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This paper analyzes a modified yardstick competition mechanism
(MYC), where the yardstick employed consists of a tariff basket
and total costs. This mechanism has a significant information
advantage: the regulator ”only” needs to observe total costs and
output of all firms. The modified yardstick competition mech-
anism can ensure a socially optimal outcome when allowing for
spatial and second degree price discrimination, without increas-
ing the informational requirements. We also introduce regulatory
lags in the model. A systematic comparison between the results
of traditional yardstick regulation and modified yardstick regu-
lation is carried out. Finally, we discuss the applicability of the
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1 Introduction

The seminal paper by Shleifer (16) ”A Theory of Yardstick Competition” has
been followed by a large number of theoretical developments, but a relatively
modest number of practical applications (in an even more modest number of
countries, mainly the UK). The essence of yardstick competition is to deduce
from all firms under the regulatory mechanism the regime for a particular
firm, where ”the price the regulated firm receives depends on the costs of
identical firms” (Shleifer, (16), p. 319). The concept has been embraced
by the theory of regulation under information asymmetry (for a survey see
Chong (4)); but it has also been criticized for discouraging socially optimal
investment (e.g. Dalen (6) and Sobel (17)).

In practice, yardstick competition has not become a success story among
recent regulatory approaches. England and Wales’ water and sewerage sec-
tors are the most often cited examples of real-world applications. But many
other studies and sectors have stayed at timid attempts to embrace yardstick
competition, only in order to continue without it (examples of electricity in
many countries, and public transport sectors). Assuming that information
requirements may be one obstacle to the implementation of yardstick com-
petition, we propose a modification of the yardstick competition mechanism
introduced by Shleifer (16). Yardstick competition proposed by Shleifer can
be interpreted as differentiated cost based price caps. Firms are allowed to
charge a two-part tariff where the unit price is capped to average (marginal)
costs and the fixed (access) charge1 is bounded to fixed costs. The main clue
which makes this type of cost related regulation viable is the introduction
of a ”shadow firm” representing the average of all other local monopolists
under the regulatory regime. Costs of this virtual firm are calculated by av-
eraging over all variable and fixed costs except those of that firm for which
the price caps are determined. This kind of regulation, introducing a vir-
tual competition between otherwise unrelated local monopolists, leads to a
socially optimal allocation both with regard to output and to firm’s internal
cost structure. Even if firms are heterogenous the mechanism can be properly
adapted to allow for local idiosyncrasies.

Nevertheless, there remain some problems when the mechanism is put
into practice. Most obviously, the mechanism can be exploited strategically

1Instead of a fixed charge Shleifer considers a transfer from a regulatory authority.
Mathematically, this is equivalent.
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. This is known in the literature and proposals have been made to overcome
this vulnerability. Tangeras (19) introduced a collusion-proof mechanism;
and Potters et al.(12) analyzed the effectiveness of various types of yardstick
competition systems within an experimental study where participants could
collude within a repeated game setting. However, in the following we do not
deal with these problems. Instead, we concentrate on other issues associated
with the basic yardstick competition model.

The mechanism assumes that the regulatory authority can observe vari-
able costs and fixed costs separately for each firm. This requires precise ac-
counting rules which can exclude the manipulation of accounting. Such rules
along with the proper monitoring system might be difficult to put into prac-
tice, in particular if monopolists are multiproduct/multiservice firms. The
mechanism that we propose can work without this informational requirement.
In addition, yardstick competition does not allow for optimal price discrimi-
nation. The traditional mechanism supports only an optimal uniform tariff.
It is now well known that if we allow for consumer heterogeneity, an optimal
non-linear tariff system can be found that sorts consumers optimally. For
instance, Goldberg, Leland and Sibley (10) showed that this tariff system
implies an optimal deviation from marginal costs for all customer groups
except the one with the highest demand.2 Yardstick competition excludes
optimal deviations from marginal costs by construction.

Our modifications proposed utilize regulation mechanisms introduced in
the literature and combine them with the ”shadow firm” approach of yard-
stick competition. Instead of regulating each element of the two-part tariff
separately, we impose a tariff basket regulation and link it to yardstick com-
petition. Armstrong and Sappington (1) analyze basket tariff regulation. A
reference unit price is set by the regulatory authority and firms are allowed
to charge a two-part tariff. The regulation provides that total revenue must
not exceed the revenue collected under the reference unit price. The main
drawback of this regulation device is that the first best allocation cannot be
reached. Nevertheless, this kind of regulation works better than average rev-
enue regulation (see e.g. Armstrong, Cowan and Vickers (2)) within a static
model framework. However, both regulation schemes require the authority to
have a notion of how to set the reference unit price, i.e. the demand function
must be known by the regulatory authority.

2This property of self-selecting tariffs can be found in many advanced microeconomic
textbook, see e.g. Gravelle and Rees (11) or Wolfstetter (22).
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Our modified yardstick competition scheme takes the tariff basket regu-
lation and inserts, for the quantity weights the average output of all monop-
olists, except the firm under regulation. Further, it replaces revenue under
the reference price regime by average total costs of all monopolists except
the one under consideration. We will show that this yields a socially optimal
Nash-Cournot equilibrium. In addition to the desirable allocative properties,
this modification requires no knowledge about demand or cost functions.
The observability of output, prices and total costs of each local monopolist
is sufficient to implement the scheme.

Regulatory mechanims which do not rely on prior beliefs of the regulator
are called non-bayesian (Vogelsang (20)). They are verifiable in the sense
that they only use observable variables like costs, prices and output. Hence,
yardstick competition is a member of this class. The repeated application
of regulatory schemes may enhance welfare considerably. Moreover, many
dynamic regulatory schemes with fewer informational requirements than their
twins in a static context. Many of these dynamic schemes are non-bayesian
and rely exclusively on observable data.

On the other hand, some additional strategic problems can emerge. Cur-
rier (5) showed that strategic behavior of firms under average-revenue-lagged
regulation can lead to the unregulated global profit maximum. Also, more
sophisticated mechanisms like the VF-mechanism developed by Vogelsang
and Finsinger (21) may be susceptible to strategic behavior of non-myopic
firms (see Sappington (13)). This extends also to the well-known incremental
surplus subsidy (ISS) mechanism developed by Sappington and Sibley (14).
This mechanism is not proof against abuse, i.e. the managerial exploitation
for fringe benefits.

The dynamic version of our modified yardstick competition is a hybrid of
Shleifer’s mechanism and the dynamic subsidy scheme developed by Finsinger
and Vogelsang (7). We introduce a one-period lag in the regulatory constraint
with regard to the quantity weights of the revenue basket and total costs. We
can show that the dynamic version of the modified mechanism approaches
the optimal steady state more slowly than the lagged Shleifer yardstick com-
petition. Hence, welfare losses can be identified that must be set off against
welfare increases due to optimal price discrimination. In contrast to other
mechanisms in the literature, the dynamic version of our modified yardstick
competition performs less well than in the static version. We nevertheless
wanted to introduce a dynamic lagged version, because we believe that gath-
ering all information and calculating the relevant constraints for all local

4



monopolists requires time. Specifically, this applies for the case of heteroge-
nous firms were the basic model has to be supplemented by an econometric
analysis to allow for idiosyncrasies.

The remainder of this paper is structured in the following way: the next
section develops the basic static model, and compares the information re-
quirements of marginal-cost regulation with those of the one proposed in
this paper. We find that the modified yardstick competition (MYC) leads
to a socially optimal allocation, a Nash-equilibrium which is symmetric and
unique. We are also able to show that the modified yardstick competition
mechanism will lead to socially optimal allocation in the case of spatial price
discrimination. Section 3 then develops the dynamic version of the model:
we introduce a regulatory lag, whereby the (regulated) price pi depends on
the observed cost ci in the previous period. We distinguish two types of be-
havior: i) myopic behavior by the regulated companies, and ii) firms with a
long-run planning horizon maximizing their present value (”strategic behav-
ior”). Section 4 investigates the welfare properties of both regulation regimes
(Yardstick and Modified Yardstick) during the transition period, whereas we
confine ourselves to a linear model structure. Section 5 summarizes and pro-
vides an outlook on the potential use of the modified yardstick mechanism.

2 The basic static model

The following mathematical structure is based on the one-period model of
Shleifer(16). There are n identical local monopolies supplying a local market
with goods, e.g. water services. The demand functions of the local markets
are given by

x(pi), x′(pi) < 0, x′′(pi) ≤ 0; i ∈ {1, 2, · · · , n} (1)

where pi is the local price of firm i. Note that we have assumed identical
demand functions. In the following we utilize the inverse demand function

p(xi), p′(xi) < 0, p′′(xi) ≤ 0, i ∈ {1, 2, · · · , n} (2)

The cost function of firm i is

K(xi, ci) = cixi + R(ci), i ∈ {1, 2, · · · , n} (3)
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where ci are marginal costs that are endogenous, i.e. firms can choose their
level. Reducing ci leads to costs according to the function

R(ci), Rc(ci) < 0, Rcc(ci) > 0, i ∈ {1, 2, · · · , n} (4)

These expenses are fixed costs. Without loss of generality we also assume
that R(cmax) = 0, where cmax solves minc[R(c)], i.e. the minimum level of
fixed costs achievable is zero.

All firms are identical with regard to technology and local production
conditions. The optimal allocation and the optimal tariff can be derived
from the usual welfare maximization approach:

max
xi,ci

[

∫ xi

0

p(vi)dvi − cixi − R(ci)] ∀i ∈ {1, 2, · · · , n} (5)

The first order conditions that determine the optimal values {x∗, c∗} are:

p(xi) = ci, −xi − Rc(ci) = 0 (6)

To assure that (6) characterizes a global maximum we assume that the welfare
function is concave, i.e.

p′(xi) < 0, Rcc(ci) > 0, −p′(xi) > 1/Rcc(ci), ∀xi, ci (7)

Additionally, we assume an interior solution which requires that

−Rc(0) > xmax, where p(xmax) = 0; (8)

p(0) > ĉ(0) (9)

where ĉ(xi) solves the first order condition −xi−Rc(c) = 0. Figure 1 collects
all these assumptions (which also underly the model of Shleifer) and indicates
the optimal allocation {x∗

i , c
∗
i } as well as the optimal tariff {p∗i , π

∗
i }.

To verify that the hatched area under ĉ(x) is equal to π∗
i recall that the

price p∗i is equal to ĉ. Hence, fixed costs must be covered by the access fee
π∗

i = R(c∗). From −x − Fc(c) = 0 we can calculate the inverse of ĉ(xi) to
which we refer as x̂(ci). Utilizing the first order condition with respect to c
yields (subscript i omitted):

∫ cmax

c∗
x̂(v)dv = −

∫ cmax

c∗
Rc(u)dv = R(c∗) − R(cmax) = R(c∗) (10)
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Figure 1: The optimal solution

In his seminal article Shleifer (16) showed that separate price caps for the
unit price pi and the access fee πi according to

pi =
1

n − 1

∑

j 6=i

cj, and πi =
1

n − 1

∑

j 6=i

R(cj) ∀i ∈ {1, 2, · · · , n} (11)

lead to a first best outcome that is the result of maximizing the social welfare
function in each location.3

Establishing this kind of yardstick competition requires that the regula-
tion authority observes all prices and all costs separated according to unit
costs and (common) fixed costs. The information set IY C necessary to enforce
the mechanism is

IY C = {pi, πi, ci, R(ci), ∀i ∈ {1, 2, · · · , n}} (12)

Note that the regulator only needs to know ex post values and no functional
relationships like demand or cost functions. Regulation mechanisms of this

3Shleifer derives second - best prices under a linear tariff system as well. In this case
optimal unit prices equal total average costs. Yardstick competition supports this outcome.
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kind are called non-Bayesian because no a priori knowledge on the part of
the regulator is needed.4

However, the regulator is required to understand how variable and fixed
costs are calculated and must secure that cost information is correct, i.e.
separated according to these rules. This problem can be aggravated if firms
serve different customers and are allowed to discriminate prices (third de-
gree price discrimination). Take the water sector as an example. Usually,
local drinking water supply and the sewerage system is based on a spatial
distribution system. To guarantee optimal conveyance investments spatial
price discrimination should be allowed.5 If the local private drinking water
provider or a privately run sanitation system discriminates user services in
terms of distribution costs, the regulatory authority needs to know the exact
cost structure in terms of spatial location of each user group. This increases
the information requirements considerably.

Beyond the information problems of spatial price discrimination the prob-
lem of regulating non-linear tariffs remains within the regulation scheme (11).
If the regulation authority would allow second degree price discrimination in
the presence of heterogenous customers, the yardstick mechanism (11) cannot
be implemented because marginal prices should not be restricted to marginal
costs.6

In the following we extend the modified yardstick competition mecha-
nism to spatial and second degree price discrimination without increasing
the informational requirements on the part of the regulatory authority.

We again start with the basic model introduced by Shleifer. Let us define
average total costs

K̄−i =
1

n − 1

∑

j 6=i

K(xj , cj) =
1

n − 1

∑

j 6=i

[cjxj + R(cj)], ∀i ∈ {1, 2, · · · , n}

(13)

4For a recent overview of different regulation mechanisms see Armstrong and Sapping-
ton (1).

5Chakravorty, Hochman and Zilberman (3) showed that spatially uniform prices lead
to suboptimal investments.

6Optimal second degree price discrimination leads to optimal deviations of marginal
prices from marginal costs except for the user group with the highest demand, see Gold-
man, Leland and Sibley (10).
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and average output of all firms except firm i

x̄−i =
1

n − 1

∑

j 6=i

xj , ∀i ∈ {1, 2, · · · , n} (14)

To calculate these values and to impose the regulation mechanism the
regulatory authority must be able to observe the ex post values of total costs,
quantities of services sold and, of course, the tariff of each firm. The set of
necessary information is called IMY C and it contains

IMY C = {pi, πi, xi, Ki, ∀i ∈ {1, 2, · · · , n}} (15)

The regulation constraint that triggers the competition process is

pix̄−i + πi ≤ K̄−i, ∀i ∈ {1, 2, · · · , n} (16)

The calculated revenue of firm i must not exceed it’s calculated costs. Notice
that firm i cannot manipulate these values. In contrast to the mechanism
proposed by Shleifer, firms under the MYC-mechanism have two degrees of
freedom when choosing pi, πi, ci under the regulation constraint (16). The
maximization program of firm i is

max
xi,πi,ci

[p(xi)xi + πi − cixi − R(ci)], s.t. (16) (17)

Note that we choose the price pi indirectly by choosing xi. Assuming an
interior solution of (17) we can calculate from the first order conditions7 :

[p(xi) − ci] + p′(xi)(xi − x̄−i) = 0 (18)

and
−xi − Rc(ci) = 0 (19)

The second condition determines the efficient amount of cost reducing in-
vestment conditional on services supplied. The first condition indicates a
Cournot monopolist trying to equate marginal revenue to marginal costs un-
der a regulatory constraint.

The properties of the MYC-mechanism can be summarized as follows.

7Sufficient conditions for a global maximum are specified in the appendix (proof to
proposition 1).
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proposition 1 The modified yardstick competition MYC leads to a social op-
timal allocation, i.e. the Nash equilibrium {pMY C , cMY C} is equal to {p∗, c∗},
where {p∗, c∗} solves program (5). The access fee is equal to fixed costs R(c∗)
and, as a result, profits are zero. The Nash equilibrium is symmetric and
unique.

Proof: see appendix

These properties can also be extended to the case of third degree price
discrimination when a local monopolist i sets spatially differentiated prices.
Suppose there are m different consumer groups, and for serving them the firm
i has different variable unit costs cik, ∀k ∈ {1, 2, · · · , m}. The monopolist i
maximizes profits

max
pik,πik,cik

[pikxk(pik) + πik − cikxik − R(ci1, ci2, · · · , cim)] (20)

where R(.) is a convex cost function of cost reducing investments. The reg-
ulatory constraint extends to

K̄−i =
1

n − 1

∑

j 6=i

K(xj , cj1, cj2, · · · , cjm) =
1

n − 1

∑

j 6=i

[
∑

k

cjkxjk+R(.)], (21)

and average output to consumer group k of all firms except firm i is

x̄−ik =
1

n − 1

∑

j 6=i

xjk, ∀i ∈ {1, 2, · · · , n} (22)

The yardstick competition is established by introducing the regulatory con-
straint

∑

k

[pikx̄−ik + πik] ≤ K̄−i, ∀i ∈ {1, 2, · · · , n} (23)

This constraint is a straightforward extension of (16) for the case of spatial
price discrimination. Since it is a similarly straightforward exercise to derive
the Nash equilibrium from the first order condition, we confine ourselves to
summarizing the main results.

corollary 1 The extended yardstick competition mechanism for spatial price
discrimination leads to a socially optimal allocation. The necessary informa-
tion set of the regulatory authority requires the observability of total costs, all
prices and all service units delivered to m consumer groups.

Proof: similar to the proof of proposition (1) and, hence, omitted.
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Second degree price discrimination requires a non-linear expenditure func-
tion that depends on the quantity sold to each consumer. The construction
of such a tariff system selecting consumers according to demand relevant
characteristics is well documented in the literature.8 It can be derived for
a profit maximizing monopolist as well as for a social surplus maximizing
firm. It is known that the optimal expense function is such that marginal
expenses, i.e. unit prices, are above marginal costs except for the consumer
group with the highest demand. But this property cannot be achieved under
yardstick competition YC (see (11)) due to the restriction that unit prices
equal marginal costs.

The modified yardstick competition allows for second degree price dis-
crimination without more information on the part of the regulator. The
information set is identical to the case of spatial price discrimination. The
regulator needs to observe the tariff system, the service output sold to the
different consumer groups and total costs of each firm.

In the following we show how to establish yardstick competition within a
simple model for two consumer groups.9 Two types of consumers exist, ”low”
and ”high” consumers. To assure that the optimal tariff system implies a
sorting solution we assume (single crossing property).

xl(p) < xh(p), ∀x (24)

where the subscripts l and h stand for ”low” and ”high”, respectively. Cus-
tomers maximize consumer surplus

Si(pi, πi) =

∫ p̄i

pi

pi(vi)dvi − πi, i = {l, h} (25)

where p̄i is defined implicitly by xi(p̄i) = 0 and pi, πi is part of a sorting
two-part tariff system

TPS = {pi, πi, i = l, h} (26)

Note that this system is different to the more general one that defines
non-linear expenditure functions. In our case of two groups of customers this

8See Goldman, M., Leland, H. and S. Sibley (10).
9This goes without loss of generality. The same results apply for the case of more

than two groups or continuous characteristics of consumers. In that case, one has to add
additional incentive compatibility constraints. For further details see Wolfstetter (22) p.
27 ff.
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would amount to the task of finding a sorting and optimal menu of price-
quantity combinations M = {Ti, xi i = l, h} where Ti are total expenses for
xi. Ti depends on xi (non-linear expense function). It is known that M is
more efficient than the menu of sorting two-part tariffs, i.e. leads to a higher
aggregate consumer surplus.10 However, M cannot be implemented by the
modified yardstick competition system. A regulatory constraint that directly
restricts total revenue, i.e. Ti1 + Ti2 ≤ K̄−i, cannot implement the first best
allocation {x∗, c∗}. To implement M , the firm’s revenue has to be expressed
as a linear combination of prices and quantities (see (31)). This specification
requires that the regulator knows the (inverse) demand functions of the two
consumer types. Prices pi are the first derivative of the nonlinear expense
function T (xi). The first derivatives of T (x) at xl and xh are pl(xl) and
ph(xh), respectively. The calculation of this values requires the regulatory
authority to know the (inverse) demand functions of both consumer groups l
and h. Hence, given the information set IMY C the regulatory authority can
only implement yardstick competition by the two-part tariff system TPS.

It remains to introduce the constraints for price discrimination. The
incentive compatibility constraints are

Sl(pl, πl) − Sl(ph, πh) ≥ 0 (27)

Sh(ph, πh) − Sh(pl, πl) ≥ 0 (28)

The necessary participation constraints are:

Sl(pl, πl) ≥ Sl(0, 0) = 0 (29)

Sh(ph, πh) ≥ Sh(0, 0) = 0 (30)

From (27) and (28) follows that S2(p2, π2) > 0.11

The suitable MCY for second degree price discrimination is

[plx̄−il + πl] + [phx̄−ih + πh] ≤ K̄−i, ∀i ∈ {1, 2, · · · , n} (31)

The local monopolist maximizes profits subject to the incentive compatibility
constraints, the participation constraint and the MYC-constraint.

corollary 2 The MYC for second degree price discrimination secures the
social optimal allocation as Nash-equilibrium.

Proof: see appendix.

10See Wolfstetter (22), p. 33.
11Since this is a well-known property, a proof is omitted. See e.g. Wolfstetter (22).
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Second degree price discrimination is optimal if the monopolist is regulated
according to modified yardstick competition. We have shown that profit max-
imizing under the MYC-mechanism leads to an optimal allocation. Allowing
for second degree price discrimination implies some further constraints and
some additional variables into the relevant two optimization programs (5)
and (17), yet without eliminating the basic equivalence of both programs.

3 Yardstick competition under regulatory lags

Both yardstick competition mechanisms were introduced within a static model
where the final allocation is immediately reached as a Nash-equilibrium.
However, one has to bear in mind that the competition forces do not unfold
within a market process but as a result of the interference of a regulatory
body. This virtual competition is organized and institutionalized and re-
quires a variety of efforts by the regulator, e.g. the gathering of information,
the calculation of costs, the econometric analysis in the case of heterogenous
firms, and the monitoring of firms. These activities require time and, hence,
may lead to regulatory lags. Thus, it is interesting to introduce regulation
lags and to study how these affect the properties of the two mechanisms (YC
and MYC).

First, suppose that the yardstick competition mechanism of Shleifer is
lagged such that price caps today are derived from average marginal costs of
the last period. This can be formally expressed by

pt
i =

1

n − 1

∑

j 6=i

ct−1

j , i ∈ {1, 2, · · · , n} (32)

We also assume that access fees are capped by average fixed costs of the last
period, i.e.

πt
i =

1

n − 1

∑

j 6=i

F (ct−1

j ), i ∈ {1, 2, · · · , n} (33)

Similarly, we can introduce the lag-structure into the modified yardstick com-
petition.
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K̄t−1

−i =
1

n − 1

∑

j 6=i

K(xt−1

j , ct−1

j ) (34)

=
1

n − 1

∑

j 6=i

[ct−1

j xt−1

j + R(ct−1

j )], ∀i ∈ {1, 2, · · · , n}

and into the average output

x̄t−1

−i =
1

n − 1

∑

j 6=i

xt−1

j , ∀i ∈ {1, 2, · · · , n} (35)

The respective regulation constraint12 is

pt
ix̄

t−1

−i + πt
i ≤ K̄t−1

−i , ∀i ∈ {1, 2, · · · , n} (36)

The main question to be answered is how firms behave in the presence
of these two regulatory lags. Two cases can be distinguished: Myopic firms
maximizing current profits, and firms with a long run planning horizon max-
imizing their present value. In the latter case, the dynamic nature of the
problem needs the introduction of dynamic game theory.

However, we first want to analyze the dynamic properties of the two
mechanisms when firms are myopic. Later, we will show that the sequence
of Nash-equilibria of one period games played by myopic firms is subgame
perfect within a repeated game.

If yardstick competition according to (32) and (33) is applied, firm i will
maximize profits for all periods t i.e.

max
ct

i

[pt
ix(pt

i)+πt
i −ct

ixi(p
t
i)−R(ct

i)], ∀i ∈ {1, 2, · · · , n}, ∀t ∈ [1, 2, · · · ,∞)

(37)
The sequence of symmetric Nash-equilibrium is characterized by

pt,Y C = ct−1,Y C and −x(pt,Y C)−Fc(c
t,Y C) = 0, ∀t ∈ [1, 2, · · · ,∞) (38)

which leads to the non-linear difference equation

−x(ct−1,Y C) − Fc(c
t,Y C) = 0 (39)

Utilizing this difference equation we can state the following result:

12This constraint resembles the Vogelsang-Finsinger subsidy. Instead of an access fee,
F-V consider a subsidy and instead of the average total costs, the firm’s own total costs
are inserted. For a concise summary refer to Armstrong and Sappington (1).
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proposition 2 The Yardstick Competition process YC {pY C
t , cY C

t } converges
to the socially optimal solution {p∗, c∗} as unique steady state.

Proof. see appendix

The result is not surprising if one recalls the assumption made to guarantee
the existence of a unique optimal solution summarized graphically in Figure
1. However, it also shows that it requires a certain amount of time to reach
the optimal solution. Hence, if one compares the properties of the two com-
petition mechanisms one has to take into account the dynamic adjustment
process as a further criterion of assessment.

Strictly speaking, the dynamic process is only defined for adjustments
guaranteeing non-negative profits in each period. For instance, if the regu-
lation device is introduced into a market without regulation, where all firms
hold local monopoly power, then profits are positive until the process reaches
the steady state. Hence, the regulation process is economically viable. But
assume that yardstick competition has been introduced and the optimal so-
lution is reached. If demand shrinks for some reasons an adjustment process
begins towards the respective steady state. During this process profits are
negative in each period. Since in the steady state firms end up with zero
profit, there is no opportunity to cover these losses later. As a result, all
firms would leave the market.13

In the following we do not want to elaborate on the optimal profit al-
lowances in the face of uncertain demand but stick to the basic model. Hence,
we analyze the adjustment process of MY C that is introduced in an unreg-
ulated market.14

The dynamic properties of the modified yardstick competition follow from
the behavior of firms maximizing their profits (37) under the regulatory con-
straint (36). The sequence of Nash-Cournot-equilibria are characterized by

13This problem is a disadvantage of dynamic regulation schemes with lagged adjust-
ments, see Armstrong and Sappingtion (1). There have been some proposals to alleviate
or to eliminate this problem. The remedy is to introduce a cost-plus scheme, i.e. to allow
profits in the steady state. In turn, these additions lead to an opportunity to exploit the
regulation mechanism strategically (see (1)). However, in the case of yardstick competi-
tion this disadvantage cannot occur since the profit constraint of firm i does not depend
on Ki.

14One can also assume that the starting point of the MY C-process is characterized
by a cost-plus-regulated monopolist. The crucial point is that the allocation of these
monopolies is closer to the Cournot-solution than firms within a MY C-scheme.
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the first-order conditions15

[p(xt,MY C) − ĉ(xt,MY C)] + p′(xt,MY C)(xt,MY C − xt−1,MY C) = 0 (40)

where ĉ is defined by the first order condition

−xt,MY C − Fc(ĉ) = 0 (41)

The dynamic process of the MY C-mechanism takes place through the
non-linear difference equation (40). It can be shown that the steady state is
optimal and asymptotically stable.

proposition 3 The Modified Yardstick Competition process MYC {pMY C
t , cMY C

t }
converges to the socially optimal solution {p∗, c∗} as unique steady state.

Proof: see appendix

Introducing a regulatory lag leads to a dynamic structure of the regula-
tion process. As a result, the strategic behavior of firms has to be taken into
account. In our model, we have to analyze the nature of subgame perfect
equilibria. These equilibria are the result of strategy formation of non-myopic
firms.16 Firms take into account how their decisions in period t affect the
Nash-Cournot-equilibrium in period t + 1, and so forth. As a result, the
sequence of one-period strategies of myopic firms is not the same as the se-
quence of subgame perfect strategies. However, in the regulatory framework
of Yardstick Competition both sequences coincide.

proposition 4 The sequence of Nash-Cournot-equilibria that results from
the profit maximizing behavior of myopic firms is also subgame perfect, i.e.
is a closed loop equilibrium of the multi-stage game.

Proof: see appendix.

Firms cannot gain from looking ahead. The tariff choice in period t cannot
affect the strategy equilibrium in period t+1 since the regulatory constraint
(36) for period t + 1 does not depend on these instruments. The regulatory
constraint of period t + 1 does only depend on the choice of the other n − 1

15Note that we have solved the problem by maximizing with respect to xt, ct, πt. The
corresponding price pt follows from the inverse demand function.

16In fact, the concept of subgame perfectness was introduced by Selten (15) within a
traditional oligopoly model. The dynamic structure was the result of demand slackness.
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firms. Hence, the yardstick competition mechanism is not vulnerable against
strategic behavior.

As we know from repeated games of infinite length other subgame perfect
equilibria do exist17. Notice however, that the yardstick competition mech-
anism is not captured by the model structure of repeated games due to the
dependence of payoffs in period t on actions taken in period t−1. To answer
the question whether a trigger strategy exists within the YC- and the MYC-
mecanism entails comparing the present value of profits under tacit collusion
of all firms with the extra profits in the case of defection in period t and the
present value of the following decreasing profits from t + 1 until the steady
state is reached. The main difference to the analysis of repeated games is
that both equilibrium strategies cannot keep profits constant. In the steady
state profits are zero.18

4 A linear model

So far, the analysis has shown that both competition mechanisms lead firms
into a efficient steady state as a unique equilibrium. It remains to investigate
the welfare properties of both regulation systems during the transition period.

The comparison of both systems along the transition path depends on the
functional forms and on parameter values of the relevant difference equations.
We confine the following analysis to a linear model structure, which allows
us to keep the formal structure simple.

To begin with, we introduce the linear inverse demand function

p(x) = B − bx; p′(x) = −b (42)

Accordingly, optimal marginal costs can be generated by

Rc(c) = −A + ac, c ∈ [0, A/a] (43)

To guarantee the existence of a unique interior social optimum we have
to recall conditions (7) and (8):

−p(x) > 1/Rcc(c) → b > 1/a and p(0) > ĉ(0) → B > A/a (44)

17See Fudenberg and Tirole (8). It is known that trigger strategies can sustain cooper-
ative solutions (Folk theorem).

18This is an important aspect that merits further research.
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where ĉ is defined in (19).
When inserting these functions into the difference equation (39) and re-

calling the lag structure of the regulatory mechanism, i.e. pt,Y C = ct−1,Y C

one can then derive the following linear difference equation

pt,Y C =
A − B/b

a
+

1

ba
pt−1,Y C (45)

Similarly, one can calculate the respective linear difference equation for
the Modified Yardstick Competition. When inserting the functional forms
(42) and (43) into (40) we obtain

pt,MY C =
Ab − B

2ba − 1
+

ba

2ba − 1
pt−1,MY C (46)

To compare the two difference equations we depict the dynamic structure
in a phase diagram (see Figure 2):

p
t-1


p
t


p* = c*


MYC


YC


(
A-B/b)/a


(Ab-B)/

(2ab-1)


Figure 2: Comparing price trajectories

From the picture we can derive that the price of the YC-mechanism con-
verges quicker to the optimal steady state than the price of the modified
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yardstick mechanism. Notice that this applies to all admissible parameter
values sustaining an interior optimal solution.

proposition 5 The price path of YC is lower than that of MYC, .i.e. pt,Y C <
pt,MY C , ∀t.

Proof: see appendix.

The speed of price adjustment is an indicator of the welfare properties
of both regulatory mechanisms. Obviously the YC-mechanism is superior to
the MYC-mechanism in terms of welfare. This can be explained with the
help of Figure 3.
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Figure 3: Welfare effects

Let us start from the unregulated Cournot solution19 {pM , cM}. If the two
mechanisms are implemented, prices in period 1 decrease to cM in the case
of the YC-mechanism and to pMY C,1 for the modified yardstick competition.
Note that pMY C,1 > cM 20. From (39) we know how marginal costs are

19In the following we neglect the Index i.
20This follows from the comparison of the relevant difference equations (see Figure 2).

At the outset the price is the unregulated Cournot price pM . In the first period p1,Y C is
equal to cM by definition. From Figure 2 we see that pMY C,1 > cM .
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adjusted to the output offered within the YC-mechanism. From (41) we can
calculate the optimal marginal costs for firms under the MYC-mechanism. If
we plot prices, output and marginal costs for both mechanisms in the picture
we can identify total surplus for both regulatory systems: total surplus gain
after period 1 induced by the MYC-mechanism is indicated by the light gray
area. Total surplus realized by Shleifer’s mechanism is the sum of both, the
light and the dark gray area. Yardstick competition as proposed by Shleifer
realizes welfare gains more quickly than the MYC-mechanism.

However, to reach a final assessment of both mechanisms one has to com-
pare these welfare effects during the transition periods with total welfare
reached in the steady state. For instance, if a regulatory authority intro-
duces the MYC-mechanism instead of yardstick competition as introduced
by Shleifer to allow for second degree price discrimination it must take into
account the slower increase of total welfare and balance these losses to future
welfare gains due to a discriminatory tariff structure.

5 Summary and Outlook

In this paper we have introduced a modified yardstick competition mech-
anism which allows for price discrimination. In a static model we have
shown that the MYC-mechanism replicates the social optimum as a Nash-
equilibrium. In addition, the mechanism is based on an information set that
seems to be more accessible for the regulatory authority than that of the
YC-mechanism. Specifically, the regulatory authority does not need to sep-
arate total costs into fixed (capital) costs and variable costs. If the local
monopolies are multiproduct firms the regulatory agency does not need to
know the true allocation of costs to customer groups. The knowledge of total
costs and output sold to customers is sufficient to implement the mechanism.
Firms are not required to link prices to variable costs. Price discrimination
is possible and, hence, leads to increased total welfare.

If one takes regulatory lags into account, then it turns out that the MYC-
mechanism is approaching the optimal steady state slower than yardstick
competition as introduced by Shleifer. As a result, a total assessment of both
systems has to take into account the welfare effects during the transition path
with total welfare in the steady state.

It remains to discuss how the MYC-mechanism can be implemented when

20



firms are heterogenous. Shleifer has proposed a ”reduced-form” regulation.21

In the case of yardstick competition the regulatory authority runs a regression
of variable costs c against observable exogenous characteristics, say θ. The
main clue of the regression is that it only includes the variables of all j firms
except i if the price caps for firm i are calculated.

When we introduce the MYC-mechanism, the ”reduced-form” approach
of Shleifer has to be modified as follows: first, regressions must be run be-
tween total costs and the observable characteristics. Again, total costs for
firm i allowing for local characteristics are calculated without utilizing the
total costs of ”i” reported to the regulatory authority. Total costs acknowl-
edged for firm i are K̂i = α̂+ β̂θi where α̂, β̂ are estimated parameters of the
reduced form.22 Secondly, regressions between output and the characteris-
tics have to be run. Again, the relevant output in the regulatory constraint
(16) is determined by the predictor x̂i = δ̂ + γ̂θi, where δ̂, γ̂ are the respec-
tive estimates. Of course, this approach can also be extended to the case of
multiproduct firms either under second degree or third degree price discrim-
ination. We have to add regression equations which refer to the output of
each consumer group.

The modified yardstick mechanism (MYC) has the clear advantage of
reduced information requirements, and thus a potential improvement over
the current applications. Further research should address the comparison
with traditional yardstick competition in more depth, specifically with regard
to investment behavior and tacit collusion, as well as technical issues of
implementation.

6 Appendix

6.1 Proof of Proposition 1

We first show that the optimal solution {x∗, c∗} is a symmetric Nash-Cournot-
equilibrium. Recall the first order conditions (18) and (19) and insert {xMY C

i =
x∗, cMY C

i = c∗,∀i}. Notice thereby, x̄−i = x∗. This yields the first order conditions
for a social optimum (6). Hence, {x∗, c∗} is a Nash-Cournot-equilibrium. Since
an interior optimal solution exists per assumption, a symmetric Nash-Cournot-

21See Shleifer (16) p. 324.
22We restrict our discussion to the case where a linear specification are sufficiently good

predictors.
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equilibrium exists as well. The uniqueness of the optimal solution implies also
that only one symmetric Nash-Cournot-equilibrium exists. Since the prices p∗i
equal constant marginal costs c∗i , it follows from (31) that the access fee πi covers
the fixed costs F (c∗i ) and that profits are zero.

It remains to show that no asymmetric Nash-Cournot-equilibrium exists. To
do so, we first have to assure that the first order conditions (18) and (19) are
necessary and sufficient for solving (17). According to a theorem of Arrow23, the
Kuhn-Tucker-conditions are necessary and sufficient if both the profit function and
the regulation constraint are quasi-concave. The assumptions with regard to the
cost function and the inverse demand function secure the quasi-concavity of the
constraint (16) and of the profit function.

From (19) we can find the optimal response-function ĉ(xi) which solves −xi −
Rc(c) = 0. Inserting this response function into (18) and multiplying by n − 1
yields

p′(xi)[(n − 1)xi −
∑

j 6=i

xj ] + (n − 1)[p(xi) − ĉ(xi)] = 0 (47)

which yields after some arrangements

p′(xi)[xi − X̄ ] +
n − 1

n
[p(xi) − ĉ(xi)] = 0 (48)

where X̄ = 1

n

∑n
i=1

xi is the average value of all outputs xi. (48) is the implicit
form of an inclusive reaction function24 defining xi as a function of X̄.

If we now assume, per absurdum, an asymmetric Nash-Cournot equilibrium,
then there must be at least one firm, say firm k, choosing output xk > X̄ and at
least one firm, say firm m, choosing xm < X̄. From (48) it follows that p(xk) −
ĉ(xk) > 0 and p(xm) − ĉ(xm) < 0 respectively. But this cannot be, since p(xk) −
ĉ(xk) > 0 and p(xm) − ĉ(xm) < 0 imply that xk < xm (see above Figure). Hence,
no asymmetric Nash-Cournot-equilibrium exists.

6.2 Proof of corollary 2

To proof the corollary we first have to determine the socially optimal two-part
tariff system TPS∗. Since its properties are well known we keep the following
characterization very brief.25 The optimal tariff system maximizes total consumer
surplus

Sl(pl, πl) + Sh(ph, π2h) (49)

23See Takayama (18).
24See e.g. Wolfstetter (22) p. 91.
25For further details see e.g. Wolfstetter (22) or Gravelle and Rees (11), 280-283.
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subject to the constraints (27) (with Lagrangean λ1), (28)(with Lagrangean λ2),
(29)(with Lagrangean λ3) and the profit constraint (with Lagrangean λ4)

(pl − c)xl + πl + (ph − c)xh + πh − F (c) ≥ 0. (50)

Note that we have omitted the subscript i due to the assumption of identical firms.
From the Kuhn-Tucker-conditions it is straightforward to show that

λ4(pl − c)x′
l(pl) + λ2(xh(pl) − xl(pl) = 0 (51)

λ4(ph − c)x′
h(ph) = 0 (52)

−(xl(pl) + xh(ph)) − Fc(c) = 0 (53)

where λ4 > 0 and λ2 > 0. These equations follow as a result of the single-
crossing-property (24) and the assumption that the Coase-tariff TPScoase = {pl =
ph = c∗;πl = πh = F (c∗)/2} cannot be implemented, due to the violation of the
participation constraint (29). In the case of a pooling tariff structure, the consumer
surplus of the l-group would be negative. Hence, a sorting tariff structure is to be
implemented. Prices pi, i = l, h, are chosen such that consumers with low demand
are priced above marginal costs and consumers with high demand pay marginal
costs for each service unit. Moreover, we know that the surplus of consumers
with high demand is fully exploited and that profits are zero. In addition, it is
also known that λ1 = 0 since the incentive compatibility constraint (27) ist not
binding. Collecting all relevant equations, the optimal price discrimination TSP ∗

and the optimal choice of costs c∗ are determined by equations (28), (29), (50),
(52) and (53).

The corresponding two-part tariff structure under Yardstick Competition fol-
lows from deriving the Nash-Cournot-equilibrium. Each firm i maximizes profits

(pil − ci)xil + πil + (pih − ci)xih + πih − F (ci) (54)

subject to the constraints (27) (with Lagrangean λi1), (28)(with Lagrangean λi2),
(29)(with Lagrangean λi3) and the regulation constraint (31) (with Lagrangean µi),
∀i ∈ {1, 2, · · · , n}. The profit maximizing tariff ist characterized by the following
first order conditions:

(pil − ci)x
′
il(pil) + xil(pil)(1 − λi1 − λi3) − µix̄−il + λi2xih(pil) = 0 (55)

1 − µi − λi1 + λi2 − λi3 = 0 (56)

(pih − ci)x
′
ih(pih) + xih(pih)(1 − λi2) − µix̄−ih + λi1xil(pih) = 0 (57)

1 − µi + λi1 − λi2 = 0 (58)

−(xil(pl) + xih(pih)) − Fc(ci) = 0 (59)
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Assuming the existence of a symmetric Nash-Cournot-equilibrium, TPSMY C , and
inserting (56) into (55) and (58) into (57), respectively, yields the equations (drop-
ping the subscript i)

(pl − c)x′
l(pl) + λ2(xh(pl) − xl(pl)) = 0 (60)

(ph − c)x′
h(ph) + λ1(xl(ph) − xh(ph)) = 0 (61)

It remains to show that, jointly with the constraints (27), (28), (29) and (31), the
equations (60) and (61) determine the optimal solution TPS∗, i.e. TPSMY C =
TPS∗.

To begin with, note that firms do not choose a unique two-part tariff. Assume,
per absurdum, that TPSMY C = {pl = ph;πl = πh}. Then, by (60) and (61) it
follows that λi1 = λi2 = 0. Together with (53) we can infer that TPSMY C =
TPSCoase which, by assumption, cannot be implemented. Hence, λi1 ≥ 0 and/or
λi2 ≥ 0, one of which with strong inequality. From (60) and (61) it follows that
pMY C

l > pMY C
h .

Next, we show, that λ1 = 0. To do so, we assume per absurdum the contrary,
λ1 > 0 and λ2 = 0. From (60) and (61) it follows:

pl = c and ph < c (62)

The incentive compatibility constraints (27) and (28) can be rewritten as

∫ pl

ph

xh(v)dv ≥ πh − πl (63)

and
∫ pl

ph

xl(v)dv ≤ πh − πl (64)

Since λ1 > 0, by assumption, the first constraint is binding. Before we pro-
ceed, notice that in a symmetric Nash-equilibrium the regulation constraint (31)
is nothing else but a profit constraint:26

(pl − ĉ)xl + (ph − ĉ)xh + πl + πh − F (c) = 0 (65)

where the first term is zero, by (62). Rearranging (63) and inserting it into (65)
yields after some calculations:

πl =
1

2
(R(c) + (ph − c)xh −

∫ pl

ph

xl(v)dv) (66)

26All superscripts MY C are omitted.
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Since the sum of the last two terms on the right hand side is positive it follows
that

πl =
1

2
R(c) > R(c∗)/2 (67)

which cannot be, by assumption (no Coase-tariff). The last inequality follows from
(59)where pl = c and ph < c. Thus we have proven that λ1 = 0 and λ2 > 0.

Collecting all relevant equations, the tariff structure and the production costs c
under MY C are determined by the equations (28), (29), (31), (61) and (59). These
equations are identical to those determining the optimal solution {TPS∗, c∗}, i.e.
eqs. (28), (50), (51), (52)and (53). Hence, the solutions coincide.

6.3 Proof of proposition 2

To proof asymptotical stability of the difference equation (39) we differentiate with
respect to ct−1,Y C which yields

dct,Y C

dct−1,Y C
=

−x′(ct−1,Y C)

Rcc(ct,Y C)
> 0 (68)

Recalling the second order condition (7) we have p′(x) > 1/Rcc(c) → 1 >
−x′(c)/Rcc(c). Hence, the positive slope in (68) is less than 1.

As a next step set ct−1,Y C = 0. Due to (8) we can derive from −xmax −
Rcc(c

t,Y C) = 0 that ct,Y C > 0, i.e. the intercept of the difference equation in
a ct,Y C − ct−1,Y C-phase diagram is positive. Since the slope is less than 1, an
asymptotically stable equilibrium exists.

6.4 Proof of proposition 3

To prove the asymptotic stability we show that the slope of first order difference
equation (40) is positive and less than 1. Due to the assumed existence of a
unique optimal solution the steady state solution is unique as well. To show this,
insert the steady state solution xt,MY C = xt,MY C = x̄MY C into (40). This yields
p(x̄MY C) = ĉ(x̄MY C) which is the optimal solution. To prove stability, we have
to differentiate (40) with respect to xt−1,MY C , taking xt,MY C as a function of
xt−1,MY C . This yields

dxt,MY C

dxt−1,MY C
=

p′(xt,MY C)

[p′′(xt,MY C)(xt,MY C − xt−1,MY C) + 2p′(xt,MY C) − ĉ′(xt,MY C)]
> 0

(69)
We can see that the bracketed term in the denominator is negative for all xt,MY C ≥
xt−1,MY C and given the assumptions with respect to the second order condition
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of the optimal solution (see Figure 1). It is also a straightforward exercise to see
that the expression on the right hand side is less than 1. From (40) it follows that
xt,MY C(0) > 0. Hence, the process is asymptotically stable and converges to the
steady state.

6.5 Proof of proposition 4

We confine the proof to the MYC mechanism. The proof for YC is then a straight-
forward application of the first (MYC).

To derive a subgame perfect equilibrium we utilize the principle of optimal-
ity. Consider firm i in period t. Firm i wants to maximize the present value
of profits given the history of the previous period t − 1, i.e. the vector z

t−1 =
{xt−1, πt−1, ct−1}, where the boldfaces indicate n-dimensional vectors of the re-
spective variables for n firms. If a subgame perfect equilibrium exists then each
firm solves the following maximization program given the equilibrium strategies of
the other n − 1 firms (principle of optimality27)

Ji,t(z
t−1) = (70)

max{xt

i
,πt

i
,ct

i
}[(p(xt

i) − ct
i)x

t
i + πt

i − F (ct
i)+

δJi,t+1(x
t
i,x

MY C,t
−i , πt

i , π
MY C,t
−i , ct

i, c
MY C,t
−i )]

for all i = {1, 2, · · · , n} and t = [1, 2, · · · ,∞). δ is a constant discount factor and
{xMY C,t

−i , πMY C,t
−i , cMY C,t

i } are the respective subgame perfect equilibrium values
of the n − 1 firms except i. The maximization program for each firm has to take
into account the relevant regulatory constraints, i.e.

p(xt
i)x̄

t−1

−i + πt
i ≤ K̄t−1

−i , ∀i and t (71)

and
p(xMY C,t+1

i )x̄t
−i + πMY C,t+1

i ≤ K̄t
−i ∀i and t (72)

where x̄t−1

−i and K̄t−1

−i are defined in (14) and (13) respectively. xMY C,t+1

i and

πMY C,t+1

i refer to the subgame perfect equilibrium in period t + 1.
The optimal value Ji,t(.) depends on the history z

t−1, i.e. the MY C-equilibrium
in period t depends on the vector z

t−1. We therefore can write

Ji,t(z
t−1) = [(p(xMY C,t

i (zt−1)) − cMY C,t
i (zt−1)xt

i(z
t−1) + πt

i(z
t−1)) − F (ct

i(z
t−1))(73)

+δJi,t+1(x
MY C,t, πMY C,t, cMY C,t)]

27See Selten (15) and Fudenberg and Tirole (9) p. 130-134.
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and
p(xMY C,t

i )x̄t−1

−i + πMY C,t
i ≤ K̄t−1

−i , ∀i and t (74)

If we look at the respective definition of Ji,t+1 (utilizing (70) for period t + 1)
we see that z

MY C,t+1 depends on the history z
t = z

MY C,t. Hence, we see that (73)
and the relevant constraints (72) and (74) define a closed loop equilibrium.

The next step to prove the proposition is to show that Jit(.) is independent of
xt−1

i , πt−1

i , ct−1

i .
First of all observe that (73) and the regulatory constraint (74) do not depend

on πt−1. Hence, πt−1 does not influence the MY C-equilibrium of period t. Thus,
we can confine the analysis to the effects of xt−1

i andct−1

i . We differentiate Jit(.)
with respect to xt−1

i :

dJi,t(.)

dxt−1

i

∣

∣

∣

∣

∣

h
t−1

−i
=const.

=
∂Ji,t(.)

∂xt
i

∂xMY C,t
i

∂xt−1

i

+
∂Ji,t(.)

∂ct
i

∂cMY C,t
i

∂xt−1

i

+
∂Ji,t(.)

∂xt−1

i

(75)

where h
t−1

−i = {xt−1

−i , ct−1}, i.e. is the history of the c-variables and the x- variables
except that of firm i.

On the right hand side we can show that

∂xMY C,t
i

∂xt−1

i

=
∂cMY C,t

i

∂xt−1

i

=
∂Jit(.)

∂xt−1

i

= 0 (76)

This follows from inspection of (70) and (74). Both equations do not depend on
xt−1

i . Notice also that xMY C,t
j and cMY C,t

j , j 6= i do not enter these equations.

Hence, indirect effects through the effects of xt−1

i on xMY C,t
j do not enter Jit(.).

Similarly, we can show that,

dJi,t(.)

dct−1

i

∣

∣

∣

k
t−1

−i
=const. = 0. (77)

where k
t−1

−i = {xt−1, ct−1

−i }, i.e. the history of the x-variables and the c- variables
except that of firm i. Collecting these results we return to (70) and solve for
{xt

i, π
t
i , c

t
i}. Also, since Ji,t+1(.) does not depend on these variables the first order

conditions are the same as for myopic firms, i.e. eqs. (40) and (41). Hence, the
sequence of Nash-equilibria of myopic firms are identical to the subgame perfect
equilibrium defined in (70).
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