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Abstracf. A new model is presented for capacitated Iot-sizing with sequence dependent setup costs. 

The model is solved heuristically with a backward oriented method; the sequence and lot-size decisions 

are based on a priority rule which consists of a convex combination of setup and holding costs. A 

computational study is performed where the heuristic is compared with the Fleisdimann approach for 

the discrete lot-sizing and scheduling problem with sequence dependent setup costs. 

Keywords: Lot-sizing, scheduling, sequence dependent setup costs, production planning and control 

1. Introduction 

For many production facilities the expenditures for the setups of a machine depend on the sequence 

in which different items are scheduled on the machine. Especially, if a machine produces items of 

different family typ es setup between items of different families can be substantially more costly than 

setups between items of the same family. Typically, the production quantities of the items are computed 

via lot-sizing. The objective of lot-sizing is to determine a schedule such that the sum of setup and 

holding costs are minimized with respect to demand (and capacity) constraints. Thus in the case of 

sequence dependent setup costs we have to integrale sequencing in lot-sizing in order to compute setup 

costs accurately. 

Despite of the relevance there has been done only little research in the area of lot-sizing and 

scheduling with sequence dependent setup costs. 

Some papers have been published which are related to the so-called discrete lot-sizing and 

scheduling groblem (DLSP) [cf. Fleischmann 1990]. In the DLSP it is assumed that the production 

process always runs füll periods without changeover, i.e. at most one item will be produced per period. 

First, in [Schräge 1982] a DLSP-like model with sequence dependent setup costs is considered. For the 

DLSP an exact branch-and-bound approach based on Lagrangean relaxation of the capacity constraints 

has been presented in [Fleischmann 1990] which is extended to the DLSP with sequence dependent 

setup costs (DLSPSD) in [Fleisdimann, Popp 1989]. In [Fleisdimann 1994] the DLSPSD is 

transformed to a travelling salesman problem with time windows; methods to determine a lower bound 

and a heuristic Solution for the DLSPSD are presented. 

Recently, a new type of model has been published in [Haase 1994] which is called the proportional 

lot-sizing and scheduling problem (PLSP). The PLSP is based on the assumption that at most one setup 

can occur within a period, i.e. at most two items are produdble per period which allow a more efßdent 

capadty usage than in the DLSP. Furthermore the setup State can be preserved over idle time. For the 

heuristic Solution a method is introduced which can be extended for the PLSP with sequence dependent 

setup costs. 

In [Dilts, Ramsing 1989] an uncapadtated lot-sizing model with sequence dependent setup costs is 

considered. 
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A heuristic for a static (i.e. constant demand per period) lot scheduling problem with sequence 

dependent setup costs and times is introduced in [Dobson 1992]. 

Thus, the capacitated, dynamic lot-sizing problem with sequence dependent setup costs where per 

period all items are producible has not been considered so far. In this paper this problem will be 

addressed. 

We start in the next section with a mathematical formulation of the DLSPSD. Then we extend the 

so called capacitated lot-sizing problem with linking (CLSPL) [cf. Dillenberger et al. 1992, Haase 

1994] for the case with sequence dependent setup costs, denoted by CLSPLSD. Linking means that 

production quantities of an item of adjacent periods can be linked to avoid a setup. As in the PLSP the 

setup State can be preserved over idle time. To illustrate the differences between the DLSPSD and the 

CLSPLSD we consider a simple example. For the heuristic Solution we introduce a method which is 

backward oriented and relies on a priority rule (Section 3). A CLSPLSD can be approximated by a 

DLSPSD. A computational study is performed in Section 4 where we comp are the method with the 

DLSPSD approach proposed in [Fleischmann 1994]. 

2. Capacitated Lot-sizing with Sequence Dependent Setup-Costs 

We characterize the deterministic lot-sizing problem which is addressed: A single-stage system is 

considered, where a number of different items j=l,...,J have to be manufactured on one machine 

(corresponding to a single capacity constraint) which is available with Ct capacity units. The time 

horizon T is segmented into a finite number of periods t=l,...,T. Producing one unit of item j absorbs pj 

capacity units. The demand for item j in period t, djt, has to be satisfied without delay (shortages are 

disallowed). Setup costs of sCy are incurred when the setup of the machine changes from item i to item j. 

Inventory costs hj per unit (holding costs coefficient) are incurred for the inventory of item j at the end 

of a period. The objective is to minimize the sum of setup and holding costs. 

[Fleischmann, Popp 1989] and [Fleischmann 1994] propose the discrete lot-sizing and scheduling 

groblem with sequence dependent setup costs (DLSPSD) where a period t is divided in St sub-periods 

s=(t, 1), (t,2),..., (t,St) of equal length. The following fundamental assumption is made: 

The production process ahvays runs füll sub-periods without changeaver. 

Thus, at most one item is producible in a sub-period s and at most St different items in a period t, 

respectively. Since the sub-periods have the same length (capacity) lot-sizes are always multiples of a 
füll period production Pj. 

We use the following notation: 
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indices 

j = item number; j=0,..., J where J denotes the number of items, and j=0 the "idle-item" or the non-

setup state. 

t = period number; t=l,...,T where T is the number of periods (planninghorizon). 

s = sub-pehod; s=(l,l),...,(l,St),...,(t,k),...,(T,l),...,(T,ST) where (t,k)denotes the k-th sub-pehod in 

period t and St the number of sub-periods of period t. 

data 

djt = emand for item j in period t 

hj = inventory holding costs per unit of item j 

p j = production quantity per sub-period of item j 

Cy = setup costs which are incurred when the setup changes from item i to item j 

decision variables 

Ijt = inventory of item j in period t (Iß >0). 

XyS = a continuous variable which indicates the change of the setup State. If Xjjs >1, then item j is setup 

after item i in sub-period s. 

yjs = a binary variable. If yjs=l, then the machine is setup for item j in sub-period s (yjs=0 otherwise). 

Mathematically the DLSPSD can be stated as follows: 

J J (T3T) T J 
minimize ZDLSPSD = £ Z ZcÜxÜs + 2 (1) 

i=0 j=0s=(lJL) t=l j=l 

subject to 
C4) 

ij.w+Pj ZyjS-djt = Ij« (j=l,...,J; t=l,...,T) (2) 
s=(t.l) 

(j=l,...,J) (3) 

(S=(1,1),..5(T,ST)) (4) 
j=0 

xijs^yjs+yi,s-i-i 

yjs ^{0,1} 

(i=0,...,J; j=0,...,J; S=(1,1),...,(T,ST)) 

(j =0,...,J; S=(1,1)V»(T,ST)) 

(j=l,...,J;t=l,...,T) 

(5) 

(6) 

(7) 

(i=0,...,J; j=l,...,J; s=(l,l), . ,(T,ST)) (8) 
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(1) irunimizes the sum of setup and holding costs. (2) compnses the ordinary inventory balance 

constraints. (3) avoids unnecessary production which might occur if the triangle inequality 

cij^cik+ckj (i,j,k=0,...,J) (9) 

is not satisfied. (Note the setup State is not preserved over idle periods. Due to the basic assumption the 

final inventory of an item may be greater or equal than zero and less than the production quantity per 
sub-period, i.e. it is 0 < 1 .̂ < pj for j=l,...,J.) That one item per sub-period is produced only is stated in 

(4). (5) forces setup costs of item j to be added to the total costs if a batch starts for item j. 

Note, if S[>2 then more than one batch can Start for an item j in the period t (e.g. 
yi(U) = yj(t,2) = yi(t^) = 1 with i#j). However, a batdi can be distributed over more than one period, 

i.e. a batch can be started in a period t and finished in a period x>t (e.g. yj(t,st) = yj(t+l,l) = 1) 

The DLSPSD focuses the case where a setup has to be performed at the beginning of a sub-period 

(e.g. shift, day). But often in practice there exists the possibility to perform a setup within a period and 

the setup State of a machine can be preserved over idle time. In such a case the DLSPSD is an 

approximation only. 

In [Haase 1994] a so-called capacitated lot-sizing problem with linking, denoted by CLSPL, is 

considered where up to J items per period are producible, the lot-sizes are continuous, and the setup 

State can be preserved over idle time. As in the DLSP a batch can be distributed over more than one 

period. Linking can occur for production quantities which are produced in two adjacent periods. To 

extend the CLSPL for the case with sequence dependent setup costs, denoted with CLSPLSD, we 

assume the triangle inequality (9). Mathematically the CLSPLSD can be stated as follows: 

J J J T J T 
minimize ZCLSPLSD = ^ CQ jz j0 hjIjt (1 °) 

j=l i=l j=l t=l j=l t=l 

subject to 

Vi+(ljt-djt =Ijt (j=l,...,J;t=l,...,T) (11) 
j 

SPjqjt^t (t=l,...,T) (12) 
j=i 

( J 
Ct Zxijt +zj,t-i Pjqjt^O (j=l,...,J;t=l,...,T) (13) 

Vi=l 
J 

Zzj. =1 (t=0,l,...,T) (14) 
j=l 
J 

Zxto+zu-i = Z!xkjt+zkt (k=l,...,J; t=l,...,T) (15) 
j=i 

fjt>fit+l-J(l-xijt) (i=l,...,J; j=l,...,J; t=l,...,T) (16) 

fjt > 0; qjt > 0; Ijt > 0; (j=l,...,J; t=l,...,T) (17) 
xijt g{0,l}; (i=l,...,J; j=l,...,J; t=l,...,T) (18) 



zjt = {o,l}; (j=l,...,J;t=0,l,...,T) (19) 

where 

Ct = capacity in period t, 

fjt = a dummy variable used to eliminate sub-tours, 

Pj = capacity which is required to produce one unit of item j, 

qjt = production quantity of item j in period t, 

Cqj = setup costs which occur if item j is produced as first item in period t=l, 

xijt = a binary variable. If Xyt =1, then item j is setup after item i in period t (Xyt =0 otherwise), 

zjt = a binary variable. If zjt=l, then the machine is setup for item j at the end of period t and at the 

beginning of period t +1 (zjt =0 otherwise), 

and the other symbols are defined as in the DLSPSD. 

(10) minimizes the objective function value. (11) and (12) contain the ordinary inventory balance 

and capacity constraints, respectively. (13) forces setup costs of item j to be added to the total costs if a 

setup occurs for item j in period t. (14) and (15) secure that only one item can be produced at the end of 

a period and produced further (linking) in the following period. (16) eliminates sub-tours [cf. Dilts, 

Ramsing 1989]. 

For illustration of the models we consider the following example: 

Example: Let J=3, T=3, C1=C2=75, C3=100, and the other data as provided in Table 1. (Note, we have 
to assume integers Ct/pi=Ct/pj=St for t=l,...,T and ij=l,...,J.) 

Table 1 Data of the example 

djl 42 dj3 Pj pj hj CQj °lj °2j °3j cj0 

j=l 15 30 40 25 1 1 40 0 40 80 0 

j=2 10 15 25 25 1 1 40 40 0 80 0 

j=3 0 50 25 25 1 1 80 80 80 0 0 

Thus, it is Ci/pj=75/25=Si=S2=3, and Cg/pj=Sg=4 for j=l,...,J. We solve this instance as a DLSPSD 

as well as a CLSPLSD to optimality. The solutions are given in Table 2 where Z* denotes the 

corresponding optimal objective function values. 



6 

Table 2 DLSPSD and CLSPLSD Solution 

t 1 2 3 Z* 

s=(t,k) (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3) (3,4) 

YisPi 25 25 25 25 

DLSPSD y,.P2 25 25 295 

y3sP3 25 25 25 

9lt 20(2) 25(3) 40(7) 

CLSPLSD1) 92t 25(1) 25(6) 300 

43t 50(4) 25(5) 

1) the numbers in braces give the sequence in which the items are scheduled 

Since (9) is not satisfied, e.g. (C31=80)>(C3O+COI=40), the optimal Solution of the DLSPSD is less 

costly than the corresponding CLSPLSD Solution. The final inventory of the item j=l is greater than 

zero, i.e. I13 = pjyls - dIt = 100-85=15. In order to save holding costs the DLSPSD (1*1) t—L 

Solution can be improved by reducing the last production quantity of the item j=l to 10, which reduces 

the total costs from 295 to 280 (=Z*educedDLSPSD). However, if (9) is valid, the following inequality can 

be stated: 

7* <7* < 7* CLSPLSD ~ reduced DLSPSD — DLSPSD ' 

This can be reasoned as follows: Due to the triangle inequality there exists an optimal DLSPSD 

Solution where each item will be produced at most once per period t. If a batch for an item starts at most 

once in a period t, i.e. for j=l,...,J and t=l,..,T the corresponding Solution Space '' 's—(t,l) ̂ ^1-1 J 

of the DLSPSD is a subset of the Solution Space of the CLSPLSD. 

3. A Backward-Oriented Heuristic for the CLSPLSD (BACLSPLSD) 

We describe a simple heuristic for the CLSPLSD which starts with scheduling at the planning 

horizon and steps backwards to the first period. The lot-size and sequence decisions are performed by a 

simple priority rule which consists of a convex combination of holding and setup costs. 

To define the priority rule we have to introduce some additional notation (cf. Haase 1994). 

The cumulative demand of item j from period t to the horizon T which still has to be satisfied in the 

periods t,...,l is defined by 

Djt := max|o,^(dJT — q^ )| forj=l,...,J andt=l,...,T. 

The total still required capacity is specified by 



7 

TRC:=2>jDjL. 
j=l 

The available capacity in period t will be computed as follows: 

ACt = Ct-^=1Pjqjt fort=l,...,T. 

The cumulative capacity from period T=1 to period x=t is denoted by 

CCt := fort=l,...,T. 
T=1 

Scheduling will be done backward oriented, i.e. at first the lot-sizes are determined in period t=T, 

then in period t=T-l, and so on. We compute a sequence 

SEQ=(0,seqi,...,seqit,...,seq-,...,seq[,...,seqJT_1,0)=(0,seq1,...,seqT) 

where 

r^ = the number of items scheduled in period t, 
seq* = the item which is scheduled as i-th item in period t, 

seq1 = the (sub-) sequence in whidi the items are scheduled in period t. 

The last item in a period t<T is always the first item in period t+1 (setup preserving), i.e. 
seqg = seq i+1 for t=l,.. ,,T-1. If the capacity which is required to sdiedule item j in period t is less than 

the available capacity then item i is placed at its cheapest Insertion costs position, i.e. item j is scheduled 

at the position k+1 if 

Cjt : = cseqi ,j + Cj,seq^ ~ Cseqlk ,seq^ ~ Cseq^ j + Cj,seq^, ~ Cseq^seq^1 for m-I,1, 

otherwise item j is scheduled as first item in period t and as last item in period t-1 (linking). 

To derive a priority value which is based on "savings" we distinguish four cases: 

1) There is unsatisfied demand of item j in period t and the available capacity in period t is greater 
or equal than the capacity which will be required if item j is scheduled in period t, i.e. AQ > PjDjt > 0. 

Thus, to schedule item j after item i in period t and not in period t-1 saves holding costs hjDjt and incurs 
setup costs cf*. 

2) It is ACt < pjDjt > 0. If a setup occurs for item j in period t item j will be scheduled in periods t 

and t-1 with linking, i.e. zjt = 1. Thus, setup costs CjjSeqt are incurred in period t-1 and holding costs 

hjDj;t.i (=hj(Djt+dj will be saved because the amounts ACt/pj and Dj^j-AC/pj are not scheduled 

before t or t-1, respectively. 

3) Item j is scheduled as first item in period t, there exists a positive demand of item j in period t-1, 

i.e. qjt > 0, and dj t_i>0. Thus a link in period t for item j avoids setup costs, estimated by 
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and holding costs hjdj t.^ because the amount is not scheduled in period t-2. After linking is performed 

between period t and period t-1 no more changes of the schedule from period t up to period T will be 

performed. Thus if we "leave" period t and it is ACt >0 we have to perform a feasibility check, that is, 

the total still required capacity must be less or equal the available capacity from period 1 up to period t-

1, i.e. TRC<CCt_i. In the case where a link is feasible opportunity costs for ACt arise which will be 

estimated by 

hp • ACt, where hp = 1/J ]̂j=1hj /p j 

4) Linking in period t (for item j=seq|) does not improve the Solution quality (i.e. 

Dj t=Dj t_i=0), linking leads to infeasibility, or item j is not the first item in the sub-sequence of period t 

(i.e.j*seq{). 

Thus, we define the following priority value for item j in period t 

(1-cOhjDjt - a-Cjt"1 if (ACt>PjDjt >0)A(j?tseqi,...,seq*i) 

r ^ (l-a)hjDj^_i-a Cj^ if(ACt<pjDjt >0)/\(j*seq|,...,seq^) 

^ (l-a)hjdj ^ +a Cj -ß hp AQ if j = seqf A(djt_] >0) A(TRC<CCt_j) 
-oo otherwise 

where 0<a<l. 

The larger the ijt the more preferable it is to schedule the item j in period t. Therefore the item with 

the largest priority value will be scheduled (priority rule). 

By the parameter ae[0,l] we will control the expected lot-sizes, e.g. if a=l we expect large lot-

sizes for items with high setup costs. The parameter ße[0,l] allows to compute different opportunity 

costs for unused capacity. 

A formal description of the backward oriented method, denoted by BACLSPLSD, is given in the 

following: 
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BACLSPLSD 

WITIALIZATION: 
T 

for j=l,...,J, t=l,...,T do begin qjt:=0; Djt := J]djT end; 
T=t 

TRC:=gp^;SEQ:=(); 
j=l 

t 
fort=l,...,Tdo CCt := 

r=l 

SCHEDULING: 

t:=T; seq^:=(0,0); ACt := Q 

while t > 0 do 

begin 

for j=l,...,J do compute rjt; 

(i,k) = (item with maximal priority value, position in sequence); 

if i e{seq2,seq3,..} then begin SEQKOeq^seqj,...), SEQ); t:=t-l; seqt=(0,i); end 

eise if pjDit > ACt then 

begin 
qit:= AQ/pi; TRC:=TRC - p^; SEQKUseq^seqj,...), SEQ); 

t:=t-l; seqt=(0,i); ACt:=Ct; 
for t=l,...,t do DiT:=DiT-qit; 

end eise seqt : = (...,seq^,i,seq^,...); 

q:=min{Ct/pi,Dit}; ACt:=ACt-piqit; TRC:=TRC-pjqit; 
for x=l,...,T do Dlx:=Dh-qit; 

end; 

if Zj-i^ji > ® "*CI1 Z:=°o; 

Note, if for an instance a feasible Solution exists, i.e. - CCt for t=l,...,T, 

BACLSPLSD computes a feasible Solution due to the feasibility check. 

The Solution quality depends on the dioice of the parameter values a and ß. Therefore, we apply a 
search procedura for the parameter values ae[a, öt]c [0,1] and ße[ß, ß ]c [0,1]. We Start with a=a 

and ß=ß. Then ß will be increased by Aß:=(ß -ß Vb, where b is an int%er greater than 2, as long as ß 

=ß If ß=ß a will be increased by Aa:=(cx-a)/b and ß will be reset to ß, and so on until a=a and ß 

=ß Let amm and ßm™ denote the respective parameter values of a and ß where BACLSPLSD has 

computed the best Solution. A more detailed search will be started with 

a:=max{Aa/b, - Aa(b-l)/b}, 

ä = min{ l-Aa/b,a™n + Aa(b-l)/b}, 
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ß:=max{Aß/b,ß™™ - Aß(b-l)/b}, and 

ß = min{l-Aß/b,ßmin + Aß(b-l)/b}. 

ff no improvement around and ß13™ has been achieved the search procedure stops, otherwise a 

further more detailed seardi will be started. 

Note, if a Solution exists, at least b2 schedules will be computed. Thus the computation time for all 

BACLSPLSD executions depends on the choice of b. 

4. Computational Study 

The computational Performance of BACLSPLSD is compared with the heuristic presented in 

[Fleischmann 1994], in the following denoted with H-DLSPSD. In [Fleisdimann 1994] the instances 

• TV11/S0 to TV11/S6 

• TV1 l/S0/h0 to TV1 l/S6/h0 

• TV12/S0to TV12/S6 

• TV13/S0to TV13/S6 

• TV14/S0 to TV14/S6 

• PR1 to PR4 

are considered. PR1 to PR4 relate to cases of the food industry, also considered in [Fleischmann, Popp 

1989]. The instances TV 11 to TV14 correspond to the data sets 11-14 of [Thizy, Van Wassenhove 

1985] with J=8 and T=8. For the DLSP the periods have been divided into sub-periods of equal 

capacity (50 units per sub-period). The 4 problems TV11 to TV14 difFer only in the capacity utilization 

(97,95,76 and 64%, respectively). The extensions /SO to /S6 denotes different setup costs matrices and 

/h0 indicates that the holding costs for all items are zero. The matrix SO denot es the original sequence 

independent setup costs of [Thizy, Van Wassenhove 1985]. 

The maximum in S1 is less than 1000. To provide a more "accurate" (or fair) comparison of 

BACLSPLSD and H-DLSPSD, we define a new setup costs matrix S7 by modification of S1 which 

satisfies the triangle inequality (9), i.e. 

Furthermore, we transform the demands of TV11 to TV14, denoted with /dt, to multiples of a füll 

period production, i.e. 

1000 if i,j> 0 A i*j 

S7y:= Sljj 0 ifi = jvj = 0 

2000 otherwise, i. e. i = 0 
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where |~a] denote the smallest integer greater or equal a. Note, if BACLSPLSD solves an instance with 

/dt all production quantities are multiples of a füll period production as in a DLSP Solution. 

The instances are solved with H-DLSPSD and with BACLSPLSD. The parameter b which has to 

be initialized for the search of well suited parameter values a and ß is in all instances 4. For a given H-

DLSPSD Solution holding costs are reduced a posterior, by reducing the last production quantities as 
shown in the example [cf. Fleischmann 1994]. Let [aj denotes the greatest integer less or equal a. In all 

instances (except S7) minimal sequence dependent setup costs for an item are incurred if the item is 

produced after an idle sub-period (i.e. idle-item j=0). Thus for a given CLSPLSD Solution setup costs 

are reduced a posterior, by inserting Zj=iPj9jt 'PlPl idle-items in period t=l,...,T, if there is 

a choice between two items which reduces the setup costs at most. The corresponding objective function 

values are denoted with Zreduced H-DLSPSD md ^reduced BACLSPLSD» respectively. In Table 3 the 

relations of the objective function values of instances TV11 to TV14 are entered. 

Table 3 ZreducedBACLSPSD / ZreducedH_DLSPSD 

TV11 TV12 TV13 TV14 

/SO .938 .958 .925 .866 

/S1 .898 1.03 1.05 1.15 

/S2 .843 1.01 1.02 1.11 

/S3 .739 .915 .844 .921 

/S4 .999 .975 .911 .893 

/S5 .896 .798 .838 .902 

/S6 .834 .799 .829 .800 

/Sl/hO .880 1.06 1.10 1.26 

/S7/h0 1.02 .935 .972 .755 

/S7/h0/dt 1.14 1.07 .989 .810 

In most instances BACLSPLSD has computed a Solution which is less costly than the 

corresponding DLSP Solution. If the setup costs are sequence independent, i.e. Sjj=S0jj, BACLSPLSD 

has computed for the four instances always a Solution which is less costly than the corresponding H-

DLSPSD Solution. The difference increases with decreasing capacity utilization. For the instances 

TV12/Sl/hO to TV14/Sl/hO the Solution quality of H-DLSPSD dominates that of BACLSPLSD 

whereas for TV12/S7/hO to TV14/S7/hO the result is vice versa. One reason for this result may be that 

in the DLSP Solution items are produced more than once per period which reduces the setup costs. The 

instance TV1 l/S7/hO/dt indicates that the deviation between the optimum Solution of CLSPLSD and the 

Solution computed by BACLSPLSD can be large, i.e. more than 14%. The results do not indicate that 

BACLSPLSD in general is superior, but the small investigation shows that on the average 

BACLSPLSD provides a higher Solution quality than H-DLSPSD. 
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In Table 4 the objective function values ZreducedH-DLSPSD 311(1 zreduced BACLSPLSD for Ae 

instances PR1 to PR4 are given. 

Table 4 Comparison of (the reduced costs of) H-DLSPSD and BACLSPLSD for 

the instances related to cases of the food industry 

T number of J 

sub-periods 

capacity 

utilization 

H-DLSP BACLSPLSD 

PRl 8 120 9 66 21981.55 7395.24 

PR11 8 240 9 66 16309.93 7395.24 

PR2 8 80 9 99 40353.94 27248.73 

PR3 26 230 3 91 36090.31 28766.05 

PR4 26 225 4 95 67279.60 60608.98 

For the instances PRl to PR4 the Solution quality of BACLSPLSD is substantially better than the 

modified H-DLSPSD Solution (cf. Table 4). Especially, for PRl the H-DLSPSD Solution is very poor. 

To compute a better approximation of a CLSPLSD Solution with H-DLSPSD the number of sub-

periods in PRl per macro period are duplicated; the corresponding instance is denoted with PRl 1. We 

see that such a modification improves the Solution quality substantially; however, the Solution is still 

very poor with respect to the BACLSPLSD Solution. The Solution m ay be improved additionally if the 

number of sub-periods will be increased a second time, but this is not very attractive because the 

computation time increase enormously (cf. Table 5). 

BACLSPLSD has been coded in Turbo Pascal 6.0 from Borland. H-DLSPSD has been 

implemented in MS FORTRAN 5.1. Table 5 gjves the computation times on a PS/2 Model P70 with 

80386 processor and 80387 co-processor. 

Table 5 Computation times of BACLSPLSD and H-DLSPSD in seconds 

instances H-DLSPSD BACLSPLSD 

a) PRl 979 40 

b) PRl 1 7113 40 

c) average PR2 to PR4 542.3 17.3 

d) average TV11/S0 to TV14/S6 651.1 24.5 

e) max. of TV11/S0 to TV14/S6 2723 35 

f) min. of TVI1/S0 to TV14/S6 55 17 

g) average TVI 1/Sl/hO to TV14/Sl/h0 481.5 20.5 

h) average TVI l/S7/hO to TV14/S7/hO 248.75 16.8 
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In general, BACLSPLSD is much faster than H-DLSPSD. An increase of the number of sub-

periods increases the computation time of H-DLSPSD substantially (cf. rows a) and b) in Table 5). 

There is a high (small) variability in the cpu times of H-DLSPSD (BACLSPLSD) (cf. rows e) and f) in 

Table 5). If the triangle inequality (9) is satisfied H-DLSPSD seems to become faster (cf. rows g) and 

h) in Table 5). 

Thus BACLSPLSD is more efficient (on the average) than H-DLSPSD. 

5. Summary 

A mixed-integer programming formulation is presented for capacitaed lot-sizing with sequence 

dependent setup costs denoted by CLSPLSD. In the CLSPLSD it is assumed that the setup State can be 

preserved over idle time between adjacent periods (linking). The CLSPLSD can be solved efficiently by 

a backward orierrted approach where lot-sizing and linking depends on a priority rule. The CLSPLSD is 

compared with the so-called discrete lot-sizing and scheduling problem with sequence dependent setup 

costs (DLSPSD). A heuristic for the DLSPSD is introduced in [Fleischmann 1994]. A computational 

study shows, that in the case where continuous lot-sizes can be computed as well as the setup State can 

be preserved over idle time, the backward oriented approach is more efficient than the DLSPSD 

heuristic. 
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