas have been 

around for at least two decades, however with very limited 

adoption. Today, three trends are creating a compelling 

motivation to take a second look. Novel devices such as memristor 

blur the boundary between memory and compute, effectively 

providing both in the same element. Power efficiency has become 

very important, both in the datacenter and at the edge. Machine 

learning applications driven by a data-flow model have become 

ubiquitous. In this paper, we sketch our Computing-In-Memory 

(CIM) vision, and its substantial performance and power 

improvement potential. Compared to PIM models, CIM more 

clearly separates computing from memory. We then discuss the 

programming model, which we consider the biggest challenge. We 

close by describing how CIM impacts different reliability, scale, 

configurability, and security. 

Keywords—Architecture, computing, memory, interconnects, 

accelerators, programming, configuring, performance, scaling.  

I. INTRODUCTION  

The Von Neumann model has dominated computing systems 

ever since its introduction [1] in 1945. It has proven to be 

exceptionally useful for almost seven decades [2][3][4]. Its 

strength is based on simplicity: data and instructions are stored 

and accessed from memory by loading them into the central 

processing unit (CPU), which executes control and 

arithmetic/logic operations (see Fig 1). Over time, memory 

access latency started to become a problem as CPUs became 

faster than memory. As a result cache hierarchies appeared to 

bring major benefits (improved memory access latency), but 

also problems (cache coherence complexity and security flaws). 

Alternative ideas, such as Processing in Memory (PIM), have 

been proposed in the last two decades, with relatively little 

success outside of limited domains like databases and storage 

systems [5][6][7][8].  

One consequence of the challenges faced by a Von Neumann 
architecture is the steady reduction of computing systems’ 

ability to effectively operate on large data. This is visible in the 
ratio of the memory bandwidth (bytes/s) over computing speed 
(flops/s). Fig. 2 shows the steady drop over time from a byte/flop 
ratio of 1.0 (where all data in memory is readily available at 
processor speeds) to several orders of magnitude lower. 

The combination of increased data volumes and data mining 
applications with limited compute intensity and locality are 
making this imbalance even more challenging today. There is a 
strong interest to find ways to reverse the historical trend and 
significantly increase the bytes/flops ratio. The introduction of 
novel memory devices that can combine storage and computing 
in the same cell provides an opening for such a reversal. With 
these devices, it makes much more sense to bring the 
computation to memory. This is also the basis of what at HPE 
we call “memory driven computing” [9].  

The rest of the paper is organized as follows. In Section II 
we provide background and motivation, and we try answering 
the question why CIM will be successful, when so many 
previous similar efforts have not resulted in broad adoption. 
Section three III presents the CIM model, including logic and 
core architecture, analogy to object oriented systems, 
programming languages and run-times/operating systems. In 
Section IV, we discuss security, virtualization and resource 
management. In Section V we explore non-functional 
characteristics, such as fault tolerance, scaling, configurability, 
and supportability. Finally, Section VI discusses the next steps.  
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Fig 2. Memory bandwidth per processor floating point operations (FLOP) 

II. BACKGROUND AND MOTIVATION 

A. Hardware 

The status quo relationship between compute and memory, 
referring back to the EDVAC paper [1], is shifting due to the 
emerging memory technologies, that’s where we started. The 
persistence of memory is shifting the temporal and energy 
scalability of techniques that trade space and compute, such as 
memoization. The realization that the current economic forces, 
the end of Dennard’s Law [10][11], and the imminent challenges 
of Moore’s [12][13] and Rocks’s Laws [14], have led us to 
consolidation and monoculture, which in turn has left us 
exposed. Several generations of performance improvements 
may have to be yielded back due to fundamental insecurity, as 
exemplified by some of the recent vulnerability discoveries 
around Meltdown and Spectre [15][16].  

The problems we wish to tackle, which are not dominated by 
algorithmic velocity but by data throughput, are also shifting 
rapidly. As data intensity near the processing elements 
increases, photonics interconnects grow in importance, since 
they enable communications from centimeters to kilometers at 
the same energy per bit, varying only in the time of flight. 
Finally, there is the realization that the Turing symbolic model, 
as instantiated by von Neumann, forces us perhaps unnaturally 
to the digital domain. In many cases, we constrain ourselves to 
very inefficiently solve approximate problems with high digital 
accuracy. This comes at expense of linear and non-linear analog 
systems that, while complex and even borderline chaotic, may 
be far more efficient than conventional digital approaches, and 
ultimately a better fit for the underlying problem.  

 Add all of these together and we end up wanting a novel 
solution for the optimization of in-memory models of complex, 
real time physical and economic systems, where the scale of data 
necessitates approaches where data movement must be the 
fundamental cost. In this new world, compute is free (the last 
few Moore’s Law steps will see to that), but data is priceless, 
abundant, and we can finally deal with that abundancy.  

There are a number of approaches to these new types of 
computing, and the new IEEE “Rebooting Computing” initiative 
was started as a focal point for researchers in this field [17]. 
Specific attempts at CIM using technologies, such as ReRAM 
[18], STT MRAM [19], Memristor [20], DRAM [21][22][23], 
and SRAM [24], have recently been developed. 

B. Use Cases 

CIM is well suited to address a variety of fields, such as 
sensors, robotics, control, and scientific computing. In this paper 
we focus on edge computing and memory intensive 
applications. The following characteristics are common across 
them. 

 Data is close to computation, there is no need to move it, 

which results in power and performance optimization. In the 

past, other approaches used offloading [25] and migration 

[26] towards the data, but not as effectively and breaking 

programming models. 

 Data is persistent. The idea is that the application state can 

be constantly captured over time and upon reboot or restart 

(due to failure) it will be available to continue computation. 

This naturally leads to storing data in non-volatile devices 

(such as NVM), but also opens the door to other forms of 

distributed persistence based on data replication schemes. 

 Applications employ dataflow. Data manipulation, 

understanding and mining matches well dataflow 

programming models. These also better suit the notion of 

data collocated with computing elements.  

 
Edge computing. We typically consider edge computing 

close to the data generation sources, such as sensors, or other 
devices. We contrast “edge” with “cloud”, where data is 
processed in a (logically) centralized location. Edge computing 
assumes that moving all the data to the cloud is too onerous, and 
enough computing power at the edge is necessary to consolidate 
the data prior to passing it on to a cloud-centralized phase. This 
is also the place where some analytics and learning can take 
place to filter out (triage) redundant data and extract meaningful 
information. Edge applications typically consists of streaming 
processes taking device data from sensors, such as cameras. For 
example, applying deep learning inference at the edge can 
convert raw data (e.g., an image or video) into a tagged meta-
data representation (e.g., classified objects or recognized text), 
thus massively reducing the size to something that can be 
efficiently transferred to the cloud. Computing in memory is 
very relevant to edge computing: it lowers cost, improves 
performance, and lowers power consumption. These are very 
important characteristics in any computing device, but 
particularly in edge devices and even more so when devices are 
energy constraints or battery operated [27].  

 Memory-centric computing. When value and size of data 
grows higher than computation, data (and traditional storage) are 
treated as first level citizen, surrounded by computation as 
needed. This data is harder to move (because of size and security 
concerns), so it makes sense to bring computation closer to it. 
This field is an ideal match for computing in memory where 
computation is literally allocated in physical vicinity to the data. 



For example graph-heavy applications (typical in the 
intelligence community) need to track information over a long 
time, the graphs are hard to reproduce after reboots/failures due 
to their sheer size, or the lengthy history that would need to be 
repeated. Social networking applications are a variation of graph 
problem, with potentially larger scale but lower service level 
agreement (SLA) requirements. In both examples the benefits 
from CIM are clear and similar.  

Finally, a common thread that ties these fields together is Deep 
Learning. As content complexity increases, making 
representation learning indispensable [28], a growing use of 
Artificial Intelligence (AI) and Machine Learning (ML) can 
leverage CIM because of the dataflow nature of tensor 
operations, and the underlying matrix operations that are 
involved. We discuss that in the remainder of the paper. 

C. Applications 

There are a number of applications that can benefit from the 
CIM model. Neural networks, used in pattern recognition, are a 
natural fit for the dataflow nature of CIM. The ability to create 
layers of networks and (re-)configure them to trained models fits 
with how CIM can be organized. Matrix multiplication-based 
scientific algorithms are at the foundation of neural networks, 
and also map well to the CIM model. Memory-side and storage-
side accelerator functions are commonly optimized using low 
power accelerator devices that could be also implemented using 
CIM model. 

D. Societal Implications 

The computing evolution has moved from general to special 
purpose ever more so. Purely based on the number of instances 
and computing power, most of traditional computing migrated 
towards mobile devices (phones) in less than a decade, relatively 
a very short time. It is today increasingly moving towards the so 
called edge, where a sea of sensor devices are deployed to 
control every facet of human life. Some of the sensors are 
cameras that are associated with image/video/voice recognition, 
others similarly track various physical artefacts with possible 
ability to also actuate/control. Processing all of this data can 
critically impact human and whole nations’ existence.  

In addition, increasingly relying on artificial intelligence 
(initially using machine learning and deep learning) takes us to 
unchartered territory. The need arises for increased performance 
to process all the data at low power both in data centers and even 
more so at the edge to reduce data transfer to data centers and 
cloud. New ethical approaches to design are being introduced to 
standardize ways how to treat artificial intelligence and account 
for human being in the first place [29]. In addition, the 
approaches to cybersecurity are evaluated for their use of 
artificial intelligence and machine learning [30].  

E. Can CIM Be Successful? 

Computing in Memory was attempted many times in the past 
in various incarnations (PIM [5][6][7][8][31][32][33][34] and 
near memory processing [23][25][35][36][37]). And it has 
gained a lot of interest lately [38][39][40][41][42][43][44][45]. 
Why do we (and other researchers) believe that we stand 
chances of gaining adoption?  

We believe that earlier attempts were ahead of their time and 
the current attempts are timely because of the “perfect storm” 
effect caused by the convergence of three trends:  

New technologies, such as neuromorphic, bio-inspired, 
adiabatic, reversible, approximate, quantum, and combinations 
of these. This is the right time to revisit the Von Neumann model 
and attempt to overcome problems with caches, security, 
complexity, etc. 

Application demand. Image, video and audio recognition, 
and large scale data analytics are based on increasing processing 
power but at less power consumption. These applications 
dominate processing compared to general purpose computing 
and are becoming center of attention of CPU vendors and IT 
companies. 

Critical to mankind. Deep learning applications are 
increasingly being deployed in every facet of daily life (in 
phones, consumer devices, sensors, autonomous vehicles, 
manufacturing, industrial control, infrastructure, etc.) and 
mankind existence is increasing dependent on automation, IT 
and cybersecurity, which in turn is enabled by more powerful 
computing.  

Economy of scale. In the past, PIM lacked the economy of 
scale of IOT, while Von Neumann computers had the lion share 
of computing. With the increasing likelihood that hardware 
accelerators for AI/ML/DL will be broadly deployed, not just 
for gaming, crypto-currencies, and HPC applications, but also 
on sensors and mobile devices the economy of scale is turning 
to their favor. 

III. THE COMPUTING IN-MEMORY MODEL  

The CIM approach technologically and architecturally 
collocates processing and memory together, for compute 
(logical, arithmetic) and control functions (see Fig 3).  

In addition to processing and memory functionality, 
interconnects also become an integral part of the CIM model, 
and programming/configuration becomes the core functionality 
above control and arithmetic/logic units (see Fig 4). 
Interconnects are critical as they enable reconfiguration of the 
paths for the dataflow model, and allow reconnecting individual 
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units into application-specific workflows. Interconnect 
standards whose architecture includes accelerators (such as 
[46][47][48]) are the prime candidate for success in this domain. 

Fig 5 shows a possible organization of a CIM device. A CIM 
micro-unit consists of control, data, and processing components 
(logic/arithmetic). Multiple CIM micro-units build a CIM unit 
when they are connected in a predefined configuration. They can 
be organized in tiles, and multiple tiles can be further scaled up 
(not shown in the figure).  

A. Logic and Core Architecture 

Different teams have approached the core operations 
differently. Chen et al. rely on AND, OR, and XOR operations 
upon which to build all other logic [18]. Borghetti et al. are using 
NOT and IMP (material imply) as two core logic operations 
[20]. Hardware architectures are based on these operations.  
Various approaches to hardware architecture, classified by 
Khoram et al. [35], rely on: matrix multiplication (dot products) 
combined with shared memory, such as in ISAAC [49] and 
memristive Boltzmann machine [50]; neuromorphic systems 
mimicking human brain, such as in FlexRAM [51] and work by 
Liu [52]; associative processors known as content addressable 
memory combined with nonvolatile memory, such as TCAM 
[53][66] and Associative Processors [55][56][57]; and coarse 
grained reconfigurable architectures [58], such as nonvolatile 
FPGA [59] and reconfigurable in-memory computing 
architecture [60]. 

B. Programming CIM 

CIM programming adopts static, dynamic, and self-
reprogrammable dataflow concepts. Each programming concept 
brings an additional degree of flexibility achieved by 
reconfiguring different aspects of the CIM architecture.  

Static dataflow is the natural extension of existing dataflow 
computational models, such as the ISAAC architecture [49]. 
Through the instruction set, applications can program the CIM 
crossbars to implement a target neural network that would 
execute over and over again. With CIM, the inherent colocation 
of memory and computation enables additional flexibility in 
how computation is configured. This enables more opportunities 
for training, as well as feed-forward and closed loops. This is an 
evolution from FPGA-like configuration of code, to loading a 
binary into processor, such as CUDA code into GPU. 

Dynamic dataflow assumes that the data coming in can be 
dynamically routed to those parts of the CIM at different 
granularity as a function of the state in the CIM and the input 
data. The routing could be expressed explicitly as a part of the 
incoming packet or it could be implicit as a function of the state 
in CIM, or both.  

Finally, self-programmable dataflow enables carrying 
code as a part of the packets to dynamically program functions 
as packets arrive. This allows the highest level of flexibility in 
programming. Past research exists on this topic, but no 
production-level commercial equivalent exists as yet.  

Section D, at a high level, describes the programming 
language and system software support to enable these 
configuration models. 

C. Analogy to Object Oriented and Modular Systems 

In many ways, the CIM model resembles some aspects of 
object oriented approaches by hiding the internal data and 
computation methods, and only exposing external abstract 
interfaces that specify the intent. Similarly, CIM holds both data 
and operations inside the hardware cells and allows data to flow 
in and out of it. Object oriented systems could be mapped on top 
of CIM and leverage the additional security protection (see 
Section IV.A) and reliability (see Section V.A) that CIM offers. 
However, this would require a lot of research, as of now 
dataflow languages and systems are obvious match. 

D. Programming Languages 

Just like neural networks have evolved and are being 
supported by a plethora of platforms and development 
environments, we also expect that new expressive programming 
models will evolve for CIM. They will require programming 
languages to map onto the control and processing instruction 
sets for CIM.  

CIM programming languages will need to understand the 
micro-unit level: how data is received from outside of the micro-
unit, how programs are loaded, how micro-units are configured, 
how memory is allocated, data decrypted, etc. Compilers will 
further need to understand the architecture across micro-units 
and across tiles: data locality and how data is streamed across 
micro-units and across tiles; how graphs are built and mapped to 
physical units; etc. Fortunately, there is substantial work on 
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dataflow compilers and programming languages and in support 
of CIM [61][62][63][64][65][66][67][68] that can be leveraged.  

E. Run-times and Operating Systems 

Just like accelerators, initially CIM components will be used 
as slave devices, attached to traditional systems running 
standard operating system and using traditional runtimes. CIM 
binaries compiled from CIM programming languages may be 
downloaded into CIM devices, just like CUDA is being used for 
GPUs or equivalent tools built for FPGAs.  

Over time, we expect that CIM units will evolve from the 
master-slave model to a cooperative relationship, where both 
traditional and CIM models can co-exist side-by-side. Once 
CIM has proven its effectiveness, we can expect integration in 
the same hardware module which therefore will require 
operating systems support. Finally, CIM computers can start 
running natively requiring full run time and operating system 
support (Fig 6).  

One of the advantages of CIM is the built-in support of 
heterogeneous devices. The runtime and operating systems will 
need to hide this heterogeneity and expose a common interfaces 
to users [69]. For the cooperative, integrated and native models, 
we expect that entirely new operating systems will be developed 
to support CIM units natively [70][71]. 

F. Interactions between Von Neumann and CIM models 

Von Neumann and CIM systems can coexist through coars 
grain, and fine grain architectural interactions. One can be 
integrated within the other, beyond the perspective of run times 
and operating systems described above.  

Von Neumann within CIM model allows for Von 
Neumann components executing within CIM, for example, in 
support of control functions, or performing more general 
operations. 

CIM within Von Neumann model can result by using CIM 
as Von Neumann system memory, enabling built-in memory 
acceleration on an otherwise traditional Von Neumann 
architecture.  

IV. SECURITY, VIRTUALIZATION, RESOURCE MANAGEMENT 

Security has often been considered as an afterthought, with 
performance and reliability always dominating the 
requirements. As a consequence numerous bugs, leaks, and 
exploits are consistently being discovered. A complete new 
architecture paradigm opens a terrific opportunity to reconsider 

security as a first class requirement. Along with security come 
the tightly related requirements for virtualization and resource 
management.  

A. Security 

Security can benefit from several aspects of CIM. Packet 
based communication is better understood than the shared 
memory model with multiple threads accessing shared memory. 
Paths can be better secured by partitioning and data can be 
inspected prior and after entering and exiting CIM model, and 
therefore making higher security guarantees. A dataflow 
architecture can introduce barriers as a containment mechanism 
to stop propagation of errors and bugs. Affected stationary data 
does not propagate and can be contained where it is stored 
without access by other components. Packets in flight can be 
encrypted and networking key protection model can be readily 
applied. Data can be verified against the processing element and 
vice versa [72]. Finally, even though CIM relies on dataflow, 
some data sharing may be required to enable common data pools 
across the layers of CIM. Fine grained protection, for example 
based on capabilities such as CHERI [73], would be the ideal 
complement to further enhance the security model. 

B. Virtualization and Partitioning 

Similarly to security, virtualization and partitioning can 
substantially benefit from CIM. An intuitive analogy to the CIM 
model is Network Function Virtualization (NFV) in the 
networking space. NFV has been well understood and it 
supports an equivalent functionality of high end proprietary 
boxes running in software on commodity servers. Many network 
virtualization approaches can be directly applied to CIM model. 
In particular:  

Dynamic hardware isolation: similarly to security 
containment, parts of the CIM components can be completely 
isolated from other parts for security reasons.  

Quality of service: minimal performance influence from 
one stream to another is achieved by provisioning enough 
interconnect. This is equally important for quality of service and 
to prevent leaking information across streams. 

Failover: should streams be redirected for performance or 
reliability reasons, switching to other components would have 
minimal impact on performance. 

C. Resource Management 

Traditional load balancing techniques, such as distributing, 
pinning, and measuring loads also apply to CIM 

Load information management is required before any 
action is undertaken. It assumes measuring latencies and 
bandwidth of each stream, as well as usage of individual and 
aggregate resources.  

Load balancing can be accomplished by redirecting streams 
to underutilized SIM components. In certain cases to achieve 
guaranteed performance some of the streams may need to be 
pinned to given CIM modules. In other cases, they can be free 
to dynamically assign or reassign. 
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Enabling closed loops means that performance of certain 
parts of the CIM modules may influence others, which can be 
used to manage performance according to given SLA 
agreements. 

V. NON-FUNCTIONAL CHARACTERISTICS  

A. Failure tolerance 

Reliability and fault tolerance techniques, such as fault 
detection, containment, prevention, and recovery need to be 
revisited to take into account the CIM characteristics. 

Fault detection can be accomplished at any component 
level, starting from the micro-unit in our example, through 
higher level components. Detection can use extra bits on data or 
instruction states. Faults could be detected from micro-unit to 
the largest unit. 

Fault containment is required once a fault is detected to 
prevent it from spreading it further (and cause silent data 
corruption, for example). Boundaries of each component are the 
convenient place which can be shut down for exception handling 
in case a fault is detected. 

Fault prevention can be accomplished through redundancy 
of information and components. Any component can be 
replicated, just like information can be protected using ECC. In 
CIM, redundancy can be achieved at every layer. Compared to 
traditional systems, there is more symmetry among layers so 
similar techniques could be used. 

Fault recovery by failing over to redundant components. 
For more reliable computation, the data can be held in preceding 
components until computation is completed or in case of failure 
redirected to another component.  

As we can see, there is a lot of similarity with traditional 
resilience approaches. We believe that the dataflow nature of 
CIM, and the reliance on implicit message passing rather than 
shared memory, results in more reliable systems (Table 1). 

B. Scaling 

Scaling CIM is relatively straightforward; it is in many ways 
similar to scaling web server farms if the individual elements are 
stateless and only execute data streams. If the CIM modules are 
stateful, scaling is more complicated: it requires scaling of each 
class of the modules and then spreading the state across added 
modules. It also require interactions with the end-to-end 
application. 

C. Configurability 

There are many design points that enable reconfiguration of 
a CIM architecture. Different precision and number of bits can 
be configured at the lowest level. Reconnecting components 
enables reconfiguration at higher levels. This would be similar 
to Coarse Grained Reconfigurable Architectures (CGRA) [58] 
and systems, such as ADRES [74], PipeRench [62], and 
MorphoSys [75]. 

D. Serviceability 

Deployed equipment is increasingly hard to support, which 
is even more important for systems at the edge. This motivates 
the need for graceful aging and self-healing at multiple levels of 
CIM components. Understanding how individual devices age 
can enable switching them out of active configurations 
preventing failures from even happening. If nothing else helps, 
closed loops enable more reliable functioning of deployed CIM 
modules: from device to central management, from 
device/management layer to support agents; and from 
device/management support agents to design engineers. 

E. Discussion 

Table 1 compares the different approaches to computing. 
Because of its streaming nature, the dataflow and the networking 
models are similar. There is no perceived limit on scale other 
than in terms of power (and cost), which for CIM is better than 
traditional due to the adoption of new technologies used, such as 
memristors [20]. Failing components can be replaced by 
redundant units and packets resent either from the source or from 
cached component. Security is similar to networks, where 
packets in flight are encrypted. Compared to other models, 
robustness is application-specific because a lot of application 
code is built into the silicon.  

Table 1 Comparison of Different Approaches to Computing 

Comparison 

Approaches to Computing 

Von Neumann 

In-Memory Parallel  

(shared memory) 
Distributed 

programming 

model (common) 

multi-threaded message passing dataflow 

scaling  
(per system) 

100s of cores 
(eg HPE Hawks) 

200 racks 
(e.g. Exascale) 

no perceived 

limit, higher 

then exascale 

failure tolerance whole partition fails 
failover to another 

machine 

stream 
redirection to 

redundant unit 

security whole partition machine boundary 
packet and 

stream based 

robustness OS-dependent cluster dependent 
application- 

specific 

VI. SUMMARY AND NEXT STEPS 

In this paper, we have motivated the need for adopting the 
new computing architecture, Computing-in-Memory. We 
discussed use cases where it could be beneficial, as well as 
applications. We then presented the CIM model in more detail, 
discussed security and other non-functional characteristics and 
compared them against those in von Neumann architecture. 

Computing in Memory is already being demonstrated in 
research and slowly adopted in product prototypes. Whether it 
will take off is something that only future applications will 
demonstrate. However, it is important to avoid repeating 
mistakes from the past, such as not building in security 
requirements. As architects, systems and applications 
developers start to develop solutions, security needs to be treated 
as first level requirement, if we do not want to be haunted by the 
bugs and vulnerabilities of the past.  



If the paper gets accepted, we will expand it to a full paper 
and provide quantification of functional and non-functional 
characteristics, such as performance, power, scale, and 
reliability. We will also provide examples of algorithms that are 
suitable for CIM and describe technologies behind CIM, such as 
memristors. We will also provide a description of the system we 
are working on that has some elements of the CIM. 
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