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Variable selection for discrimination of more than

two classes where data are sparse

Gero Szepannek Claus Weihs

Lehrstuhl für Computergestützte Statistik
Fachbereich Statistik
Universität Dortmund

Abstract In classification, with an increasing number of variables, the required
number of observations grows drastically. In this paper we present an approach
to put into effect the maximal possible variable selection, by splitting a K class
classification problem into pairwise problems. The principle makes use of the
possibility that a variable that discriminates two classes will not necessarily do
so for all such class pairs.
We further present the construction of a classification rule based on the pairwise
solutions by the Pairwise Coupling algorithm according to Hastie and Tibshirani
(1998). The suggested proceedure can be applied to any classification method.
Finally, situations with lack of data in multidimensional spaces are investigated
on different simulated data sets to illustrate the problem and the possible gain.
The principle is compared to the classical approach of linear and quadratic
discriminant analysis.

1 Motivation and idea

In most classification procedures, the number of unknown parameters grows
more than linearly with dimension of the data. It may be desirable to apply
a method of variable selection for a meaningful reduction of the set of used
variables for the classification problem.
In this paper an idea is presented as to how to maximally reduce the number of
used variables in the classification rule in a manner of partial variable selection.
To motivate this, consider the example of 5 classes distributed in a variable as
it is shown in figure 1. It will be hardly possible to discriminate e.g. whether
an observation is of class 1 or 2. An object of class 5 instead will probably be
well recognized. The following matrix (rows and coloumns denoting the classes)
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Figure 1: Example of 5 classes.

shows which pairs of classes can be discriminated in this variable:

C2 C3 C4 C5
C1 − − − +
C2 − − +
C3 − +
C4 +

(1)

We conclude that, since variables may serve for discrimination of some class
pairs while at the same time not doing so for others, a class pair specific variable
selection may be meaningful. Therefore we propose the following procedure:

1. Perform ”maximal” variable subset selection for all K(K−1)/2 class pairs.

2. Build K(K − 1)/2 class pairwise classification rules on possibly differing
variable subspaces.

3. To classify a new object, perform K(K−1)/2 pairwise decisions, returning
the same number of pairwise posterior probabilities.

The remaining question consists in building a classification rule out
of these K(K − 1)/2 pairwise classifiers.
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2 Pairwise Coupling

2.1 Definitions

We now tackle the problem of finding posterior probabilities of a K-class clas-
sification problem given the posterior probabilities for all K(K − 1)/2 pairwise
comparisons. Let us start with some definitions.
Let p(x) = p = (p1, . . . , pK) be the vector of (unknown) posterior probabilities.
p depends on the specific realization x. For simplicity in notation we will omit x.
Assume the ”true” conditional probabilities of a pairwise classification problem
to be given by

ρij = Pr(i|i ∪ j) =
pi

pi + pj
(2)

Let rij denote the estimated posterior probabilities of the two-class problems.
The aim is now to find the vector of probabilities pi for a given set of values rij .

2.1.1 Example 1:

Given p = (0.7, 0.2, 0.1). The ρij can be calculated according to equation 2 and
can be presented in a matrix:

{ρij} =

 . 7/9 7/8
2/9 . 2/3
1/8 1/3 .

 (3)

The inverse problem does not necessarily have a proper solution, since there are
only K − 1 free parameters but K(K − 1)/2 constraints.

2.1.2 Example 2:

Consider

{rij} =

 . 0.9 0.4
0.1 . 0.7
0.6 0.3 .

 (4)

From Machine Learning, majority voting (”Which class wins most comparisons
?”) is a well known approach to solve such problems. But here, it will not lead
to a result since any class wins exactly one comparison. Intuitively, class 1 may
be preferable since it dominates the comparisons the most clearly.

2.2 Algorithm

In this section we present the Pairwise Coupling algorithm of Hastie and Tib-
shirani (1998) to find p for a given set of rij . They transform the problem into
an iterative optimization problem by introducing a criterion to measure the fit
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between the observed rij and the ρ̂ij , calculated from a possible solution p̂. To
measure the fit they define the weighted Kullback-Leibler distance:

l(p̂) =
∑
i<j

nij

(
rij ∗ log

(
rij

ρ̂ij

)
+ (1− rij) ∗ log

(
1− rij

1− ρ̂ij

))
(5)

nij is the number of objects that fall into one of the classes i or j.
The best solution p̂ of posterior probabilities is found as in Iterative Proportional
Scaling (IPS) (for details on the IPS-method see e.g. Bishop, Fienberg and
Holland, 1975). The algorithm consists of the following three steps:

1. Start with any p̂ and calculate all µ̂ij .

2. Repeat until convergence i = (1, 2, . . . ,K, 1, . . .):

p̂i ← p̂i ∗
∑

j 6=i nijrij∑
j 6=i nij ρ̂ij

(6)

renormalize p̂ and calculate the new µ̂ij

3. Finally scale the solution to p̂← p̂∑
i p̂i

2.2.1 Motivation of the algorithm:

Hastie and Tibshirani (1998), show that l(p) increases at each step. For this
reason, since it is bounded above by 0, the algorithm converges. The limit satis-
fies

∑
i 6=j nijρij =

∑
i 6=j nijrij for every class i = 1, . . . ,K if a solution p exists.

p̂ and ρ̂ij are consistent.
Even if the choice of l(p) as optimization criterion is rather heuristic, it can be
motivated in the following way: consider a random variable nijrij , being the
rate of class i among the nij observations of class i and j. This random variable
can be considered to be binomially distributed nijrij ∼ B(nij , ρij) with ”true”
(unknown) parameter ρij . Since the same (training) data is used for all pairwise
estimates rij , the rij are not independent, but if they were, l(p) of equation 5
would be equivalent to the log-likelihood of this model (see Bradley and Terry,
1952). Then, maximizing l(p) would correspond to maximum-likelihood estima-
tion for ρij .
Going back to example 2, we obtain p̂ = (0.47, 0.25, 0.28), a result being consis-
tent with the intuition that class 1 may be slightly preferable.

3 Validation of the principle

In this section, the suggested procedure of a pairwise variable selection combined
with Pairwise Coupling [PVS] is compared to usual classification using linear
and quadratic discriminant analysis [LDA, QDA].
Variable selection:
The method of variable selection in our implementation is a quite simple one.
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We used class pair - wise Kolmogorov-Smirnov tests (see Hajek, 1969, pp.62–69)
to check whether the distributions of two classes differ in a variable or not. For
every class pair and every variable, the statistic

D = max
x
|Fnk1

(x)− Fnk2
(x)| (7)

is calculated, where the Fnki
(x) are the empirical distributions of class ki,

i = 1, 2. A variable is taken into a pairwise model if its p value strongly indicates
differing densities. Of course, any other variable selection could be used instead.

3.1 A first example

Our first example is chosen according to the introductory example in section 1
to again illustrate the problem. Data are simulated in 9 classes and 10 variables.
Class i is distributed according to X ∼ N(2 ∗ 1.64 ∗ ei, I) if i < 10 and X ∼
N(0, I), if i = 10. Here ei represents the standard basis vector, 0 is the 0 vector
and I is the identity matrix.
This means, two classes k 6= l, k, l < 10 differ in their distributions in only 2
variables (k and l). Class 10 can be discriminated from any other class i only
in variable i. By construction, no variable can be omitted. For that reason,
variable selection will not remove any of the variables, using usual discriminant
analysis. We computed the results for using LDA and QDA and compared it to
the pairwise variable selection using LDA.
We computed simulations with varying (equal) class sizes in the training data
to investigate the effect of sparse data. In the test data each class contains 50
objects. Error rates are averaged over 50 repetitive trials. The results are given
in table 1.
QDA classification rules can only be build having enough data. Even at larger

Classes 1-9 Class 10
n LDA PVS(LDA) QDA LDA PVS(LDA) QDA
4 0.323 0.251 - 0.698 0.596 -
6 0.224 0.158 - 0.646 0.533 -
8 0.187 0.136 - 0.631 0.544 -
10 0.164 0.120 - 0.621 0.524 -
15 0.141 0.116 0.790 0.584 0.533 0.818
20 0.125 0.107 0.536 0.569 0.519 0.766
50 0.105 0.098 0.214 0.543 0.533 0.632

Table 1: Averaged error rates of LDA, QDA and PVS at varying class sizes

class sizes QDA error rates are very high. If there are few observations the PVS
approach shows strong advantages compared to usual LDA. For larger class sizes
the differences in the error rates of both methods seem to vanish.
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3.2 Differing variances

We now extend the situation of the first example. In real life it may be possible
that one is confronted with data where one of the classes is strongly concentrated
in a specific variable. Of course, this class can be more easily identified by its
realizations in this variable. Using LDA will fail to detect this by pooling all
classes’ covariances.
We modelled this situation with data consisting of 10 classes and 10 variables.
Class i is distributed following X ∼ N(ei,Σ) with Σ being the identity except
from (σ)ii := 0.1. An illustration of the phenomenon is given in figure 2.

Figure 2: Example of unequal variances and their pooled estimators.

Intuitively, QDA seems to be more appropriate in this situation. The results
for varying training data sizes are shown in figure 3.
Astonishingly, here LDA still shows smaller error rates than QDA. For QDA,

there does not seem to be enough data. Both methods can be largely improved
by a class pairwise variable selection using QDA. The line with the smallest
error rates is a reference line if the ”perfect” subset of variables would always
be found. Surprisingly the KS-test yieds results that are very close to that line.
But note that such Variable selection will fail to detect situations of correlation
between variables.

3.3 Waveform data

In order to obtain more general results we also wanted to apply the method to
a common and well known classification problem. We chose the Waveform data
introduced by Breiman et al. (1984).
The problem consists of simulated data of three classes and 21 variables. Three
waveforms over the variables (indexed by j) are given by: h1(j) = max(6−|j−
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Figure 3: Averaged error rates on test data.

11|, 0) , h2(j) = h1(j − 4) and h3(j) = h1(j + 4). h2 (h3) is equal to h1 but
shifted to the left (right). For each object, its mean lies uniformly distributed
between 2 of these waveforms over all 21 variables. The objects (depending on
their class memberships) are given by

class 1 : Xj = Uh1(j) + (1− U)h2(j) + εj (8)
class 2 : Xj = Uh1(j) + (1− U)h3(j) + εj (9)
class 3 : Xj = Uh2(j) + (1− U)h3(j) + εj (10)

where Xj denotes variable j. U is an object specific random uniform number of
the interval [0, 1] and εj is an additional iid standard normal error. For class 2
and 3 the combination of waveforms changes.
The training data consists of 300 observations, each class having equal prior
probabilities. The test data has 500 observations. We simulated 100 repetitions
and averaged the error rates. It can be seen, that the results of both, linear

LDA PVS(LDA) QDA PVS(QDA) Bayes risk
New Simulation 20.02 16.96 21.31 19.77
Breiman’s results 19.1 20.5 14.9

Table 2: Averaged error rates over 100 trials of Waveform data.

and quadratic discriminant analysis here can be improved by using the PVS-
approach.
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3.4 Additional remarks

Situations, where a class pairwise variable selection will not lead to a further
reduction of the variable space - compared to a K - class overall variable selection
are not investigated yet.
In K-class LDA the posterior probabilities are found by normalizing the density
estimations of the classes, given the observation x. Therefore, the conditional
pairwise posterior probabilities for two classes using K-class LDA will be the
same as in the pairwise approach, except from situations of different covariances
of the classes. The covariance of PVS-LDA is pooled only by two instead of all
K covariances. In the case of QDA there should not be any such difference
between the K-class and pairwise classification rules since all covariances are
estimated separately.

4 Summary

A principle is suggested to perform the maximal possible variable selection by
splitting a K-class classification problem into K(K − 1)/2 two-class problems
and an algorithm is presented to build a classification rule from the results using
these methods. This principle can be applied to any classification method and
any variable selection procedure.
The method is investigated on different simulated data sets using (linear and
quadratic) discriminant analysis and the results are compared to their original
results. Gain in classification error rate can be noticed, especially if the number
of observations is not very large.
Additionally, the pairwise variable subset selection can give interpretational
insight into which variables characterize the differences between two classes.
On the other hand, the computation time grows since there have to be built
K(K − 1)/2 classification models. Also, the classification rule of each object
has to be evaluated by the Pairwise Coupling algorithm.
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