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Abstract

Queueing network models have been extensively applied to represent and analyze resource
sharing systems such as communication and computer systems and they have proved to be a
powerful and versatile tool for system performance evaluation and prediction. Product form
queueing networks have a simple closed form expression of the stationary state distribution
that allow to define efficient algorithms to evaluate average performance measures. We
introduce product form queueing networks and some interesting properties including the
arrival theorem, exact aggregation and insensitivity. Various special models of product form
queueing networks allow to represent particular system features such as state-dependent
routing, negative customers, batch arrivals and departures and finite capacity queues.

1 Introduction and Short History

System performance evaluation is often based on the development and analysis of
appropriate models. Queueing network models have been extensively applied to represent
and analyze resource sharing systems, such as production, communication and computer
systems. They have proved to be a powerful and versatile tool for system performance
evaluation and prediction.
A queueing network model is a collection of service centers representing the system
resources that provide service to a collection of customers that represent the users. The
customers' competition for the resource service corresponds to queueing into the service
centers. The analysis of the queueing network models consists of evaluating a set of
performance measures, such as resource utilization and throughput and customer response
time. The popularity of queueing network models for system performance evaluation is due
to a good balance between a relative high accuracy in the performance results and the
efficiency in model analysis and evaluation. In this framework the class of product form
networks has played a fundamental role. Product form queueing networks have a simple
closed form expression of the stationary state distribution that allow to define efficient
algorithms to evaluate average performance measures. We introduce product form queueing
networks and their properties.

Queueing network models extend the basic queueing systems that are stochastic models first
introduced to represent the entire system by one service center. The basic queueing systems
have been applied to analyze congestion in telephonic systems and then they have been
applied to study congestion in computer and communication systems [Kleinrock 75,
Lavenberg 83, Gelenbe-Mitrani 80, Trivedi 82, Lazowska et alt. 84, DeSouza-Muntz 89,
Kant 92].
Queueing network models represent such systems as a network of interacting service centers
whose analysis often provides quite accurate prediction of their performance. Despite of
several assumptions of the class of queueing networks, they have been observed to be very
robust models [Suri 83].
Queueing network models can be analyzed by analytical methods or by simulation.
Simulation is a general technique of wide application, but its main drawback is the potential
high development and computational cost to obtain accurate results. Analytical methods
require that the model satisfies a set of assumptions and constraints and are based on a set of
mathematical relationships that characterize the system behavior.
We consider analytical methods to analyze queueing network models and specifically
product form queueing networks that have a simple closed form of the stationary state



probability distribution, which allow the definition of efficient algorithms to evaluate their
performance.
Jackson [Jackson 63] introduced product form queueing network models for open
exponential networks and Gordon and Newell [Gordon-Newell 67a] for closed exponential
networks. They introduce several assumptions on the model characteristics and provide a
simple closed form expression of the stationary state distribution and some average
performance indices. This class of models was then extended to include various interesting
and useful characteristics to represent more complex system. These features include
different types of customers of the networks, various queueing discipline (i.e., the
scheduling algorithms of the waiting queues), state-dependent service rate, state-dependent
routing between the service centers and some constraints on the population of subnetworks.
The most famous result concerning product form queueing networks was presented by
Baskett, Chandy, Muntz and Palacios in 1975 [Baskett et alt. 75] known as BCMP
theorem. It defines the well-known class of BCMP queueing networks with product form
solution for open, closed or mixed models with multiple classes of customers and various
service disciplines and service time distributions. The stationary state distribution is
expressed as the product of the distributions of the single queues with appropriate
parameters and, for closed networks, with a normalization constant.
An important property of queueing networks with product form is the arrival theorem. It
states that the distribution at arrival times at a service center is identical to the distribution at
arbitrary times of the same network, for open networks, and of a network with one less
customer for closed networks [Lavenberg-Reiser 80, Sevcik-Mitrani 81].
This led to the definition of a set of recurrence equations between average performance
measure for closed networks from which it was derived a recursive computational
algorithm, the Mean Value Analysis (MVA) [Reiser 81], that avoids the direct evaluation of
the normalization constant.

We can analyze product form networks with various computational algorithms to evaluate
the performance indices. These algorithms provide a powerful tool in the efficient analysis
of large queueing network models. The most important ones are the Convolution Algorithm
[Buzen 73] and the Mean Value Analysis [Reiser-Lavenberg 80, Reiser 81] for closed
networks. They provide the evaluation of average performance indices with a polynomial
space and time computational complexity in the network dimension, that is the number of
service centers and the network population.
Product form networks with multiple classes of customers are more difficult to analyze.
Various types of customers define the customers' classes in the network that are gathered in
chains. Both Convolution and MVA algorithms have been extended to multiple classes
networks [Reiser-Lavenberg 80, Reiser 81, Sauer 83, Lam 82], but their cost grows
exponentially with the number of customer classes or chains. Other algorithms for
multiclass queueing networks have been proposed. The tree Convolution and tree MVA
algorithms for multichain networks are based on a tree data structure to optimize the
algorithm computation [Lam-Lien 83, Tucci-Sauer 85, Hoyme et alt. 86]. Multichain
networks with several types of customers can be analyzed by the algorithms named
Recursion by Chain Algorithm (Recal) [Conway-Georganas 86, Conway-Georganas 89],
Mean Value Analysis by Chain [Conway et alt. 89] and Distribution Analysis by Chain
(DAC) [DeSouza-Lavenberg 89]. Their computational complexity is polynomial with the
number of classes of customers, but exponential in the number of service centers.
The computational algorithms have been integrated in various software tools for
performance modelling and analysis that include user friendly interfaces based on different
languages to take into account the particular field of application, e.g. computer networks,
computer systems. This allows not expert users to apply efficient performance modelling
techniques. More recently the solution performance algorithms have been integrated with
model specification techniques to provide tools for the combined functional and quantitative
system analysis.



Product form networks yield various interesting properties. The insensitivity property states
that the analytical results, i.e. the stationary state distribution and the average performance
indices, depend on the service time requirements only through their average. Similarly, the
performance indices depend on the customers routing only through the average visit ratio to
each service center [Baskett et alt. 75, Chandy et alt. 77, Chandy-Martin 83, Shassenberger
78, Whittle 85].

Another important property of product form queueing network models is that aggregation
methods yield exact results. Chandy, Herzog and Woo [Chandy et alt. 75] first introduced
the aggregation theorem. It allows substituting a subnetwork with a single service center, so
that the new aggregated network has the same behavior in terms of a set of performance
indices. From the performance viewpoint exact aggregation allows us to apply the
hierarchical system design process by relating the performance indices of the models at
different levels in the hierarchy [Lazowska et alt. 84]. In a bottom-up analysis of systems
represented by a succession of queueing network models exact aggregation defines the next
model. Similarly, in a hierarchical top-down design of system with given performance
requirements, the inverse process of disaggregation or development of the network can be
applied to define a more detailed model with the same performance indices [Balsamo-
Iazeolla 85].
Aggregation is an efficient technique when applied to the analysis of nearly complete
decomposable systems. Informally, such a system can be decomposed into subsystems
whose internal interactions are much higher than the interactions among the subsystems
[Courtois 77]. Exact aggregation for product form queueing networks provides a basis for
approximate solution methods of more general non-product form network models [Marie
79].

More recently further research has devoted to the extension of the class of product form
network models and to its characterization. Some interesting new features have been defined
such as networks with positive and negative customers proposed by Gelenbe [Gelenbe 91]
that can be used to represent special dynamic of actual systems. Some other more complex
models include various functions of state-dependent routing and several special cases of
queueing networks with finite capacity queues, finite population constraints and blocking
[Akyldiz 87, Balsamo-DeNitto 94, Balsamo-Clò 98, Boucherie-VanDijk 91, Gordon-
Newell 67b, Lam 77, Towsley 80, VanDijk 93]. Nelson in [Nelson 93] has discussed the
mathematics leading to the product form results and the properties of the stochastic process
underlying the network model. Product form solution has been extended to queueing
networks with batch arrivals and batch services [Henderson-Taylor 90a, Henderson-Taylor
90b] that are also related to discrete time queueing network models.

The goal of this paper is to provide an introduction to product form network models, their
properties and applications to system performance evaluation. We will present the basic
results, the key ideas and we discuss why this class of models is important in system
performance evaluation, whereas we refer to the literature for the mathematical details of the
properties.
In the next section we introduce queueing networks to represent and evaluate system
performance. Section 3 deals with the key ideas of product form network models and their
basic properties. The main algorithms and tools for product form network analysis are
introduced in Section 4. Current and future directions of research and application of this
class of models are discussed in Section 5.

2 Queueing network models for system performance evaluation

Queueing network models have been extensively applied as performance evaluation models
of congestion systems, such as production, communication and computer systems. They



provide a simple model at a high level of abstraction, intuitively understandable and that can
clearly represent resource contention. System performance evaluation with queueing
network models consists in the definition and parameterization of the model to evaluate of a
set of figures of merit that are performance indices, such as resource utilization, system
throughput and customers' response time.
First simple queueing systems have been proposed to model a system as a unique service
center. These stochastic models were originally proposed for the congestion analysis in
telephonic systems and then they have been applied to study congestion in various systems
including computer and communication systems [Kleinrock 75, Gelenbe-Mitrani 80,
Lavenberg 83, Trivedi 82].

2.1 Queueing systems with a single service center

A single resource model is described by an arrival process of incoming customers, a service
process, a buffer space for holding the waiting customers, a scheduling algorithm of the
queue, a set of servers that provide the service to customers. Figure 1 illustrates a single
service center. The Kendall's notation A/B/c denotes a queueing system with arrival process
A, service process B and c service centers, by assuming infinite buffer and First Come First
Server scheduling. For example M/M/1 denotes the system with Poisson (Markov) arrival
process, exponential (Markov) service process and a single server and M/G/1 the same
system except for the service time that has a general or arbitrary distribution. The single
resource queueing systems are analyzed by defining an associated discrete-space
continuous-time stochastic process, whose state include the system population, denoted by
n. Under independent and exponential assumptions the associated Markov process has a
simple stationary solution in terms of state probability [Kleinrock 75]. Some queueing
systems, such as the M/M/1 and M/M/m systems have an associated Markov process with
special structure, that is a birth-death Markov process, which yield a simple closed-form
solution of the stationary state probabilities. Hence such queueing systems can be easily
analyzed and the average performance indices show simple analytical expressions.

arrivals departures

waiting room

server

Figure 1 - A single service center queueing system.

For example an M/M/1 system with exponential arrival rate λ and service rate µ has an
associated birth and death Markov process whose state is given by k=0,1,… with constant
birth rate λ from any state k to state k+1 and constant death rate µ from any state k+1 to

state k. If the system is stable, i.e. if the arrival rate is less than the service rate (λ<µ), then

the queue length distribution is geometric with parameter ρ = λ /µ, that is the stationary
probability π(k) of k customers in the system is

π(k) = ρ
k
 (1-ρ) k≥0 (1)

The average queue length is E[n]=ρ/(1-ρ) and the average response time is R=1/(µ-

λ). Similarly the M/M/m system with exponential arrival rate λ, m servers with service rate
µ has an associated birth and death Markov process whose state is given by k=0,1,… with
constant birth rate λ from any state k to state k+1 and state-dependent death rate min{k+1,



m} µ from any state k+1 to state k. The system is stable when λ<mµ and then the stationary
queue length probability π(k) of k customers in the system is given by

π(k) = π(0) (m ρ)k / k! 1≤k≤m (2.1)

π(k) = π(0) (mmρk) / m! k>m (2.2)

where ρ = λ/mµ and π(0) is determined by the normalizing condition π(k)
k= 0

∞
∑ =1. The

average queue length is E[k] = [mρ+π(m)ρ/(1-ρ)2] and the average response time is

R=[1/µ+π(m)/(mµ(1-ρ)2)]. 
Hence we can immediately apply these simple performance model to evaluate several
performance indices of a system that can be represented by M/M/1 or M/M/m models. For a
detailed discussion of these and other single service center models see [Kleinrock 75].

2.2 Queueing Networks

With more details we can represent a system as a network of resources. A queueing network
model is a collection of interconnected single service center queueing systems that provide
service to a set of customers. Informally, a queueing network is defined by the service
centers, the customers and network topology. Service center characteristics include the
service time, the buffer space with its queueing scheduling and the number of servers.
Customers are described by their number for closed models and by the arrival process to
each service center for open models, the service demand to each service center and the types
of customer. Network topology models how the service centers are interconnected and how
the customers move between them. Figure 2 illustrates some open and closed networks with
various topologies.

…1 2 M

…1 2 M

(a)

(b)

…1

2

M

(c)

Figure 2 - Example of queueing network topologies: (a) tandem, (b) cyclic, (c) central
server.

Different types of customer in the queueing network model can model different behaviors of
the customers. This allows representing various types of external arrival process, different
service demands and different types of network routing. A chain gathers the customers of



the same type. A chain consists of a set of classes that represent different phases of
processing in the system for a given type of customer. Classes are partitioned on the service
centers and each customer in a chain moves between the classes. A chain can be used to
represent a customer routing behavior dependent on the past history. For example two
classes of the same chain in a service centers can represent the customer requirement of two
successive services (e.g. a customer representing a job in a computer system that requires
two services: program loading and execution). Each chain can be open or closed depending
on whether external arrivals and departures are allowed. Multiclass or multichain networks
may be open or closed if all the chains are open or closed, respectively. A mixed network
has both open and closed chains. A simple example of a multiclass network with two chains
and four classes is illustrated in Figure 3. The service time requirement for each class can be
different. Chain 1 is open and describes the type 1 customer routing behavior of two
successive visits to the same service center first in class a and then in class b. Chain 2 is
closed and there is a constant number of type 2 customers circulating between the service
centers in class c and d. Multiclass models can be used for a more precise representation of
system behavior and to obtain more detailed performance indices.

class a
class b

class c class d

CHAIN 1

CHAIN 2
Figure 3 - Example of a mixed network with two service centers, an open chain with two

classes (a and b) and a closed chain with two classes (c and d).

The analysis of a queueing network model provides information on the performance of each
system component modeled by a service center, and on the overall system performance.
Performance indices are obtained by the model analysis.

Queueing network analysis is based on the definition and analysis of an underlying
stochastic process that is usually a discrete space continuous time homogeneous Markov
process. The process state definition typically includes the number of customers in each
queue. The behavior of the queueing network models is represented by the evolution of the
associated process. Consider a network with M service centers. Let ni denote the customer
population at node i, n = (n1,…,nM) the network joint queue length and π (n) = π
(n1,…,nM) the stationary joint queue length distribution. Let π  denote the stationary state
probability vector of the Markov process and Q its transition rate matrix. If the queueing
network is stable, then the stationary state probability π  is defined by the normalized
solution of the following linear system:

π  Q = 0 (3)

also called system of global balance equations. Performance indices of the queueing
network are derived by the stationary state distribution of the process.
Unfortunately the generality of this approach is limited by its computational complexity. One
can easily observe that the process state space cardinality, that is the number of global
balance equations, often makes the solution of the system of global balance equation
intractable. More precisely, for an open network the process state space is infinite and we
can obtain an exact solution only in some special cases, when the matrix Q shows a
particular regular structure. For a closed network the process state space grows
exponentially with the network parameters that are the number of service centers, customers
and customers types. For example, for a single class exponential queueing networks with M

service centers and K customers the state space cardinality is 
M+K −1

K( ) .



So why queueing networks became so popular as performance models? The answer is that
in some cases, such as for product form networks, we can obtain a simple and efficient
solution of the network model analysis.
There is a trade-off between the accuracy and the efficiency of the model analysis. Some
interesting approaches provide simple solutions of the model that are useful for system
performance evaluation in many practical cases.
Operational analysis of queueing network models was proposed to derive simple results in
terms of performance bound and of asymptotic analysis under very general assumptions.
The method is appropriate for a first application of performance modelling in the early
phases of system design when the system can be not completely specified and we want to
compare the potentialities of design alternatives [Lazowska et alt. 84]. However, this
approach provides only bounds on asymptotic performance measures.

Product form queueing networks provide more precise and detailed results than operational
analysis, in terms of performance indices such as queue length distribution, average
response time, resource utilization and throughput. These performance indices are evaluated
for each component and for the overall network. Product form network analysis is based on
a set of assumptions on the system parameters that lead to a closed form expression of the
stationary state distribution. The stationary joint queue length probability π defined by the
solution of the associated Markov process, given by the linear system (3) has a product
form solution, as follows:

π(n) =
1

G
V(n) gi (n i )

i=1

M

∏
 

(4)

where G is a normalizing constant, n is the total network population, function V is defined
in terms of network parameters and gi is a function of state ni and depends on the type of
service center i, 1≤i≤M. For open networks G=1, whereas for closed networks V(n)=1.
For open network function gi is the stationary queue length distribution of node i in isolation
with appropriate parameters.
Similarly, for networks with multiple types of customers let R denote the number of chains
and S the network state that include the customer population at each service center. For a
multiclass product form network we can express the stationary state probability π as
follows:

π(S) =
1

G
Vr (Kr )

r =1

R

∏ g i (n i )
i=1

M

∏ (5)

where G is a normalizing constant, Kr is the total network population in chain r, function
Vr, 1≤r≤R is defined in terms of network parameters and function gi depends on the state
and the type of service center i, 1≤i≤M.

Product form networks can be analyzed by efficient algorithms with a polynomial time
computational complexity in the number of network components. This class of models
allows a good balance between a relative high accuracy in the performance results and the
efficiency in model analysis and evaluation. Moreover product form networks yield several
interesting properties such as insensitivity and exact aggregation that greatly influenced the
application of this class of models as a powerful tool for performance evaluation.
Various degrees of details can be used to define the performance model at the appropriate
level of abstraction, depending on the goal of the system performance analysis. System
components are represented by the model components that are the service centers, the
classes of customers and the customer routing according to the objective of the performance



evaluation study and depend on the performance measures of interest. This concerns the
model definition.

Product form networks are simple and intuitive models that can be solved by efficient
algorithms and tools that we shall introduce in Section4. But first, in order to apply this
class of models a question is: how can we characterize product form queueing networks?

3. Product form queueing network models: basic ideas

Product form solution of queueing networks holds under special assumptions. The precise
characterization of the class of product form network is not easy. The product form solution
is related to some properties of the queueing network model that are defined on the Markov
process underlying the queueing model. Some sufficient conditions for product form
solution based on these properties has been derived. Important properties are
quasireversibility and partial balance. Informally, quasireversibility of a service center states
that the current state, the past departures and the future arrivals are mutually independent.
This property refers to the relation between the arrival and departure process. The so called
M ⇒ M property was first proved by Burke [Burke 56] and states that in an M/M/1 system
a Poisson arrival process produces a Poisson departure process, independent of the queue
state. Examples of quasireversible queues are:

I Multiclass service center with First Come First Served (FCFS) queueing discipline and
exponential service time distribution, identical for each customer class.

II Multiclass service center with Processor Sharing (PS) scheduling and arbitrary phase
type service time distribution, i.e. formed by a network of exponential stages
[Kleinrock 75].

III Multiclass service center with infinite number of servers, that is with IS scheduling
and arbitrary phase type service time distribution.

IV Multiclass service center with Last Come First Served with preemption (LCFS-Pr)
scheduling and arbitrary phase type service time distribution.

Other examples of quasireversible queues are defined in terms of the particular class of
symmetric queueing discipline. A service discipline is called symmetric [Kelly 79] if the
probability that an arrival enters the queue in the i-th position when there are n customer is
equal to the fraction of the service capacity destined to the customer in the i-th queue
position when there are n+1 customer in the queue. Examples of symmetric disciplines are
LCFS-Pr and PS. However, this is only a sufficient condition for product form solution. A
similar condition was defined as station balancing [Chandy-Martin 83] to characterize the
queueing disciplines that yield product form queues. In this case, by assuming a special
form of the product form expression one can define a necessary and sufficient condition for
product form solution that requires station balance discipline for non-exponential queues.

Given a single queue with product form solution a problem is how to combine a set of
queues into a network in order to maintain the product form solution.

3.1 Preliminary results

First we can simply connect the queues so that the M ⇒ M property holds. Tandem
exponential networks with Poisson arrivals where the service times are mutually
independent satisfy this condition. Similarly, acyclic exponential networks with Poisson
external arrivals and routing with Bernoulli splitting can be analyzed as a set of independent
M/M/1 queueing system with appropriate arrival rates. This immediately derives from the
decomposition and superposition of Markov independent processes. However, when we
consider networks with feedback, for example a tandem network with feedback, even if the



external arrival is a Poisson process the total arrival process is not Poisson. Nevertheless
under exponential and independence assumptions one can still derive a product form
solution for the associated Markov process.

The first important result concerning product form queueing networks was proved by
Jackson [Jackson 63] for open exponential networks with FCFS queues and arbitrary
Markovian routing. For this network let λ denote the overall arrival rate to the network, p0i
the probability that an arrival enters queue i and µ i the exponential service rate of center i,
1≤i≤M. Customers' behavior between service centers of the network is described by routing
matrix P=[pij] where pij denotes the probability that a customer leaving center i immediately
goes to center j, whereas pi0 is the probability that it leaves the network, 1≤i,j≤M. Hence
Σ1≤j≤M pij + pi0 = 1. The routing matrix defines the set of traffic equations that determine
the visit ratio xi for each service center i as follows:

xi = λ p0i + Σ1≤j≤M xj pji . (6)

The visit ratio xi is the stationary average arrival rate of customers at center i from outside
and inside the network. For stationary and stable open networks xi is equal to node i
throughput. So the traffic equations immediately provide this performance measure for each
network component. Jackson proved that for a stable network the stationary joint queue
length distribution π (n) = π(n1, …, nM) is given by formula (4) where G=1, V(n)=λn, n
=Σ1≤i≤M ni and function gi(ni) is the stationary state distribution of center i analyzed as an
isolated M/M/mi queue where mi is the number of center i servers, with arrival rate xi and

service rate µ i. In particular let ρi=xi/miµ i. The stationary queue length probability of
service center i is given by formulas (2.1) and (2.2). When service center i has a single
server (mi=1) the queue length distribution reduces to the solution of the M/M/1 system
given by formula (1).
The stability condition requires that each queue is stable, i.e. ρi<1 for each center i.
Note that a surprising property of Jackson networks is that the service centers behaves as
independent M/M/m type queueing systems, although in general they are not independent.

Closed exponential queueing networks with FCFS discipline and arbitrary Markovian
routing has been studied by Gordon and Newell [Gordon-Newell 67a] that proved that
product form solution (4) holds where G is a normalizing constant and V(n)=1. Similarly to
the Jackson open networks, the routing matrix P defines the customers' behavior. Since in
closed networks customers cannot enter or leave the network, P is a stochastic matrix, i.e.
Σ1≤j≤M pij =1 and p0i=pi0=0 for each i. Hence the system of traffic equations (6) has M-1
linear dependent equations and has infinite solutions. In other words the visit ratio xi is
defined up to an arbitrary constant and it represents the relative throughput of node i.
Function gi(ni) in formula (4) is proportional to the stationary distribution of center i
analyzed as an isolated M/M/mi with arrival rate xi, service rate µ i and mi servers, i.e. it is
defined by formulas (2.1)-(2.2) without factor π(0) for multiple servers (mi>1) and by

formula (1) without factor (1-ρ) for single server (mi=1) where ρi=xi/miµ i. Like Jackson
networks in such a closed network the service centers behaves as independent M/M/m type
queueing systems, although this is not the case.
Note that in closed networks the queue length distribution of any center i does not
correspond to function gi as for open networks, but is derived from the joint queue length
distribution π(n) given by formula (4). This requires the computation of functions gj for
each node j and of the normalization constant G that guarantees that Σnπ(n)=1. Hence the



computation of the performance indices in closed queueing networks is a non trivial
problem. In Section 4 we shall deal with this problem.

3.2 Main result

The quasireversibility of the queues in network models was discussed and studied by Kelly
[Kelly 79]. A sufficient condition for product form solution network is that it consists of
quasireversible queues interconnected by a Markovian routing. Such a routing is defined
when the customer routing decision only depends on the state of the current customer's
class and service center and is independent of the state of the rest of the network. The
characterization of product form solution related to quasireversibility of queueing network is
discussed in [Kelly 79, Warland 88, Nelson 93].
If this sufficient condition for product form holds then the stationary state distribution π  has
the closed form expression given by formulas (4) and (5) for single class and multiclass
queueing networks, respectively.

The well-known BCMP theorem proved by Baskett, Chandy, Muntz and Palacios in
[Baskett et alt. 75] defines the so-called BCMP queueing networks with product form
solution for open, closed or mixed models with multiple classes of customers, various
service disciplines and service time distributions. In particular they defined the four types I-
II-III-IV of service centers introduced above that are quasireversible queues. The stationary
state distribution is expressed as the product of the distributions of the single queues with
appropriate parameters and, for closed networks, with the normalization constant.
External arrivals in BCMP networks are Poisson process and the average arrival rate may
depend on the total network population or on the population of a chain. Let λ(n) and λr(Kr)
denote the overall arrival rate to the network dependent on the total number of customers in
the network (n) and in chain r (Kr), respectively. The routing for each chain r is described

by a routing matrix P(r)=[p(r)
ic;jd] where pic;jd denotes the probability that a customer

leaving center i from class c immediately goes to center j in class d, whereas pic;0 is the
probability that it leaves the network. Then the traffic equations (6) are defined for each
chain r and provide the visit ratio x(r)ic for each class c in service center i. Let Cir the set of

the classes in service center i that belong to chain r. Hence xir=Σc∈Cir x
(r)ic is the visit ratio

for node i and chain r. Let µir denote the service rate of service center i and chain r and let

ρir=xir/µir. Then the BCMP product form solution is given by formulas (4) and (5) with

V(n)= λ (k)
k= 0

n−1

∏ , Vr(Kr)= λ r(k)
k= 0

K(r) −1

∏
r=1

R

∏ , gi(ni)=
ρir

nir

n ir!r=1

R

∏  for type I-II-IV queues and

gi(ni)=ni!
ρir

nir

n ir!r=1

R

∏  for type III queue, G=1 for open networks and the normalizing constant

for mixed and closed networks.
The service rate of each node i can be dependent on the service center load, i.e. the number
of customers in node i and chain r. For type I node (with exponential service and FCFS
scheduling) it can depend only on node i population.
Note that as observed for FCFS-exponential networks, in a BCMP network the service
centers behaves as a set of independent queueing systems (M/M/m for type I queue and
M/G/m with PS discipline for type II queue, IS for type III queue and LCFS-Pr  for type IV
queue) although this is not true.

Quasireversible queues and Markovian routing provide a sufficient condition for product
form solution of queuing networks. As discussed above, queues with symmetric queueing
discipline are quasireversible [Kelly 69, Warland 88]. Another similar sufficient condition



for product form solution is station balance, a property of queueing discipline similar to
symmetric queues, that characterizes the scheduling for non-exponential queues that yield
product form solution by assuming a special closed form solution [Chandy-Martin 83].
Partial balance is a necessary condition for quasireversibility. It is defined on the Markov
process associated to the queueing network and states that the probability flux, i.e. the time
average transition rate, out of a state S due to arrivals of type r customers is equal to the
probability flux in state S due to departures of type r customers. An extensive discussion of
partial balance, quasireversibility, product form and other properties was presented in
[Nelson 93].
The partial balance condition as a characterization of product form networks is given on the
underlying process and it allows identifying more general cases of product form networks.
However, it cannot be always easily translated in terms of a simple characterization of
queueing network components, i.e. types of service centers, queueing scheduling, number
of servers and routing.

3.3 Extensions

Various extensions of the class of BCMP product form networks have been derived.
They include state dependent routing [Boucherie-VanDijk 91, Lam 77, Towsley 80], i.e. the
definition of routing probabilities are special functions that may depend on the state of the
entire network or of subnetworks and/or single service centers. This allows representing
systems with more complex features such as dynamic load balancing algorithms or adaptive
routing strategies.
Such models usually assume some additional constraints on the network parameters and a
special structure of the routing state dependent functions. For example Towsley [Towsley
80] considered closed queueing networks where the routing for some service centers may be
a rational function of the queue length of the service centers belonging to a downstream
subnetwork with a particular topology, called parallel subnetwork.

Example 3.1. A simple example is the central server network illustrated in Fig. 2c with
BCMP type service centers and where the routing probability from the central node 1 to the
other nodes may depend on the state of the downstream node and the state of subnetwork
{2,…,M}, i.e. the routing probability from service center 1 to i, 2≤i≤M, can be defined as
the following state dependent function: p1i(n)=hi(ni)h(n2+…+nM) where hi and h are
arbitrary nonnegative functions. The network has a product form solution (4) where

V(n)= h(k)
k= 0

n−1

∏  and gi is defined as for BCMP networks time a factor h i (k)
k=0

ni −1

∏  for each

node i,  2≤i≤M.

Boucherie and VanDijk have proposed an extension to more complex state dependent
routing by considering a more detailed definition of routing functions dependent on the state
of subnetworks called clusters and the state of service centers [Boucherie-VanDijk 91]. The
model assumes that the service centers are partitioned into a set of subnetworks that are
linked by a state dependent routing. Then the routing function between two service centers i
and j that respectively belong to two disjoint subnetworks I and J has the following
expression: p(I)i0 p'IJ p(J)0j, where p(I)i0 and p(J)0j are routing functions internal to
subnetworks I and J, respectively, and p'IJ denotes the routing between subnetworks. This
model can be useful to represent hierarchical and decomposable systems.

Queueing networks with finite capacity queues, subnetwork population constraints and
blocking have product form solution in some special cases [Akyldiz 87, Balsamo-DeNitto
94, Balsamo-Clò 98, Gordon-Newell 67b]. Various blocking types that describe different
behaviors of customer arrivals at full capacity service centers and the servers' activity in the
network have been defined. For several special combinations of network topology, types of



service centers and blocking mechanisms one can derive a product form solution for the
stationary state distribution. Moreover, one can derive various equivalence properties
between product form networks with and without blocking and between networks with
different blocking type, as discussed in [Balsamo-De Nitto 94].

Example 3.2. For example consider an exponential cyclic network illustrated in Fig. 2b
where each queue i has a finite capacity Bi. When a queue becomes full the upstream service
center is blocked until there is a free buffer position in the destination node. This is called
the Blocking Before Service (BBS). If the number of customers in the network K is such
that any node can never be empty, i.e. K > Bi

1≤i≤M
∑ − min1≤i≤M Bi  [Gordon-Newell 67b]

then product form solution given by formula (4) holds with V(n)=1, G the normalizing
constant, g1(n1)=(µM)n1, gi(ni)=(µi-1)ni , 2≤i≤M.

Example 3.3. Consider a network with BCMP type service centers and finite capacity
queues. When a job attempts to enter a destination node with full capacity, it goes back to
the sending node where it receives a new service according to the service discipline. This is
called Repetitive Service Blocking (RS). If the network has reversible routing, i.e. if matrix
P is such that xipij=xjpji and λp0i=xipi0 for each i and j, then the network has the same
product form solution (4) as the BCMP network with infinite capacity queues, but
normalized on the restricted state space. The central server network shown in Fig. 2c is an
example of reversible routing network.

Another extension of queueing networks with product form is the class of networks
proposed by Gelenbe [Gelenbe 91] with positive and negative customers that can be used to
represent special system behaviors. For example negative customers may represent
commands to delete some transactions in databases or in a distributed computer system due
to inconsistency or data locking. A negative customer arriving to a service center reduces the
total queue length by one if the queue length is positive and it has no effect otherwise.
Negative customers do not receive service. A customer moving between service centers can
become either negative or remain positive. Such a queueing network has product form
solution under exponential and independence assumptions and with a Markovian routing
and the solution is based on a set of non linear traffic equations of the customers.

Extension of BCMP networks to different service discipline has been derived. Le Boudec
proved product form solution for queueing networks with multiserver nodes with
concurrent class of customers that allow to represent special systems [Le Boudec 86].

Product form solution has been extended to queueing networks with batch arrivals and batch
services [Henderson-Taylor 90a, Henderson-Taylor 90b] that are also related to discrete
time queueing network models. The model evolution is described by a discrete time Markov
chain and assumes special expressions for the probability of batch arrivals and departures
and correlated batch routing. The product form solution is based on a generalized expression
of the traffic equations and the quasireversibility property of the network. The product form
solution holds for continuous time and discrete time queueing networks.

3.4 Properties

Product form networks yield various properties.
Insensitivity is an interesting property that states that some performance indices are
insensitive to certain network parameters [Baskett et alt. 75, Chandy et alt. 77, Chandy-
Martin 83, Shassenberger 78, Whittle 85]. The stationary queue length distribution and the
average performance indices (throughput, resource utilization, average waiting time and
response time) depend on the service time distributions only through the average. Hence in



BCMP networks different service time distributions with the same mean value for a given
node of type II, III or IV do not affect the queue length distribution and average
performance indices. Insensitivity is related to the station balance property as discussed in
[Chandy et alt. 77].
A practical consequences of insensitivity is that when a system is represented by a product
form network one has to estimate only the first moment of the service time distribution for
each resource to define the model parameter.
Insensitivity of product form networks holds also for the customers routing. Indeed, the
product form solution definition depends on the customers routing only through the average
visit ratio to each service center. They are obtained by the linear system of traffic equations
(6). Hence product form networks with different routing matrix P but with the same visit
ratios xi's, for each service center i, provide the same queue length distribution and average
performance indices. Moreover in multiclass networks if we want to evaluate performance
indices for each chain and not for each class it is sufficient to estimate the visit ratios at each
service center for each customer chain. In the example of Figure 3, one can simply estimate
the visit ratios for chain 1 and 2 to each service center to derive the queue length distribution
for each queue and chain.
As a consequence in order to define the network parameters for a system represented by a
product form network it is not necessary to describe the routing matrix but it is sufficient to
estimate the visit ratios at each service center for each customer chain.

Another property of product form queueing network models is exact aggregation. The
aggregation theorem or Norton's theorem for queueing networks proved by Chandy,
Herzog and Woo [Chandy et alt. 75] allows substituting a subnetwork with a single service
center, so that the new aggregated network has the same behavior in terms of a set of
performance indices. The aggregated or flow-equivalent service center is usually defined as
a FCFS service center with exponential service time and load dependent service rate. This
service rate when there are n customers represents the throughput of the subnetwork
analyzed in isolation with n customers circulating. A simple example of aggregation is
shown in Figure 4 where subnetwork {2,…,M} is aggregated into the flow equivalent node
C. The service rate µC(n) is set equal to the throughput X(n) of the subnetwork analyzed in
isolation when there are n customers, for each n. The aggregated network in Figure 4c is
obtained by substituting the subnetwork with the aggregated node C. The aggregated
network and the original one have the same marginal queue length distribution and average
performance indices.

(a)

…1

2

M

(c)

1 C

(b)

…

2

MX(n)

µ (n)= X(n)
C

Figure 4 - Aggregation theorem: (a) original network, (b) isolated subnetwork, (c)
aggregated network.



Exact aggregation in queueing networks holds for any subnetwork, i.e. for subnetworks
with multiple entry and exit points and for which we have also to define a new routing
matrix for the aggregated network [Balsamo-Iazeolla 82], and for multichain networks
[Kritziger et alt. 82].
Exact aggregation can be used in hierarchical system analysis. In a bottom-up system design
process we can relate the performance indices of the network models at different levels in
the hierarchy [Lazowska et alt. 84]. Exact aggregation provides a tool to define an
equivalent aggregated model at the higher level. Similarly, in a hierarchical top-down system
design with predefined performance requirements, we can apply the inverse process called
disaggregation or synthesis of the network to define a more detailed model with the same
performance indices [Balsamo-Iazeolla 85]. The disaggregation process answer the question
of what the system topology and parameter should be in order to achieve the given
performance goal.
An important application of exact aggregation for product form queueing networks is the
definition of various approximate methods for non product form networks [Marie 79].
These algorithms are usually based on an iterative scheme and they basically apply the
aggregation theorem to non product form networks, although in this case it provides only
approximate results. At each iteration step several subnetworks are analyzed and aggregated
in the flow-equivalent service centers. This principle has been applied for the approximate
analysis of various types of non product-form networks, such as for example networks with
simultaneous resource possession and finite capacity queues.

Another interesting property of product form queueing networks is the arrival theorem. It
states that the stationary queue length distribution at arrival times at a service center is
identical to the stationary distribution at arbitrary times of the same networks, for open
networks, and of a network with one less customer for closed networks [Lavenberg-Reiser
80, Sevcik-Mitrani 81]. A practical important consequence of this theorem is the definition
of a set of recurrence equations between the performance indices of closed networks with K
customers and those of the same network with K-1 customers. This led to the definition of
Mean Value Analysis (MVA) [Reiser-Lavenberg 80], a recursive algorithm to evaluate
performance indices of closed product form networks, without the direct evaluation of the
normalization constant. This was a significant contribution in the research area of algorithms
and tools for the efficient evaluation of product form queueing networks.

We shall now discuss the computational algorithms to analyze product form queueing
networks.

4. Product form queueing networks: computational algorithms and tools

The main advantage of product form queueing networks is that several efficient algorithms
have been developed for their performance analysis. As a consequence efficient and
powerful performance evaluation tools based on product form network models have been
developed and applied to obtain performance indices for large networks with many service
centers and customers.
We shall now introduce the most used algorithm for product form BCMP networks. Two
well-known algorithms for closed networks are Convolution Algorithm [Buzen 73] and the
Mean Value Analysis [Reiser-Lavenberg 80, Reiser 81]. They provide the evaluation of a
set of performance indices with a polynomial space and time computational complexity in
the number of service centers and the network population.

4.1 Convolution Algorithm

For closed networks the computation of the stationary state distribution π  requires the
evaluation of the normalizing constant G in formula (4). Since V(n)=1, constant G is



defined as G = g i (n i )
i=1

M

∏
n
∑ . Direct computation of G as a summation over all the feasible

states n of the network would take an exponential time in the number of service centers and
customers of the network, i.e. proportional to the number of states of the network. The
Convolution Algorithm avoids this direct computation and evaluates G recursively. For a
network with M service centers and K customers let Gj(k) denote the normalizing constant
of the network with k customers and the first j service centers, 1≤j≤M and 0≤k≤K. Then
G=GM(K) and we can write the recursive relation that is the convolution

G j (k) = g j (n)G j-1(k -n)
n=0

k

∑ (7)

where Gj(0)=1. This basic scheme can be further simplified in some cases. If the first j
service centers have infinite server discipline (type III BCMP node) then we can

immediately write G j (k) = ρi
i=0

j
∑

 
 
  

 
 

k

/ k!, with ρi=xi/µi. If service center j has a single

server then we simply have gj(k)= ρjk. Hence convolution (7) reduces to

G j (k) = G j-1(k)+ ρ
j
kG j-1(k -1)

for 0≤k≤K. Therefore the time computational complexity of evaluating G=GM(K) is O(MK)
operations. It is worthwhile noticing that several performance measures can be directly
evaluated by function GM. For a single server node j with load independent service rate we
can write:

queue length distribution πj(k) = ρjk[GM(K-k)-ρjGM(K-k-1)]/GM(K), 0≤k≤K

average queue length Nj = ρj
k GM(K − k) GM(K)

k=1

K
∑

throughput Xj = xj GM(K-1)]/GM(K)

utilization Uj = Xj / µj

However, for a service center j with load dependent service rate the queue length
distribution can be written as follows πj(k) = gj(k) GM-{j}(K-k)/GM(K), where GM-{j} is
the normalizing constant of the entire network except for node j. This requires the solution
of another network. Hence, the Convolution Algorithm efficiency is reduced when the
network has several load dependent service centers.
A limitation of this algorithm is its potential numerical instability, i.e. possible overflow or
underflow in the computation of constant G. Some scaling techniques to overcome this
problem have been proposed [Lam 82].

4.2 MVA Algorithm

MVA Algorithm avoids the direct evaluation of the normalization constant. Consider a
closed networks with M load independent service centers and K customers. Let Rj(K),
Xj(K) and Nj(K) denote respectively the average response time, the throughput and the
average queue length of service center j. The algorithm is based on the following recursive
scheme:



Rj(K) = [1/µj] (1+Nj(K-1)) (8.1)

Xj(K) = K / [ xi R i (K) x j
i=1

M
∑ ] (8.2)

Nj(K) = Xj(K) Rj(K) (8.3)

for 1≤j≤M, and Nj(0)=0. Formula (8.1) derives from the arrival theorem for product form
closed networks while formulas (8.2) and (8.3) are Little's law applied to the entire network
and node j, respectively. For infinite server queueing discipline the first relation simplifies in
Rj(K) = 1/µj. For load dependent service centers it is necessary to compute the queue length
distribution of node j when there are K customers in the network, denoted by πj(k|K),
0≤k≤K. Then the first recursive relation of the algorithm becomes:

Rj(K) = k π j(k −1|K −1) µ j (k)
k=1

K
∑

and probability πj is recursively evaluated as follows:

πj(k|K) = πj(k-1|K-1) Xj(K)/µj(k), 1≤k≤K, πj(0|K) = 1- π j(k|K)
k=1

K
∑ .

Such a computation of the queue length distribution can lead to numerical instability. A
modified MVA algorithm was proposed to overcome this drawback at the expenses of
increased computational complexity. The empty node probability is recursively computed as
follows: πj(0|K) = πj(0|K-1)(Xi(K)/XiM-{j}(K)) where XiM-{j}(K) is the throughput of a
service center i in the network obtained by the original one without node j. Hence for a
network with J load dependent service center this modified version of the MVA algorithm
requires the solution of 2J-1 additional networks to evaluate the throughput [Lavenberg 83].

Another interesting result of recursive relations for product form networks is the set of
recursive expressions for the derivatives of higher moments of the queue length derived by
McKenna and Mitrani [McKenna-Mitrani 84] that with the asymptotic expansion method
allows obtained bounds for the higher moments of the queue length.

4.3 Multichain models

Convolution and MVA algorithms apply also to multiclass and multichain networks [Reiser-
Lavenberg 80, Reiser 81, Lavenberg 83, Sauer 83, Lam 82]. However, their computational
complexity for a network with M load independent service center, R closed chains and Kr
customers in chain r=1,…,R is of O(MR Kr

1≤r≤ R
∏ ) operations, i.e. it is exponential with the

number of closed chains. This limitation led to the definition of special exact and
approximate algorithms for multichain networks.

Exact methods are the tree Convolution and tree MVA algorithms that are efficient when
customers of any given chain visit only a small number of service centers. This feature has
been observed in models of computer and communication systems and in communication
networks [Lam-Lien 83]. Tree Convolution and tree MVA algorithms extend respectively
Convolution and MVA and are based on a tree data structure to optimize the algorithm
computation [Lam-Lien 83, Tucci-Sauer 85, Hoyme et alt. 86].
Recursion by Chain Algorithm (Recal) [Conway-Georganas 86, Conway-Georganas 89]
has a computational cost polynomial in the number of closed chains but exponential in the
number of service centers. Recal recursively computes the normalization constant G of the
product form solution and then one can observe overflow and underflow instability. The
analogue extension of MVA to multichain is the Mean Value Analysis by Chain algorithm
[Conway et alt. 89] that avoids the computation of the normalizing constant. If we want to



evaluate the joint queue length distribution we can use the Distribution Analysis by Chain
(DAC) [DeSouza-Lavenberg 89] that also provides the average performance indices. The
three algorithms Recal, MVA by Chain and DAC are efficient for a small number of service
centers and many closed chains. Details on the algorithms can be found in literature
[Chandy-Sauer 80, Lavenberg 83, Conway-Georganas 89, Kant 94]
Exact solution of multichain product form networks with a large number of customers,
classes, chains and service centers is possible only if they have few closed chains by using
tree structured algorithms or few service centers with Recal, MVA by Chain and DAC
algorithms.

Approximate algorithms for product form networks can be non-iterative or iterative.

Simple non-iterative methods provide bounds on the performance measures. Various
bounding methods such as Balanced Job Bounds, Proportional Bound and Performance
Bound Hierarchies (PBH) techniques [Zahorjan et alt. 81, Eager-Sevcik 86, Hsieh-Lam 87,
Hsieh-Lam 89] provide bounds on the average performance measures. Some techniques are
based on the MVA equations, such that the PBH method that provides increasingly tighter
bounds at the expense of increasing computation cost.
A different approach is the asymptotic expansion method [Mitra-McKenna 86] where the
normalization constant G can be rewritten as a linear combination of terms that can be
interpreted as normalizing constants of simple networks, with few chains and a small
population. Hence G is approximated by these simpler computations. Moreover the method
provides error bounds on the average performance measures.

Most iterative approximate methods are based on the MVA algorithm. The Bard-Schweitzer
Proportional Estimation [Schweitzer 79] is a popular and widely applied approximate
algorithm [Pattipati et alt. 90]. The average queue length Nj(K-1) of a service center j for a
network with K-1 customers is approximated as follows:

Nj(K-1)=Nj(K) K-1/K

Then by substituting this equation in formula (8.1) MVA becomes an approximate iterative
algorithm. An improved algorithm called Linearizer [Chandy-Neuse 82] defines the
difference between the fractional queue length of each service center at population K and K-
1 as Dj(K)=[Nj(K-1)/(K-1)]-[Nj(K)/K]. While Schweitzer's approximation assumes that
Dj(K)=0 for each service center j, Linearizer assumes that Dj(K) is independent of K and
approximates its value by iterations starting with Dj(K)=0. Linearizer is a quite accurate
algorithm and further improvements have been developed [Pattipati 90]. Special extensions
of these algorithms have been defined for networks with load dependent service centers.

Remark. The computational algorithms surveyed in this section solve BCMP product form
networks. Note that, as discussed in the previous section, various extensions of this class of
product form networks have been defined. However, the solution algorithms do not always
immediately apply to non-BCMP product form networks. We have pointed out how load
dependent service centers often lead to special recursive formulas, like in Convolution and
MVA algorithms. Similarly, solving product form networks with special features, such as
state dependent routing, finite capacity queues and blocking, special queueing disciplines,
negative customers and batch arrivals and services is in general a non trivial problem. Some
algorithms have been defined for some classes of product form networks. For example
special algorithms have been defined for some product form networks with a particular
queueing discipline that models multiserver centers with concurrent classes of customers [Le
Boudec 88] or for networks with finite capacity queues and blocking [Balsamo-Clò 98].

4.4 Queueing networks tools



Beside performance measurement tool, performance modelling tools based on queueing
networks have been developed. The workload characterization tools provide the quantitative
characterization of the system resource demands of workload that is used to define the
performance models. Software tools for performance modelling and analysis integrate the
computational algorithms to solve queueing network models with a model specification
language. Such tools usually have user friendly interfaces based on different languages to
take into account the particular field of application, e.g. computer networks, communication
networks, distributed computer systems. This allows not expert users to apply efficient
performance modelling techniques.
Some tools include hierarchical modelling techniques and allow the definition of various
system performance models at various levels. Two models at different level are related by
the aggregation and disaggregation technique.
Most performance evaluation packages include exact BCMP product form solution methods,
e.g. at least Convolution and/or MVA algorithms and possibly other algorithms. Some tools
provide approximate solution methods usually based on an approximate product form
solution. Many packages give the user the choice between analytical methods and
simulation. Examples of performance evaluation packages are Best-1, RESQ/IBM, QNAP2,
HIT [Lavenberg 83, Lazowska et alt. 84, Beilner et alt. 95, Potier 86] just to mention a few.
More recently the solution performance algorithms have been integrated with model
specification techniques to provide tools for the combined functional and quantitative system
analysis [Smith 90].

5.Status and future directions

Product form queueing networks has proved to be a very useful class of models for system
performance evaluation. This is due to a good balance between the relative high accuracy
and robustness of performance results and the efficiency in model solution. The precise
characterization of product form networks is not trivial in terms of model characteristics, as
discussed in Section 3, since the properties are basically related to the associated Markov
process.
Several special extensions of the class of BCMP product form networks have been obtained
to include various interesting system features, such as state dependent routing, blocking,
negative customers and batch customer movements. However, most of these models have
product form solution under several constraints on the system structure and parameters. An
open problem is the definition of efficient algorithms for the computation of performance
indices of non-BCMP queueing networks, such as for example the models with batch
arrivals and departures. Efficient analysis of discrete-time queueing networks is a related
open problem.

Today the product form class seems to be well defined and it is difficult to expect that
further wide extensions will be discovered or defined.
Product form networks provide the basis for many approximate algorithms to solve more
general non product form models. Hierarchical modelling and decomposition-aggregation
techniques are the main tools in this area. Hence exploiting the robustness of the properties
of product form networks can still be useful to solve more general networks. Interesting and
useful properties are insensitivity, exact aggregation and the arrival theorem. A research
issue is how to efficiently combine subnetwork solution in a decomposition aggregation
framework to obtain an approximate possibly error bounded solution. This potentially leads
to develop simple and efficient performance modelling tools.
Another research issue is the integration and/or the relation between queueing networks and
other classes of models with different characteristics, such as for example stochastic Petri
nets or stochastic process algebra. A challenge could be to develop efficient and integrated
tools that combine qualitative and quantitative system analysis, such as software architecture
specification and system performance.
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