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CAKE CUTTING - FAIR AND SQUARE

Erel Segal-Halevi and Shmuel Nitzan1

Abstract The classic fair cake-cutting problem [Steinhaus, 1948] is extended by
introducing geometric constraints on the allocated pieces. Specifically, agents may
demand to get their share as a square or a rectangle with a bounded length/width
ratio. This is a plausible constraint in realistic cake-cutting applications, notably in
urban and agricultural economics where the “cake” is land. Geometric constraints
greatly affect the classic results of the fair division theory. The existence of a propor-
tional division, giving each agent 1/n of his total cake value, is no longer guaranteed.
We prove that it is impossible to guarantee each agent more than 1/(2n-1) of his total
value. Moreover, we provide procedures implementing partially proportional division,
giving each agent 1/(An-B) of his total value, where A and B are constants depending
on the shape of the cake and its pieces. Fairness and social welfare implications of
these procedures are analyzed in various scenarios.

Keywords: fair division, cake cutting, land division, geometry, non-additive util-
ities, social welfare.

1. INTRODUCTION AND RELATED WORK

Consider a group of 1000 people arriving at a newly discovered island. They
decide to settle in the island and one of their first tasks is to divide the land
among them. However, the island is heterogeneous - parts of it are covered with
fruit trees, other parts are covered with grass, while other parts are barren.
Additionally, the settlers have different preferences regarding the different parts
of the island. Some of them think that the beach is the most valuable part, feeling
that it should be divided to 1000 small parcels enabling each person access to
the sea, while others consider the inner rain forests to be the most valuable part.
How can the island be divided among the settlers such that each of them gets a
land-plot that he or she considers a fair share?

The answer to the question can be based on the application of the solution to
the classic problem of fair cake-cutting. In this problem, an infinitely divisible
set (the “cake”) has to be allocated among n agents with different valuation
functions over the subsets of this set. The goal is to divide the cake into n
disjoint subsets allocating each agent a single subset such that the allocation
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is fair. The earliest fairness criterion studied in the context of cake-cutting is
proportionality - each of the n agents should get a piece which they value as at
least 1/n of the entire cake. Steinhaus [1948] proved that a proportional cake-
cutting always exists, by describing an elegant division procedure developed by
Banach and Knaster. This result was later improved and extended in many ways,
for example, by reducing the number of queries each agent has to answer during
the division process [e.g. Even and Paz, 1984, Webb, 1997], by giving different
proportions to agents with different rights [e.g. Berliant et al., 1992, McAvaney
et al., 1992, Robertson and Webb, 1997], by satisfying stronger fairness criteria
such as envy-freeness [e.g. Brams and Taylor, 1996, Barbanel and Brams, 2004]
or egalitarian-equivalence [e.g. LiCalzi and Nicolò, 2009], by optimizing various
efficiency and social welfare criteria in addition to fairness [e.g. Moulin, 2004,
Cohler et al., 2011, Hüsseinov and Sagara, 2013], and by developing strategy-
proof procedures that induce the agents to reveal their true preferences [e.g.
Nicolò and Yu, 2008, Chen et al., 2013]. This is an active research topic, with
new results published every several months.

Alas, when the existing cake-cutting procedures are used to divide the island
among the settlers, it turns out that the resulting land-plots are practically
unusable, since most of the procedures disregard the geometric shape of the
allocated pieces of land. Many procedures assume that the cake is a general set,
and allow each piece to be any subset of the cake [e.g. Brams and Taylor, 1995,
Robertson and Webb, 1998, Chambers, 2005]. This means that each “piece” may
actually consist of a large number of tiny “crumbs” (Figure 1/left). This is not
a problem when dividing an actual dessert cake, but it raises a serious difficulty
when dividing land, as a large collection of tiny pieces of land has no practical
use.

On the other extreme, many division procedures assume a very restricted cake -
the cake is the one-dimensional interval [0,1], and each piece is a one-dimensional
sub-interval [e.g. Su, 1999, Nicolò and Yu, 2008, Aumann and Dombb, 2010,
Chen et al., 2013]. When such a procedure is applied to a two-dimensional island,
each agent gets a long strip of land that runs from one side of the island to the
opposite side (Figure 1/middle)2 and these strips may be too narrow to use.3

Dall’Aglio and Maccheroni [2009] acknowledge the importance of having nicely-
shaped pieces in resolving land disputes. They prove that, if the cake is a simplex
in any number of dimensions, then there exists an envy-free and proportional di-
vision of the cake into polytopes. However, this proof is existential - no procedures
are given.

2As Douglas R. Woodall elucidates: "the cake is simply a compact interval which without
loss of generality I shall take to be [0,1]. If you find this thought unappetizing, by all means
think of a three-dimensional cake. Each point P of division of my cake will then define a plane
of division of your cake: namely, the plane through P orthogonal to [0,1]." [Woodall, 1980]

3Several papers assume that the cake is a circle [Thomson, 2007, Brams et al., 2008, Barbanel
et al., 2009], but still a one-dimensional circle. The pieces are arcs which, if projected on a two-
dimensional circle, result in thin wedge-like land-plots.
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Relatively few papers explicitly relate to a two-dimensional cake. Two of
them discuss the problem of dividing a disputed territory between several bor-
dering countries, with the constraint that each country should get a piece that
is adjacent to its border: Hill [1983] proved that such a division exists, and Beck
[1987] complemented this proof with a procedure for constructing such a division.
Although the adjacency constraint is important and useful in some cases, it is
not relevant to the general land division scenario. Iyer and Huhns [2009] describe
a procedure that asks each of the n agents to draw n disjoint rectangles on the
map of the two-dimensional cake. These rectangles are supposed to represent the
“desired areas” of the agent. The procedure tries to give each agent one of his
n desired areas. However, it does not succeed unless each rectangle proposed by
an individual intersects at most one other rectangle drawn by any other agent.
If even a single rectangle of Alice intersects two rectangles of George, then the
procedure fails and no agent gets any piece.

In this paper, we look for a fair division of a two-dimensional cake, where each
agent gets a single (contiguous) piece that satisfies some explicit geometric

constraints. A formal general definition of the constraint appears in Section 2.
It covers the specific requirement that each piece must be a fat rectangle - its
length/width ratio is bounded by a pre-specified constant. If that constant is
1, then our constraint becomes: each piece must be a square (hence the phrase
“fair-and-square” in the title of this paper).4 This constraint is natural in many
practical scenarios, for example, when dividing an urban land for building houses,
or when dividing an agricultural land for cultivation. Consider, for example, an
urban land-plot of 900 square meters. This land-plot may have a high value if it
is shaped as a 30-by-30 square or a 45-by-20 rectangle, but it may be useless if
it is a 1-by-900 strip or 900 separated 1-by-1 squares.

In addition to land division, the problem of two-dimensional cake-cutting may
be relevant for fair division of advertisement areas in newspapers or websites.
The importance of geometric constraints there is obvious. As a third possible
application, consider several radio companies that compete over frequencies. To
increase the effectiveness of their service, instead of dividing only the frequencies,
the companies can also divide the times of the day. For example, a particular
radio frequency band in the 1.0-1.2 GHZ range may be allotted from 7am to
9pm for broadcasting traffic information, while it may be used for downloading
data onto wireless devices during off-peak hours [Iyer and Huhns, 2009]. This
is a two-dimensional division problem of the frequencies and the broadcasting
time. Here, too, a piece that is too narrow in either dimension may be unusable.
A fourth possible application is related to redistricting - partitioning a state to a
fixed number of districts with a fixed number of citizens in each district, for the
purpose of elections to the house of representatives. The partitioning may have
a substantial effect on the final outcome of the elections. As the parties usually
have different preferences regarding the desirable partition, it is natural to look

4Alternative geometric constraints are discussed in subsection 5.4.
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Figure 1: Problems with common cake-cutting procedures.
Left: Many cake-cutting procedures allocate to each agent an arbitrarily large set of
arbitrarily small disconnected pieces (“crumbs”). Such a set of land-plots is unusable.
Middle: Many cake-cutting procedures assume that the cake is the 1-dimensional inter-
val [0,1], and thus allocate to each agent a long and narrow strip of land, which might
be unusable.
Right: The divide-and-choose procedure might force the chooser to choose between a
valuable strip that is too narrow to be useful and a wide strip that has no value.

for fair division solutions.5 The law sets geometric constraints on the districts,
but the constraints are ill-defined.6

Obviously, the existing procedures for fair cake-cutting cannot guarantee that
the pieces are squares or fat rectangles. Even the simple divide-and-choose proce-
dure for two agents might produce long and narrow strips that are unusable. For
example, suppose that the chooser values only the northern shore of the island,
e.g., because he plans to build a hotel near the sea (See Figure 1/right). If the
divider decides to draw the division line just to the south of the shore, then the
chooser has two bad options: either choose the northern shore, which is near the
sea but too narrow for meaningful building, or choose the southern part, which
is sufficiently wide but has no value because it has no access to the sea. 7

It is therefore natural to ask the following two questions: (a) Does there always
exist a proportional division such that each piece is a fat rectangle? (b) If such
a division exists, what procedure can implement it?

In Section 3, our first main result gives a negative answer to the former ques-
tion: in some cases, there may be no proportional division with fat pieces! This
is in sharp contrast to the unconstrained cake-cutting problem, where a propor-
tional division always exists [Steinhaus, 1948, Dubins and Spanier, 1961]. This
impossibility result also quantifies the loss of proportionality due to the fatness

5Landau et al. [2009] developed a “fair redistricting” procedure in which two parties divide
the state between them and each party redistricts its share of the state.

6See: http://www.redistrictingthenation.com/glossary.aspx#compactness
7Recently, several mathematicians have studied some geometric problems related to fair

division of squares, rectangles and other polygons [e.g. Christ et al., 2011, Dumitrescu and
Tóth, 2012, Karasev et al., 2013]. However, these problems do not take into account agents
with subjective valuation functions.
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Notation Meaning

C A land-cake - a polygon that is to be divided fairly.
n Number of agents participating in a land-cake division.

Pi A land-plot - a part of the land-cake that is given to agent i ∈ {1, ..., n}

Vi The valuation function of agent i - a function over land-plots.
L A specific length/width ratio of a rectangle. By convention, L ≥ 1.

L-ratio rectangle A rectangle with length/width ratio of exactly L.
R An upper bound on length/width ratios of rectangles Since all realistic lands

can be approximated by polygons, in this paper the focus is on polygonal
cakes.(R ≥ 1).

R-fat rectangle A rectangle with length/width ratio of at most R.
Prop(C, n,R) The value that can be guaranteed to each of n agents, when dividing the

land-cake C to R-fat rectangular pieces.
TABLE I

Notation used throughout the paper

constraint, by calculating an upper bound on the value that can be guaranteed
to each agent when the pieces must be fat rectangles. In Section 4, we present a
positive result that provides some comfort by describing a procedure for cutting
a cake such that each agent gets a fat rectangle with a guaranteed lower bound
on its value. Several possible extensions to the model are discussed in Section
5, in particular, allowing each agent to hold a subjective geometric constraint,
allowing each agent to get two disjoint land-plots and allowing each agent to
require a rectangle with an exact length/width ratio. We also discuss a couple
of alternative geometric constraints. An alternative problem formulation, that
relates our work to the literature on non-additive valuations, is presented in Sec-
tion 6. A table summarizing our results and some interesting open questions are
presented in the concluding Section 7.

2. THE MODEL

We study a 2-dimensional cake that represents land that has to be divided
among n agents. All realistic lands can be approximated by polygons; in this
paper the focus is therefore on cakes that are polygons. To distinguish between
the whole polygon and its pieces, we refer to the former as a land-cake and to
the latter as land-plots.

Definition 1 Given an integer n ≥ 1 and a land-cake C, an n-allocation of
C is an n-tuple of disjoint land-plots, (P 1,... P n), such that, for every i, P i ⊆ C.
8

Each agent is assumed to have a subjective valuation function over land-plots
that satisfies the following standard assumptions:

8Note that the definition does not require that the entire land-cake is divided, since in
reality it often happens that some land is left undivided. In other words, we make a free
disposal assumption.
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• Each valuation function is a measure, i.e., non-negative (the value of each
land-plot is at least 0) and additive (the value of a whole is equal to the
sum of the values of its parts).9

• Each valuation function is absolutely continuous with respect to area, i.e.,
the value of each land-plot with an area of 0 is 0. This entails that it is
infinitely divisible in all directions [see Hill and Morrison, 2009], i.e., if the
value of a land-plot is V , it is possible to divide it horizontally, vertically
and diagonally, such that one of the pieces has a value of pV , for every
p ∈ (0, 1).

The subjective valuation functions encapsulate the different preferences of the
agents, i.e., some of the agents may prefer a land-plot near the sea while others
may prefer a land-plot with a fertile soil, etc. Our version of the cake-cutting
problem is defined below.

Definition 2 A cake-cutting instance is a tuple:

(C, n, (V1, ..., Vn), (UP1,...,UPn), FA)

where:
- C is the land-cake to divide;
- n ≥ 1 is an integer - the number of agents;
- V1 ... Vn are infinitely divisible measures - the valuation functions;
- UP1...UPn (Usable Plots) are sets of land-plots in C.
- FA (Fair Allocations) is a set of n-tuples of values.
A solution to a cake-cutting instance is an n-allocation (P1, ... Pn), such that:
- a. For every i, Pi ∈ UPi.
- b. (V1(P1), ... Vn(Pn)) ∈ FA.
The UPi (Usable Plots) sets represent the geometric constraints and the FA

(Fair Allocations) set represents the fairness condition that the allocation should
satisfy. Note that in the general case each agent may have different geometric
constraints, although usually we will assume that the geometric constraints of
all agents are identical or have a similar nature.

What kind of geometric constraints make sense in the context of land division?
One important constraint is connectedness : each land-plot should be a single
connected piece of land.10 A second constraint is that each land-plot should be
an axis-parallel rectangle - a rectangle with sides parallel to the x and y axes.
This constraint is natural in agricultural and urban planning scenarios. The two
constraints are important but insufficient because they allow the land-plots to
be arbitrarily narrow and thus unusable.

Two additional constraints that come to mind are length constraint (each land-
plot should be a rectangle at least M meters long in each edge, where M is a

9Non-additive valuation functions are discussed in Section 6.
10The connectedness constraint is common in the cake-cutting literature even for one-

dimensional cakes. In subsections 4.6 and 5.2 we suggest two ways to relax this constraint.
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pre-specified constant) and area constraint (each land plot should be a rectangle
with an area of at least S square meters, where S is a pre-specified constant).
The problem with these constraints is that they are not scalable. For example,
if the land-cake is 200-by-200 meters and there is either a length constraint of
M ≥ 10 or an area constraint of S ≥ 100, it is impossible to divide the land to
more than 400 agents.

Governments often cope with this problem by putting an upper bound on the
number of people allowed to settle in a certain location. However, this limitation
prevents people from taking advantage of new possibilities that become available
as the number of people grows. For example, while in rural areas a land-plot
of less than 10-by-10 meters may be considered useless because it cannot be
efficiently cultivated, in densely populated cities even a land-plot as small as
2-by-2 meters can be used as a parking lot for rent or as a lemonade selling spot.
Limiting the number of agents assures that each agent gets a land-plot that can
be cultivated efficiently, but it may prevent more profitable ways of using the
land-plots. 11

In light of the above problems, this paper suggests an alternative geometric
constraint based on the following definition:

Definition 3 An R-fat rectangle is a rectangle with a length/width ratio
between R and 1

R
, where R ≥ 1. 12

Note that, if R2 ≥ R1, then every R1-fat rectangle is also R2-fat. A 1-fat
rectangle is a square, and an ∞-fat rectangle is an arbitrary rectangle.

The fatness constraint is scalable because it does not depend on the absolute
size of the land-cake. It is equally meaningful in both densely and sparsely popu-
lated areas. Therefore, henceforth we focus on cake-cutting instances where each
agent i decides on a certain ratio Ri and the set UPi (Usable Plots) contains all
Ri-fat axis-parallel rectangles in C.

As a fairness condition, we focus on proportionality: for every i in {1..n},

Vi(Pi) ≥ Vi(C)
n

. A cake-cutting instance with no geometric constraints always
has a proportional solution [Steinhaus, 1948], but a cake-cutting instance with
the constraint of R-fat rectangles may have no proportional solution, as shown
in the following section.

3. THE IMPOSSIBILITY OF PROPORTIONAL DIVISION WITH FAT PIECES

To illustrate the crucial effect of the fatness constraint on the attainable pro-
portionality, consider the following simple example: the land-cake is the square

11A possible solution to the scalability problem is to allow shared ownership. This option is
further discussed in Subection 5.4.

12The term “fat rectangle” comes from the fields of computer geometry and computer graph-
ics [Agarwal et al., 2000, Tóth, 2008]. Length/width ratios (also known as aspect ratios) are
also important in other fields, such as VLSI circuit design [Wimer et al., 1989].
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[−1, 1]× [−1, 1], it has to be divided between n = 2 agents, each agent demands
a square land-plot (i.e. R = 1 for both agents) and the agents share the same
preferences - the value of each piece is equal to its area (hence the value of the
entire land-cake is 4). If the area of any square land-plot is larger than 1, then
its side-length must be larger than 1 and, therefore, its interior must contain the
origin (0, 0).13 This means that there can be only one such land-plot; it is im-
possible to cut two disjoint square land-plots such that the area of each exceeds
1. Hence it is impossible to give each of the two agents a square land-plot worth
more than 1

4 of the total value! This is in contrast to the unconstrained case, in
which it is always possible to give each agent at least 1

2 of the total value of the
land-cake, for example, by using the cut-and-choose procedure.

How severe is the loss of fairness (proportionality) in the general case? A
quantitative answer to this question makes use of the following definition:14

Definition 4 Given a land-cake C, the number of agents n and a bound on the
length/width ratio of land-plots R ≥ 1, Prop(C, n, R) is defined as the highest
value p, such that every cake-cutting instance on C with n agents has a solution
(P1 ... Pn) such that, for every i, Pi is an R-fat rectangle and Vi(Pi) ≥ p · Vi(C).

In the example presented above: Prop(square, n = 2, R = 1) ≤ 1
4 . 15

In general, the maximum possible proportionality is 1
n
. Proportionality of 1

n

means that it is possible to find a proportional division of C to any group of n
agents. This maximum value is attainable if the land-cake is rectangular and all
agents are willing to get arbitrary rectangles (R = ∞), for example, using the
last-diminisher procedure [Steinhaus, 1948] or the recursive-halving procedure
[Even and Paz, 1984]. Therefore:

Prop(rectangle, n, R = ∞) = 1
n
.

However, when R is finite and n ≥ 2, the proportionality value is always less
than 1

n
. We prove this negative result first for a square land-cake and then for

general land-cakes.

3.1. Square land-cakes

Our upper bound on proportionality is proved by describing a specific example
in which it is impossible that all n agents get more than a specified value. The
example involves a desert land with several pools of water. All agents have the
same valuation function, which depends only on the amount of water accessible

13This fact is obvious when the land-plots are axis-parallel. It is less obvious, but still true,
when the land-plots are rotated.

14The following discussion makes the assumption that all agents have the same geometric
constraint (the same R). Subjective geometric constraints are discussed in Subsection 5.1.

15Note that the proportionality value depends only on the shape of C. Therefore, for the
sake of brevity, instead of writing “for all C such that C is a square: Prop(C, 2, 1) ≤ 1

4
”, we

use an abbreviated notation and write the shape of C directly inside the parentheses.
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from their allocated land-plot. In order to construct the example we prove the
following lemma:

Lemma (Pools Lemma). Let C be a land-cake and let Pools be a finite set
of disjoint squares in C (the elements of Pools will be called “pools”). Define
a “wetland” as a land-plot in C that intersects at least two different pools. For
every set Pools and R ≥ 1, define Wet(C,Pools, R) as the maximum number of
disjoint wetlands in C that are R-fat rectangles.

If there exists a set of pools Pools, such that Wet(C,Pools, R) < n, then
Prop(C, n, R) ≤ 1

|Pools | (where |Pools| is the number of elements in Pools).

Proof: Assume that, for a certain land-cake C and number R, there exists a
set Pools of pools, such that Wet(C,Pools, R) < n. Assume that the land-cake
C should be divided to n agents such that each agent gets an R-fat rectangle.
Assume that the valuation functions of all agents are identical such that the
value of each pool is 1 (spread uniformly over the pool) and the value of the rest
of C (i.e. all parts of C that are not contained in the pools) is 0. The total value
of C is thus |Pools |.

By assumption, Wet(C,Pools, R) < n, so there is no set of n disjoint wetlands
that are R-fat rectangles. Hence, in every set of n disjoint R-fat land-plots, at
least one of them is not a wetland, i.e., it intersects at most a single pool. The
value of this non-wetland is at most 1. Hence, by definition of proportionality,
Prop(C, n, R) ≤ 1

|Pools | . Q.E.D.

Using the Pools Lemma, all we have to do to establish an upper bound on the
proportionality of a certain land-cake C is to find a certain set of pools Pools,
such that Wet(C,Pools, R) < n, i.e., there is no set of n disjoint R-fat rectangles
each of which intersects two or more pools.

Claim 1 For any n ≥ 2 and 1 ≤ R < ∞, Prop(square, n, R) ≤ 1
2n−1 .

Moreover, when 1 ≤ R < 2, Prop(square, n, R) ≤ 1
2n .

Proof: 16 Let D = R + 1 and let C be the square land-cake [1, Dn−1 + ǫ] ×
[1, Dn−1 + ǫ], for some small ǫ > 0. Define the following set of pools: The set
consists of 2n− 1 squares with a side-length of ǫ. The south-western corners of
the pools are:
(1, 1), (1, D), (1, D2), ..., (1, Dn−1) , (D, 1), (D2, 1), ..., (Dn−1, 1)
If 1 ≤ R < 2, add one more pool at (Dn−1, Dn−1). See Figure 2 for an example.
To calculate Wet(C,Pools, R), we have to calculate the maximal set of disjoint

R-fat rectangles that intersect more than one pool. We call this set WetRec
(Wetland Rectangles).

16We thank Prof. Boris Bukh for the helpful discussion which led to the construction in this
proof.
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Figure 2: Upper bound on the proportionality of a square land-cake. In this figure, there
are n = 6 agents that demand square pieces (R = 1). It is impossible to give each of
them more than 1

12
of their total value:

Left: The land-cake contains pools such that it is impossible to cut a square with two
southern pools and the symmetric square with two western pools, because the interiors
of the two squares intersect.
Right: Therefore, at most n − 1 square pieces can contain more than 1 pool. Hence,
to guarantee that each of the n agents gets a piece with a value of at least 1, the total
value of the cake should be at least the number of pools. In this case, it is 12 = 2n.

First, consider a rectangle that intersects a pool from the western side (x = 1)
and a pool from the southern side (y = 1). Every such rectangle must contain
the point (1+ ǫ, 1+ ǫ) in its interior. Therefore WetRec can contain at most one
such rectangle.

Next, consider a rectangle that intersects two pools from the western side, for
example, the two adjacent pools (1, Di) and (1, D ∗Di), with 1 ≤ i ≤ n − 2.17

Its width must be at least (D − 1)Di − ǫ, therefore its length must be at least
(D−1)Di−ǫ

R
= Di − ǫ

R
. Therefore (assuming that ǫ < 0.5), the interior of this

rectangle contains the point (0.5+Di, 0.5+Di). The same holds for the symmetric
rectangle on the southern side - the rectangle that intersects the pools at (Di, 1)
and (D∗Di, 1). Therefore, only one rectangle of each such pair can be a wetland,
and WetRec can contain at most n− 2 such rectangles.

Finally, consider the north-eastern pool (Dn−1, Dn−1), that appears on the
island only when 1 ≤ R < 2. If this pool is used in a wetland rectangle, the side-

length of that rectangle must be at least (Dn−1−1)
R

> (Dn−1−1)
2 , i.e., its interior

must entirely cover either the eastern half or the northern half of the land-cake.
Therefore its interior must contain the point (0.5 +Dn−2, 0.5 +Dn−2). Any set

17There is no need to consider rectangles that intersect non-adjacent pools on the western
side, since any such rectangle can be replaced by contained rectangles that intersect only
adjacent pools.



CAKE CUTTING - FAIR AND SQUARE 11

of disjoint rectangles may contain either this north-eastern piece, or the north-
western piece containing the pools (1, Dn−2) and (1, Dn−1), or the south-eastern
piece containing the pools (Dn−2, 1) and (Dn−1, 1). Therefore, this north-eastern
pool cannot increase the number of rectangles in WetRec.

In total, the number of R-fat rectangles in WetRec is at most n−1. Therefore,
Wet(C,Pools, R) < n, and by the Pools Lemma we get that:

Prop(C, n, R) ≤
1

|Pools |

where |Pools | is 2n− 1 (when R ≥ 2) or 2n (when 1 ≤ R < 2). Q.E.D.

It is remarkable that the upper bounds in Claim 1 depend only weakly on R.
As long as R is finite, no matter how large it is, we cannot guarantee that each
agent gets more than 1

2n−1 of his value of the land-cake.

3.2. General land-cakes

In general, when the land-cake is not a square, we can expect a reduction
in the attainable proportionality. For example, assume that the land-cake is an
L-by-1 rectangle. In some cases, even a single agent (n = 1) cannot get a square
with a value of more than 1

L
(e.g. when the valuation is uniform). Thus, we

can expect that the proportionality of a general land-cake will be determined by
two components: a component that depends on the number of agents n and a
component that depends on the geometric shape of the land-cake. To define the
geometric component, we need the following definition:

Definition 5 Let C be a polygon and R ≥ 1. An R-independent set in C
is a set of disjoint squares contained in C no two of which are covered by the
same R-fat rectangle contained in C.18

We are interested mainly in independent sets of maximum size:

Definition 6 Let C be a polygon. The R-independence number of C,
R-IndepNum(C), is the maximum cardinality of an R-independent set in C.

Here are some examples: The R-IndepNum of a square is 1 for all R. A 2-by-1
rectangle has a 1-IndepNum of 2 and a 2-IndepNum of 1 (and, obviously, an
R-IndepNum of 1 for every R ≥ 2). The R-IndepNum of an L× 1 rectangle is
⌈

L
R

⌉

,19 because we can place sufficiently small squares along its length such that

18Albertson and O’Keefe [1981] call a 1-independent set an “anti-square”. Chaiken et al.
[1981] call a ∞-independent set an “anti-rectangle”. We prefer the term “independent set”,
which in graph theory means: a set of vertices in a graph no two of which are connected by
the same edge.

19⌈x⌉is the ceiling of x - the smallest integer that is at least as large as x.
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Fat L-shape:

1-IndepNum = 3

Fat L-shape:

2-IndepNum = 2

Assymetric T-shape:

2-IndepNum = 3

Assymetric cross:

2-IndepNum = 4

Figure 3: Independence numbers: what is the largest size of an independent set of pools?
Right: An island with 3 pools, which are a 1-independent set (no two of the pools can
be covered by a single square).
Middle, Left: 2-independent sets: no two pools can be covered by a single 2-fat rectan-
gle. In fact, they also cannot be covered by any rectangle. Therefore, the R-IndepNum

of all polygons in this figure equals their 2-IndepNum for every R ≥ 2.

the distance between two adjacent squares is slightly larger than R. Some more
examples are shown in Figure 3.

Some shapes have an infinite independence number. For example, if C is a
circle, then we can build an arbitrarily large set of sufficiently small squares near
the perimeter of C. In general, only rectilinear polygons (polygons with angles
that are multiples of 90◦) have a finite independence number.

Using the independence number, we now generalize Claim 1 to land-cakes that
are hole-free (simply-connected) polygons:

Theorem 1 Given a hole-free land-cake C and an integer n ≥ 1:

(a) For every finite R ≥ 1, Prop(C, n,R) ≤ 1
R-IndepNum(C)+2n−2

(b) For R = ∞, Prop(C, n,R = ∞) ≤ 1
∞-IndepNum(C)+n−1

Proof: Define a corner square as a square contained in C which has two
adjacent sides contained in the boundary of C. Every hole-free polygon contains
a maximum-size R-independent set that contains at least one corner square. 20

Choose an R-independent set in C with R-IndepNum(C) squares that contains
a corner square.

For part (a) of the theorem, replace that corner square with the set of 2n− 1
smaller squares from the proof of Claim 1. Call the resulting set Pools. Note
that |Pools | = R-IndepNum(C) + 2n− 2. By the definition of R-IndepNum,
no R-fat rectangle can cover more than one of the large pools. By the proof
of Claim 1, at most n − 1 R-fat rectangles can intersect more than one of the
small pools. Therefore, Wet(C,Pools, R) < n. Therefore, by the Pools Lemma,

20Gill, Hum, and Pálvölgyi [2013] proved this fact for R = ∞. Their proof is equally valid
for every R < ∞.
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Figure 4: Upper bound on the proportionality of a general land-cake. In this figure,
there are n = 2 agents that want square pieces (R = 1). It is impossible to give each of
them more than 1

5
of the total value.

Left: A polygon with 1-IndepNum = 3, containing 3 squares such that no two can be
covered by a single square. In this case, all 3 squares are corner squares.
Middle: Take one corner square and replace it with 3 smaller squares. Define the
resulting set of 5 squares as “pools”.
Right: By the definition of 1-IndepNum, there is no square that contains one of the
bigger pools and another pool. Also, there is at most one square that contains more than
one of the smaller pools. Therefore, Wet(C,Pools,R) < 2, and by the Pools Lemma,
the proportionality of C is at most 1

5
.

Prop(C, n,R) ≤ 1
R-IndepNum(C)+2n−2 . Figure 4 illustrates the proof for

n = 2 agents.
For part (b) of the theorem, replace the corner square with a set of n small

squares along its diagonal and call the resulting set Pools. At most n − 1 rect-
angles can intersect more than one of these pools, and no rectangle can intersect
more than one of the large pools. |Pools | = R-IndepNum(C) +n− 1 so by the
Pools Lemma, Prop(C, n,R = ∞) ≤ 1

∞-IndepNum(C)+n−1 . Q.E.D.

This upper bound is valid even for n = 1:
Prop(C, n = 1, R) ≤ 1

R-IndepNum(C) .

Indeed, even Robinson Crusoe on a lonely island cannot always have the entire
value of the island (at least if he wants this value contained in a square). As an
extreme example, assume that Robinson Crusoe lives on a circular island of
which he values only the beach, but still he wants a rectangular land-plot. The
value contained in any rectangle contained in the circle might be infinitesimally
small. This is in sharp contrast to the case of unconstrained cake-cutting, where
a single agent can always have the entire cake.

When the whole land-cake is rectangular, the upper bound on the attainable
proportionality has a more explicit formula:

Corollary For every L ≥ 1, n ≥ 1 and finite R ≥ 1:
Prop(L-ratio rectangle, n, R) ≤ 1

⌈ L
R⌉+2n−2

Similarly to subsection 3.1, the bound is slightly tighter when n ≥ 2, L ≤ R and
RL < 2 (the proof details are omitted):

Prop(L-ratio rectangle, n, R) ≤ 1
2n
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The results in this section were negative: we calculated an upper bound on
the value that can be guaranteed to each agent when the land-plots must be R-
fat rectangles. These upper bounds imply that the classic fairness requirement
(proportionality) is incompatible with the fatness constraint.

However, this does not mean that we should entirely abandon one of these two
requirements in favor of the other. As we will see in the following section, the
fatness constraint is compatible with a partial proportionality requirement, by
which each agent is guaranteed a predefined proportion (albeit smaller than 1

n
)

of the total land-cake value.

4. PROCEDURES FOR PARTIAL PROPORTIONALITY

We start with the case of a single agent (n = 1), which is simple but not
entirely trivial.

Definition 7 Let C be a polygon. R-CoverNum(C) is the minimum number
of R-fat rectangles whose union is C.

Note that the rectangles in a cover need not be disjoint. Hence, for example,
the R-CoverNum of an L-ratio rectangle is

⌈

L
R

⌉

, because it can be covered by
⌈

L
R

⌉

partially-overlapping R-fat rectangles.

Claim 2 For every land-cake C and ratio R:
Prop(C, n = 1, R) ≥ 1

R-CoverNum(C)

Proof: C is the union of R-CoverNum(C) R-fat rectangles. By the additivity
of the valuation functions, at least one of the R-fat rectangles must have a value

of at least V (C)
R-CoverNum(C) . A single agent can just take this rectangle and attain

the specified proportionality value.21 Q.E.D.

We proceed with a division procedure for n agents.

4.1. Overview of the division procedure

The division procedure is made of rules and methods. The rules are the protocol
by which the division proceeds. The methods are the strategies that each agent
is advised to follow during the division process in order to guarantee his/her fair
share.22 The distinction between rules and methods has several advantages:

21The question how to find a cover with a minimal number of R-fat rectangles is beyond
the scope of the current paper. The land-cakes we handle in this paper are simple enough so
that the minimal cover is obvious.

22Steinhaus [1948] uses the terms “rules” and “methods”. Even and Paz [1984] use the terms
“protocol” and “winning strategies”.
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Figure 5: Basic partition steps used in division procedures. In all illustrations there are
n = 4 agents. Dashed lines are marks made by the procedure. Dotted lines are drawn
by agents. Numbers are Partners values declared by the agents.
Left: Agent-bipartition (k=3).
Middle: Agent-bipartition (k=2).
Right: Cake-bipartition.

1. It emphasizes that the guaranteed share to each agent does not depend on
the actions of other agents or on the system being in equilibrium. Every
agent who follows the recommended method will always get the promised
value, regardless of whether the other agents follow the same method or
not.23

2. It minimizes the role of the arbitrator that runs the division process (the
“government”). The arbitrator only has to make sure that the rules are
kept; it doesn’t have to know the actual valuations of the agents. The
valuation of each agent is private information used only for following the
recommended method.

3. It makes it easy for different agents to use different methods, depending on
their subjective geometric preferences. Subsection 5.1 explains this point
in greater detail.

The division procedure is recursive, similar to the last diminisher procedure of
Steinhaus [1948] and the recursive halving procedure of Even and Paz [1984].
We name the procedure “fair-and-square recursive-halving”. In each step, the
land-cake is divided into two parts and the agents are divided into two groups;
one group is sent to one part and the second group to the second part. The two
groups are let to divide their part using the same procedure, until each group
contains a single agent. The two basic steps in the procedure are agent-bipartition
and cake-bipartition, which we describe next.

23In Steinhaus’ words: "The greed, the ignorance, and the envy of other partners can not
deprive him of the part due to him in his estimation; he has only to keep to the methods
described above. Even a conspiracy of all other partners with the only aim to wrong him, even
against their own interests, could not damage him" [Steinhaus, 1948].
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4.1.1. Agent-bipartition

An agent-bipartition step splits the group of n agents to two groups of k and
n− k agents, where k ∈ 1, .., n− 1 is a pre-specified integer.

The rules of this step require each agent i to draw a land-plot Pi on the current
land-cake. The plots are constrained such that, for every i, j, either Pi ⊆ Pj or
Pj ⊆ Pi. For example, assuming the land-cake is the rectangle C = [0, L]× [0, 1],
each agent i may be asked to draw a rectangle adjacent to the western boundary:
Pi = [0, xi]× [0, 1].

Next, the agents are ordered in an increasing order of their plots, such that
P1 ⊆ P2 ⊆ ... ⊆ Pn. The k agents that drew the smallest plots (1..k) are given
the piece Pk+1 to divide recursively among them. The other n − k agents are
given the piece C − Pk+1 to divide recursively among them.

The agent-bipartition step is the basic step in both the last diminisher pro-
cedure [Steinhaus, 1948] and the recursive halving procedure [Even and Paz,
1984]. In the former, k = n− 1 (Figure 5/Left), and in the latter, k = n

2 (Figure
5/Middle).

The methods advise each agent i to draw a land-plot Pi such that Vi(Pi) is
large enough for sharing it with k agents and Vi(C − Pi) is large enough for
sharing it with n− k agents. The definition of “large enough” depends of course
on the subjective valuation of the agent. For example, in the recursive halving
procedure (without geometric constraints), each agent is advised to draw a piece
with a value of half of the total cake value, such that both Pi and C − Pi are
sufficiently valuable for dividing with n

2 agents. It is easy to prove by induction
that any agent who follows these methods will get at least 1

n
of the total value

of the cake.

As explained in the introduction, the agent-bipartition step might be insuffi-
cient when there are geometric constraints, because an agent might be unable to
draw a piece such that both Pi and C−Pi are sufficiently valuable. For example,
suppose an agent values only the northern shore of an island because he plans to
build a square hotel adjacent to the sea (Figure 1/right). If the rules require to
divide the land-cake using an east-west line, then this agent will be unable to do
the division such that both the northern and the southern parts are sufficiently
valuable. Therefore in the next subsection we introduce a complementary step.

4.1.2. Cake-bipartition

A cake-bipartition step splits the land-cake to two pieces using a cut in a
pre-specified location. For example, assuming the land-cake is the rectangle C =
[0, L] × [0, 1] when L ≥ 1, it makes sense to cut in the middle of its longer
side, and get two identical-sized pieces: WS (WestSide) = [0, L

2 ] × [0, 1] and

ES (EastSide) = [L2 , 1] × [0, 1]. This step assures that both of the resulting
pieces have a “nice” shape, i.e., they are not too narrow.

The rules of this step require each agent i to declare two integers, e.g. Partnersi(WS)
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and Partnersi(ES), such that:

Partnersi(WS) + Partnersi(ES) ≥ n

The methods advise agent i to declare Partnersi(WS) such that V ali(WS)
is large enough for sharing it with Partnersi(WS) agents and similarly for ES.

Next, the agents are partitioned to two groups, WG (WestGoers) and EG
(EastGoers), such that, for every agent i in WG, Partnersi(WS) ≥ |WG|,
and similarly, for every agent i in EG, Partnersi(ES) ≥ |EG|. This can be
done in the following way [Culter, 2013]: The agents are ordered in a decreasing
order of Partnersi(WS). For every agent i, if Partnersi(WS) > |WG| then
add agent i to WG. The ordering implies that every agent j already in WG had
Partnersj(WS) at least as large. Continue adding agents to WS until you reach
an agent i for which Partnersi(WS) ≤ |WG|. Now, because of the ordering, the
latter inequality is satisfied for all the remaining agents. Hence, for all remaining
agents Partnersi(ES) ≥ n− |WG|. Luckily, there are only n− |WG| remaining
agents, so they can all be put in EG.

Next, if both WG and EG are non-empty, then the agents in WG (who all
declared Partners(WS) ≥ |WG|) are given the piece WS to divide recursively
among them. Similarly, the agents in EG (who all declared Partners(ES) ≥
|EG|) are given the piece ES to divide recursively among them (Figure 5/Right).
Every agent i who follows the methods can be guaranteed that the value of the
piece he has to divide recursively is sufficiently large for sharing it with the given
number of other agents. The case when either WG or EG is empty requires
special treatment, which will be described in the detailed account of the division
rules.

The two partitioning steps just described - agent bipartition and cake bi-
partition - are parallel to the two steps of the standard cake cutting model of
Robertson and Webb [1998] - cut and eval, except that instead of using the
agents’ valuation functions directly, they use it indirectly through the Partners
function. This can also be seen as measure of privacy: our procedure does not
require the agents to reveal their exact valuation function and their specific ge-
ometric constraints; it only requires them to reveal the approximate Partners
value that is a combination of their valuation function and their geometric con-
straints.

4.2. 2-fat rectangular land-cakes

Our division procedure is described in detail for land-cakes that are 2-fat
rectangles.24 The procedure is illustrated in Figure 6. The division rules are

24An extension of the procedure for arbitrary rectangular land-cakes is briefly described in
the next subsection. We start with land-cakes that are 2-fat rectangles (and not squares, as
in the previous section) because a 2-fat rectangle can always be divided to two smaller 2-fat
rectangles (by halving its longer side). This allows us to use a recursive division procedure. A
square is, of course, a 2-fat rectangle.
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1 (input). The procedure begins with a group of n ≥ 2 agents and a land-cake C with a
certain length/width ratio 1 ≤ L ≤ 2. Define a coordinate system in which the longer side of
the land-cake is parallel to the x axis and the land-cake is [0, L]× [0, 1].

2 (cake-bipartition). Define: WS = WestSide = [0, L
2
]× [0,1], ES = EastSide = [L

2
, L]× [0,1].

Ask each agent i to declare Partnersi(WS) and Partnersi(ES) such that Partnersi(WS) +
Partnersi(ES) ≥ n. Divide the agents to two disjoint groups: WG = WestGoers and EG =
EastGoers, such that, for every agent i ∈ WG, Partnersi(WS) ≥ |WG|, and similarly for
EG. Proceed according to |WG| and |EG|:
* If 1 ≤ |WG| ≤ n − 1 (and of course 1 ≤ |EG| ≤ n − 1), then make a vertical cut at
x = L

2
. Divide WS to the agent/s in WG and divide ES to the agent/s in EG. Use a recursive

application of the procedure if the number of agents is more than 1.
* Otherwise, either |WG| = n and |EG| = 0, or vice versa. These two cases are symmetric.
W.l.o.g, assume |WG| = n and proceed to the next step.

3 (agent-bipartition). Ask each agent i to draw a rectangle adjacent to the western boundary,
Pi := [0, xi]× [0, 1], such that xi ∈ [0, L

2
]. Proceed according to the xi-s:

* If there is at least one xi ≥
1
2
, then select an arbitrary maximal xm (such that xm ≥ xi for

all i), divide the rectangle Pm (which is 2-fat because xm ≥ 1
2
) to the n−1 agents with i 6= m,

and give the remainder ([xm, L]× [0, 1]) to agent m.
* If for all agents, xi <

1
2
, proceed to the next step.

4 (cake-bipartition). Let NS = NorthSide := [0, 1
2
]× [ 1

2
, 1], SS = SouthSide = [0, 1

2
]× [0, 1

2
].

Ask each agent i to provide Partnersi(SS) and Partnersi(NS) that sum to at least n. Divide
the n agents to two disjoint groups SG = SouthGoers and NG = NorthGoers, such that
every agent i in NG has Partnersi(NS) ≥ |NG| and similarly for SG. Proceed according to
|SG| and |NG|:
* If 1 ≤ |SG| ≤ n− 1 (and 1 ≤ |NG| ≤ n− 1), make a horizontal cut at y = 1

2
. Divide SS to

the agent/s in SG and NS to those in NG, using recursion if needed.
* Otherwise, either |SG| = n and |NG| = 0 or vice versa. W.l.o.g, assume |SG| = n and
proceed to the next step.

5 (agent-bipartition). Ask each agent i to draw a square on the south-western corner, Pi :=
[0, xi]× [0, xi], such that xi ∈ [0, 1]. Select an arbitrary maximal xm. Divide Pm to the n− 1
agent/s with i 6= m and give the remaining L-shape (C − Pm) to agent m.

TABLE II

Fair-and-square recursive-halving division rules.

detailed in Table II. These division rules allow us to prove the following claim:

Claim 3 For any n ≥ 2 and R ≥ 1: Prop(2 fat rectangle, n, R) ≥ 1
6n−8 .

Moreover, when R ≥ 2: Prop(2 fat rectangle, n, R) ≥ 1
4n−5 .

The proof of the claim is based on the methods detailed in Table III. The
methods for each agent depend on his/her geometric constraint R and subjective
valuation function V (the subscript i is omitted because, by definition, methods
are for a single agent). Without loss of generality, assume that the function V
is scaled such that the value of the whole land-cake is An − B, where A and B
match the bounds in Claim 3, namely: A = 4, B = 5 if R ≥ 2; A = 6, B = 8 if
R < 2.
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Figure 6: Fair-and-square recursive-halving rules, illustrated on a 2-by-1 rectangular
land-cake. Two arrows originating from the same rectangle denote two alternative cases.
Some cases were omitted because they are symmetric to the cases shown. Inside the
rectangles, Dotted lines are drawn by the agents; dashed lines are marks made by the
procedure; solid lines are cuts made by the procedure.
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Method for step 2 (cake-bipartition):

Let c be a part of the current land-cake (WS or ES) and n ≥ 2 the total number of agents
dividing the current land-cake.

• If V (c) < ⌈ 2
R
⌉, then declare Partners(c) = 0.

• Else, if Ak − B ≤ V (c) < A(k + 1) − B, for some k in {1, .., n − 2}, then declare
Partners(c) = k (Note that this case is possible only for n ≥ 3).

• Else, if A(n− 1)−B ≤ V (c) ≤ An−B − ⌈ 2
R
⌉, declare Partners(c) = n− 1 (note that

the condition is not empty because in both cases A > ⌈ 2
R
⌉).

• Else, An− B − ⌈ 2
R
⌉ < V (c); declare Partners(c) = n.

Method for step 3 (agent-bipartition):

Draw a rectangle P = [0, x] × [0, 1] with x ∈ [0, L
2
], such that the value of the remaining

rectangle is V ([x, L]× [0, 1]) =
⌈

2
R

⌉

.

Method for step 4 (cake-bipartition):

Let c be a part of the current land-cake (NS or SS) and let n ≥ 2 be the total number of
agents who divide the current land-cake.

• If V (c) < 1, then declare Partners(c) = 0.

• Else, if Ak − B ≤ V (c) < A(k + 1) − B, for some k in {1, .., n − 2}, then declare
Partners(c) = k (Note that this case is possible only for n ≥ 3).

• Else, if A(n − 1) − B ≤ V (c) ≤ An − B − ⌈ 2
R
⌉ − 1, declare Partners(c) = n − 1 (the

condition is not empty because A > ⌈ 2
R
⌉+ 1).

• Else, An− B − ⌈ 2
R
⌉ − 1 < V (c); declare Partners(c) = n.

Method for step 5 (agent-bipartition):

Draw a corner-square P such that the value of the remaining L-shape is: V (C−P ) = 1+
⌈

2
R

⌉

.

TABLE III

Fair-and-square recursive-halving methods for a 2-fat land-cake.
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The following statements are proved in Appendix A:
1. An agent whose value of the entire land-cake is at least An−B can follow

the methods of Table III.
2. An agent who follows the methods of Table III is guaranteed to get an

R-fat land-plot with a value of at least 1.
The combination of these two statements proves Claim 3.

A nice property of the proposed division rules is that they are anonymous -
they treat all agents equally; this is in contrast to other division procedures, such
as divide-and-choose, where each agent has a different role (See Nicolò and Yu
[2008] for a discussion on the importance of anonymity).

4.3. General rectangular land-cakes

When the land-cake is a rectangle with a length/width ratio larger than 2, the
proportionality is slightly lower, but its form is similar:

Claim 4 For every L ≥ 2, n ≥ 2 and R ≥ 1:
Prop(L-ratio rectangle, n, R) ≥ 1

6n−10+⌈ L
R⌉

.

Moreover, when R ≥ 2:
Prop(L-ratio rectangle, n, R) ≥ 1

4n−6+⌈ L
R⌉

.

Note that the only change is in the constant factor in the denominator, which
changes from −B to −B′ + ⌈L

R
⌉, where B′ = B + ⌈ 2

R
⌉. Also note that for L = 2

Claim 4 coincides with Claim 3.
The proof uses the same division rules as in Table II. Some of the methods

of Table III should slightly change to take the larger length/width ratio into
account. The new methods are detailed in Table V in Appendix B.

Claims 3 and 4 are summarized in the following theorem:

Theorem 2 For every L ≥ 1, n ≥ 2 and R ≥ 1:
Prop(L-ratio rectangle, n, R) ≥ 1

⌈max(L,2)
R ⌉+6n−10

.

Moreover, when R ≥ 2:
Prop(L-ratio rectangle, n, R) ≥ 1

⌈ L
R⌉+4n−6

.

4.4. Between the upper and lower bounds

For the special case n = 2, when R ≥ 2, the lower bound of Theorem 2
coincides with the upper bound of Theorem 1 and its corollary:

Prop(L-ratio rectangle, n = 2, R ≥ 2) = 1

⌈L
R⌉+2

.

For most other cases the bounds do not coincide - there is a gap between them.
For R ≥ 2:

1

⌈ L
R⌉+2n−2

≤ Prop(L-ratio rectangle, n, R) ≤ 1

⌈L
R⌉+4n−6
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And for R < 2:
1

⌈ L
R⌉+2n−2

≤ Prop(L-ratio rectangle, n, R) ≤ 1

⌈max(L,2)
R ⌉+6n−10

For example, for R ≥ 2, n = 9 and L ≤ R:
1
31 ≤ Prop(L-ratio rectangle, n = 9, R ≥ 2) ≤ 1

17
This means that we know how to give each of the 9 agents an R-fat land plot
containing at least 1

31 of the total value of the land-cake, we are aware of the im-
possibility of guaranteeing more than 1

17 of that value, but it is an open question
whether it is possible to guarantee any proportion between these bounds. 25

There is also a gap between the upper and lower bounds for n = 1. Combining
Claim 2 with Theorem 1 for n = 1 yields:

1
R-CoverNum(C) ≤ Prop(C, n = 1, R) ≤ 1

R-IndepNum(C)

The cover number (Definition 7) and the independence number (Definition 6)
are closely related but are not always identical.26

4.5. The special case of uniform valuations

Theorem 2 specifies the proportion an agent can get in the worst case, but the
actual proportion may be much higher. An interesting special case is when an
agent cares only about the total area of the land-plot, i.e., his valuation function
is uniform over the land-cake. Such an agent can often approach the attainment
of the proportion 1

n
, regardless of the valuations of other agents:

Theorem 3 Let C be an L-by-1 rectangle to be divided among n ≥ 2 agents
using the fair-and-square recursive-halving rules (Table II). Define N = 2⌈log2n⌉

= the smallest power of two which is at least as large as n (n ≤ N < 2n).
Then for every finite R ≥ 1, each agent can get an R-fat land-plot with an

area of at least min(R, L
2N ).

Moreover, when R ≥ 2, each agent can get an R-fat land-plot with an area of
at least min(R, L

N
).

Proof: Consider an agent whose valuation function, V , is equal to the area
function. It is easy to verify that in this case, the methods of Table III reduce
to the following single recommendation for step 2: “Declare Partners(WS) =
Partners(ES) =

⌈

n
2

⌉

”.

25In a study that is yet unpublished, we developed a division procedure that achieves the
upper bound of the corollary to Theorem 1 for every n and every R ≥ 3, provided that all
agents share the same valuation function, i.e., the land value is determined by an objective
assessor. This procedure guarantees to each agent a 3-fat rectangle with a value of at least

1

⌈L
R ⌉+2n−2

of the total value of the land-cake. It is an open question if and how this procedure

can be generalized to the case of subjective valuations.
26Albertson and O’Keefe [1981] prove that if C is a hole-free (simply-connected) polygon,

then 1-CoverNum(C) = 1-IndepNum(C). Chaiken et al. [1981] prove that if C is a linearly-
convex polygon then ∞-CoverNum(C) = ∞-IndepNum(C). It is an open question under
what conditions R-CoverNum(C) = R-IndepNum(C) when 1 < R < ∞.
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Since
⌈

n
2

⌉

is always larger than 0, EG and WG in step 2 always have at least
one member. Therefore the procedure always recurses at step 2(a) and never
gets to steps 3-5. After k recursive steps, our agent is in a group of at most
⌈

n
2k

⌉

agents dividing a land-cake with an area of L
2k

. Therefore after at most

k = ⌈log2n⌉ steps our agent receives a piece with an area of at least L
N

.

Now if the number of steps is small relative to L (such that L
N

> 2), then this

piece is L
N

-fat and the largest R-fat land-plot contained in it is R-by-1. But when

the number of steps is large enough (such that L
N

≤ 2), the piece given to our

agent is 2-fat, so he can get a 2-fat land-plot with an area of L
N

or a square with

an area of L
2N . Q.E.D.

Thus, when the number of agents is a sufficiently large power of 2, each agent
can get a 2-fat land-plot with the largest possible area of 1

n
of the total available

area.

4.6. Utilitarian social welfare

Theorem 2 shows that in the worst case each agent gets approximately 1
4n

or 1
6n of the total value of the cake. Thus in the worst case only 1

4 or 1
6 of the

potential utilitarian welfare (the sum of allocated values) is realized, which is
highly inefficient.

It is possible to substantially improve the efficiency of the division procedure
(in terms of the utilitarian welfare), but this requires several compromises.

First, the freedom of the agents must be compromised and it must be assured
that all of them follow the methods of Table III. Otherwise, some agents might
make mistakes which will reduce their value to zero and, in turn, the sum of
values may be considerably diminished.

Second, the subjectivity of agents must be compromised and it must be as-
sumed that all of them assign the same value to the entire land-cake, V = V (C).
Otherwise, the sum of the values allocated to different agents is meaningless.27

We also assume that all agents have the same geometric constraint R.
Third, the privacy of agents must be compromised. In the cake-bipartition

steps (Subsection 4.1.2), instead of telling only their Partners values (e.g. Partnersi(WS)
and Partnersi(ES) in step 2), the agents must tell their exact valuation (e.g.

V (WS) and V (ES)). The agents should be ordered according to their valuations
of WS, such that those whose value of WS is higher are assigned to WG first.
This guarantees that every agent in WG values WS at least as much as every
agent in EG and every agent in EG values ES at least as much as every agent in
WG. This, in turn, guarantees that no value is lost in the cake-bipartition steps.

Under these three assumptions, the division procedure results in forgone value
only in step 3 (the agent-bipartition step) in case all agents draw their vertical

27This assumption is standard in the cake-cutting literature, but it was not required until
this point.
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lines to the west of x = 1
2 . This means that all agents can get from the eastern

part, [ 12 , L] × [0, 1], less than the guaranteed value. This in turn means that all
agents value the eastern part less than a certain constant that depends on the
geometric constraints. This loss happens at most n− 1 times, which allows us to
bound the loss of value. These statements are formalized in the following claim:

Claim 5 Let C be a 2-fat land-cake to be divided among n ≥ 2 agents using the
fair-and-square recursive-halving rules (Table II). Assume that all agents use the
methods of Table III with the same geometric constraint R and assign the same
value to the entire land-cake.

Then for 1 ≤ R < 2 the sum of all values enjoyed by the agents is at least:
2n−2
6n−8 of the total value.

When R ≥ 2 the sum is at least: 3n−4
4n−5 of the total value.

The proof is in Appendix C.
Thus, when n is large, the lower bound on the sum of values is approximately

1
3 of the total value for R < 2 and approximately 3

4 of the total value for R ≥ 2.
In other words, the average value per agent is approximately 1

3n of the total
value for R < 2 and approximately 3

4n for R ≥ 2.
The large gap between the average value of Claim 5 and the minimal value

of Claim 3 comes from the cake-bipartition steps (steps 2 and 4). Although on
average no value is lost in these steps, some of the agents may lose value in favor
of other agents.

The following example illustrates the difference between the two types of losses.
Consider a square land-cake divided among n = 4 agents with R = 2. All agents
value the land-cake as 4n− 5 = 11. In step 2, they value ES as 0.8 and WS as
10.2 so they declare Partners(ES) = 0 and Partners(WS) = 4. In step 3 all
division lines are to the west of 1

2 so the value of 0.8 in the eastern side is lost.
This is a loss of average value, caused by the agent-bipartition step. Now in step
4 all agents value NS as 6.8 and SS as 3.4 so they declare Partners(WS) =
Partners(ES) = 2. The procedure assigns two agents arbitrarily to NS and the
other two to SS. Suppose that all agents value NS and SS uniformly, so each
agent gets half its value: two agents get 3.4 and two agents get 1.7. The average
value is 2.55, which is more than the guaranteed average of 3n−4

n
= 2, but the

two agents assigned to the south get a much lower value. This is a loss of minimal
value, caused by the cake-bipartition step. The deep cause for this loss is that
the cake-bipartition step must cut the land-cake in a specified location in order
to keep the two pieces fat. This location might force the agents to split their
value unproportionally and lose some of the value.

The proof to Claim 5 also implies that the unallocated land consists of at most
n− 1 disconnected pieces. Thus the value of these pieces need not be considered
as wasted, because the unallocated pieces can be assigned to some of the agents
as a second land-plot. This is a common practice in many settlements, where
some or all of the settlers receive two land-plots - a high-valued land-plot for
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building their home and a lower-valued land-plot for agricultural or industrial
uses. The second division can be carried out by any procedure for indivisible item
assignment, including an auction or a lot. The effects of such a second division
on fairness, no matter how it is carried out, are relatively small, because the
value of the remaining pieces is relatively small. 28 Another possibility is to use
the remaining pieces for building public facilities such as gardens, roads etc., for
which length/width ratio is of less importance.

4.7. A plausible standard constraint

In the previous subsection we analyzed three aspects of the division procedure:
value per agent, area per agent and sum of the allocated values. In all three as-
pects, the lower bounds when R ≥ 2 are significantly higher than those obtained
when R < 2: the value per agent is at least≈ 1

4n (instead of 1
6n ), the area per

agent can be at as high as ≈ 1
n

(instead of 1
2n ) and the average value per agent

is at least ≈ 3
4n (instead of 1

3n ).
On the other hand, increasing the value of R above 2 does not significantly

improve the lower bounds when the number of agents is large. A possible practical
policy recommendation implied by this analysis is to apply R = 2 (length/width
ratio of at most 2) as a standard geometric constraint when dividing land-plots
to a large number of people.

5. EXTENSIONS

In this section we briefly discuss several possible extensions to the basic prob-
lem of fair division with fat rectangles. The main purpose of the discussion is not
to offer complete solutions to these extended problems but rather to illustrate
the challenging range of possibilities for future research on cake-cutting with
geometric constraints.

5.1. Subjective geometric constraints

The division procedure described in section 4 allows different agents to have
different geometric constraints. For example, suppose the land-cake is a 1-by-30
rectangle to be divided among n agents, one of whom (say, Alice) wants a 1-
fat rectangle and another one (George) wants a 3-fat rectangle. Each of them
can follow the methods of Table III with her/his own value of R and get the
guaranteed value: Alice will get a square with at least 1

30+6n−10 = 1
6n+20 of

her total value of the cake and George will get a 3-fat rectangle with at least
1

10+4n−6 = 1
4n+4 of his total value of the cake.

However, this subjectivity is limited. If George wants an ∞-fat rectangle (i.e.
he insists on a rectangle but does not care about the length/width ratio), our

28In subsection 5.2 we consider the option of giving each person two land-plots already in
the initial division.
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V
≥

2
V ≥ 2

Figure 7: Fair cake-cutting with subjective geometric preferences. Alice and George value
the square land-cake as 4. George wants a rectangle with a value of at least 2 and Alice
wants a square with a value of at least 1.
Left: George marks two perpendicular lines. He is advised to mark each line such that
it divides the land-cake to two rectangles with equal value (2).
Now it’s Alice’s turn (V is VAlice):
Top: If the value of the thinnest rectangle (on the west) is at least 2, then at least
one of its parts (either the north or the south) has a value of 1. Alice either takes the
northern dotted square and leaves the southern rectangle to George or vice versa.
Bottom: Otherwise, the value of the fattest rectangle (on the east) is at least 2. This
is a 2-fat rectangle so Alice can cut from it a square with a value of at least 1. George
receives the entire western rectangle.

procedure can guarantee to him at most 1
4n−5 (using Theorem 2 with

⌈

L
∞

⌉

=

lim
R→∞

⌈

L
R

⌉

= 1), while under the classic recursive-halving procedure [Even and

Paz, 1984] he could get at least 1
n
. This might lead to disagreements about the

division procedure: agents who want arbitrary rectangles will demand the use of
the classic recursive halving procedure, while agents who want fat rectangles will
prefer the use of the fair-and-square recursive-halving procedure of Section 4.

Is it possible to design a procedure that satisfies both the arbitrary-rectangle
agents and the fat-rectangle agents? For the case of n = 2 agents, the answer is
yes.

For concreteness, suppose we have a square land-cake that both Alice and
George value as 4. Alice wants a square piece (RA = 1) and is willing to settle
for a piece worth 1, because she knows that this is the highest value that can be
guaranteed to her. On the other hand, George wants any rectangle (RG = ∞)
demanding to get a piece worth 2, because this is the proportion he can get
under the classic cake-cutting procedures. The following division rules allow the
demands of both Alice and George to be satisfied:

1. George makes a horizontal mark and a vertical mark.
2. Alice selects one of the two marks, cuts the land-cake by that mark and
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selects one of the resulting rectangles.
George’s method for getting a value of 2 is obvious - he just makes each mark
such that the rectangles in each side of the mark have a value of 2. This is possible
because the valuation functions are infinitely divisible in all directions (Section
2). Alice’s method for getting a value of 1 in a square land-cake is described in
Figure 7. It is easy to generalize Alice’s method to L-ratio rectangles and to any
value of RA.

When there are more than 2 agents, any agent who wants an arbitrary rect-
angle can make a slight modification to the methods of Table III for steps 2 and
4 and declare Partners(c) ≥ 2 when V (c) ≥ 2 (instead of when V (c) ≥ 3, as
implied by the original methods). This allows the agent to modify one of the
conditions on the values of the constants A and B (see Appendix A) such that
2A − B ≥ 2 (instead of 2A − B ≥ 3). This, in turn, translates to a slightly
higher proportionality of 1

3n−4 (instead of 1
4n−5 ). This is still much lower than

the 1
n

guaranteed by the classic cake-cutting procedures. Closing this gap is an
interesting topic for future research.

5.2. More than one land-plot per agent

In the cake-cutting literature there are two types of divisions:
1. Divisions in which each agent gets a single connected piece;
2. Divisions in which each agent receives an arbitrary number of disjoint

pieces.
So far we assumed, both in the negative result of section 3 and in the positive
result of section 4, that divisions are of type #1.

When divisions of type #2 are considered, the geometric constraints studied
in this paper are not interesting, because every geometric shape can be approx-
imated by a sufficiently large number of squares. Therefore, every division of a
cake (particularly a proportional division) can be approximated to an arbitrary
precision as a type #2 division where each agent gets a sufficiently large number
of disjoint squares.

The common practice in land division is a compromise between these two
extremes. Each agent can receive more than one land-plot, but not an unlimited
number of small land-plots - typically 2 or 3 land-plots per agent. As far as we
know, this kind of compromise has not been studied in the cake-cutting literature.
In the context of geometric constraints, this compromise allows us to improve
the proportionality guarantee, as shown in the following paragraphs.

For simplicity, we focus on the case of a 2-fat land-cake and R-fat land-plots
with R ≥ 2.29 First consider the case of two agents, Alice and George, both of

29The land-plots of a single agent may overlap, so in particular, an agent with a certain
geometric constraint R may be satisfied with a single 2R-fat rectangle. Therefore, for R < 2 the
proportionality of the division can be improved simply by using the original division methods
with 2R instead of R. But for R ≥ 2, proportionality can be improved even more using the
modified methods we describe.
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Figure 8: Proportional cake-cutting with two land-plots per agent.
Left: George divides the 2-fat land-cake to four quarters that are grouped to two pairs
of 2-fat rectangles: the “horizontal lines” pair and the “vertical lines” pair.
Right: George shrinks the pair with the larger value (in this case, the “horizontal lines”
pair) until its value is exactly half of the total value, in George’s eyes. The remaining
shape is composed of two overlapping 2-fat rectangles and its value is also exactly half
of the total. Now Alice selects one pair and George selects the other pair.

whom want a pair of 2-fat rectangles. The two rectangles of a single agent may
overlap, but in that case, the value of the overlapping part is counted only once
when calculating the value enjoyed by an agent, since we still hold the additivity
assumption made in Section 2.

The following division rules (illustrated in Figure 8) can be used to attain a
proportional division in this case:

1. George divides the land-cake to two pairs of disjoint 2-fat rectangles: one
pair contains the north-east and the south-west corners and the other pair
contains the north-west and the south-east corners.

2. George may shrink one of the pairs (i.e. the NE-SW pair) towards the
corners and enlarge the other pair accordingly.

3. Alice picks either the NE-SW or the NW-SE pair. George gets the other
pair.

Alice’s method for getting at least 1
2 of the total value is obvious - she just picks

the pair that is more valuable for her. George’s method is to shrink the pair which
is more valuable for him until the values of both pairs are identical and equal
to 1

2 of the total value of the land-cake. Thus, for n = 2 agents, a proportional
division with pairs of 2-fat rectangles is possible.

If only one agent (say, Alice) wants two land-plots while the other agent
(George) insists on getting a single land-plot, then Alice should get at least
1
2 of her total value and George should get at least 1

3 of his total value. This can
be attained by a different set of division rules. We leave it as an exercise to the
reader to find these rules.

When there are more than 2 agents, any agent who wants a pair of 2-fat
rectangles can use modified methods similar to those described at the end of
subsection 5.1, namely, declare Partners(c) ≥ 2 when V (c) ≥ 2 (instead of
when V (c) ≥ 3). This allows each agent to get a pair of 2-fat rectangles with a
combined value of at least 1

3n−4 (instead of 1
4n−5 ) of the total land-cake value.
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Figure 9: How to give each agent a fair golden-ratio rectangle.
Left: original land-cake.
Middle-Left: land-cake in a scaled coordinate system.
Middle-Right: square land-plots in a scaled coordinate system.
Right: golden-ratio land-plots in the original coordinate system.

Apparently, this slight modification does not take full advantage of the possi-
bility of splitting land-plots to two disjoint rectangles - it splits land-plots only
in a final step when there are n=2 agents. Is it possible to achieve a fully pro-
portional division when the pieces are allowed to be pairs of R-fat rectangles?
This is currently an open question.

5.3. Exact length/width ratios

The division procedure described in Section 4 handles only upper bounds on
the length/width ratios. But in some cases it may be desirable to get rectangles
with an exact length/width ratio. For example, when dividing advertisement
areas in a newspaper or website, for aesthetic reasons it may be desirable to
give each agent a piece with a length/width ratio equal to the golden ratio
Φ = 1.618... If all agents agree on a single optimal length/width ratio, then the
problem can be solved easily by scaling one axis of the coordinate system in
that ratio. For example, if the original land-cake is a 2-by-1 rectangle and all
agents want golden-ratio rectangles, then we can define a coordinate system in
which the land-cake is a 2-by-Φ rectangle and then divide the land-cake using the
procedure of Section 4. An agent who uses the methods of Table III with R = 1
will get a square with a value of at least 1

6n−10+⌈ 2
Φ ⌉

= 1
6n−8 of the total value. In

the original coordinate system, each such square is a golden-ratio rectangle (see
Figure 9).30

An agent who uses the Methods with R > 1 is guaranteed to get an x × y
rectangle, such that Φ

R
≤ x

y
≤ ΦR. Thus, it is also possible to require a range of

30The resulting rectangles are all aligned such that their long side is parallel to the long
side of the original land-cake. If we want the opposite, we should scale the other axis of the
coordinate system, such that the land-cake is a 2Φ× 1 rectangle.
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length/width ratios, as long as the geometric mean of the range is equal for all
agents.

What if different agents want length/width ratio ranges with different ge-
ometric means? For example, is it possible that some agents get golden-ratio
rectangles while other agents get squares with the same partial-proportionality
guarantee? This question is still open.

5.4. Absolute size constraints, shared ownership and uniform preference
externalities

Our discussion so far focused on a specific geometric constraint, namely the
fatness constraint. As explained in Section 2, this constraint is scalable and can
be used with any size of land-cake and any number of agents. This is in contrast
to absolute size constraints, such as minimum length or minimum area, which
might be unsatisfiable when the number of agents is large and the land-cake is
small.

If one insists on using absolute size constraints, a possible solution to the
scalability problem is to consider shared ownership, i.e., allow a single land-plot
to belong to several agents. This is actually a common practice in crowded cities,
when several people live in an apartment building on a land-plot which is their
shared property.

The division rules of subsection 4.2 can be adapted to support absolute size
constraints (in addition to the fatness constraint) in the following way: whenever
the rules specify that the current land-cake has to be cut to two pieces, and one
of the resulting pieces is smaller than the minimal allowed size - the cut is not
performed; instead, the current land-cake is given as a shared property to the
current group of agents. This procedure is proposed only as a proof of concept -
it is not necessarily optimal.

To analyze such procedures, we need to define utility functions for shared land-
plots. Suppose an agent i belongs to a group of k agents who own a land-plot P .
The utility of agent i can be written as:

Ui(P, k) =
Vi(P )

gi(k)

where gi(k) is the “congestion function” of agent i, describing the effect on his
utility of sharing a land-plot with k−1 agents. 31 The utility of owning a private
land-plot is just the value of that land-plot, Vi(P ), so gi(1) = 1. If the agent is
congestion-averse then gi(k) > k, i.e., the agent prefers having a small private

31This expression assumes that the utilities are multiplicatively seperable. A similar as-
sumption has been studied by Milchtaich [2009] in the similar context of congestion games.
Dall’Aglio and Maccheroni [2009] also discuss fractional ownerships, but their model is very
general and allows arbitrary preference relations between sets of fractional shares.
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land-plot with a value of Vi(P )
k

to sharing the entire large land-plot with k − 1
agents.

Obviously, a proportional or even partially-proportional division cannot be
guaranteed. For example, consider a land-cake of 10-by-10 meters with a value
of 1, that has to be divided among n agents with an absolute length constraint
of 10 meters and a congestion function of gi(k) = k2. Obviously no division is
possible, so the entire land-cake is given to the n agents as a shared property,
giving each agent a utility of 1

n2 .
A fairness concept that can be used as an alternative to partial proportional-

ity is Uniform Preference Externalities (UPE). It requires that the value given
to each agent is at least as large as he could get if all n agents had the same
preferences as his own. This concept has been studied mainly in scenarios of
homogenous resource allocation [Moulin, 1990] and indivisible item assignment
[Budish, 2011, Procaccia and Wangy, 2013], but it can easily be adapted to our
scenario. For example, in the problem of division with R-fat rectangles with-
out absolute size constraints, the UPE requirement is the following: Each agent
should receive at least as much value as he could get by cutting n R-fat rectangles
and receiving the least valuable one.

Is it always possible to attain a UPE division with only the fatness constraint?
With only the absolute size constraint? With both the fatness and the absolute
size constraint? We leave these interesting questions to future research.

6. AN ALTERNATIVE MODELLING: NON ADDITIVE VALUATIONS

In Section 2, a cake-cutting instance was defined as a tuple:

(C, n, (V1, ..., Vn), (UP1,...,UPn), FA)

using n additive valuation functions Vi and n sets UPi (Usable Plots) that rep-
resent the geometric constraints. The problem can be defined in an alternative
way by combining the constraints with the valuations:

Definition 8 For every agent i and land-plot c:
UV i(c) = max

P⊆c and P∈UPi

Vi(P )

UV i(c) is the Usable Value of c - the maximum value that agent i can attain
from a usable land-plot in c. When the set of usable plots (UPi) is the set of
R-fat rectangles, UV i(c) is the largest value of an R-fat rectangle contained in
c. Based on the UV functions, we suggest the following alternative to Definition
2:

Definition 9 A cake-cutting instance is a tuple:

(C, n, (UV1, ..., UVn), FA)
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where C, n and FA are the same as in Definition 2, and the list of UV functions
replaces the list of V functions and UP sets.

A solution to a cake-cutting instance in the alternative formulation is an
n-allocation (P1, ... Pn), such that (UV 1(P1), ... UV n(Pn)) ∈ FA.

In contrast to the valuation functions Vi, the usable value functions UV i are
not measures (i.e. they are not additive). For example, suppose that C is a 2-by-2
land-cake and there is a single agent whose valuation function V is equal to the
area function (so V (C) = 4) and that he insists on a square land-plot (R = 1).
Then, UV (C) = 4, but if the land-cake is halved to two 1-by-2 rectangles, then
the UV of each half is 1 and the sum is 2, which is less than the UV of the whole
land-cake. On the other hand, if one of the 1-by-2 rectangles is halved to two
1-by-1 squares, then the UV of each half is 1 and the sum is 2, which exceeds
the UV of the whole 1-by-2 rectangle.

The alternative problem formulation allows us to relate our work to other
studies about cake-cutting with non-additive utilities. There are three types of
studies on this subject:

(a) Studies that consider only sub-additive, or concave, valuation functions,
in which the sum of the values of the parts is larger than the value of the whole
[Berliant et al., 1992, Maccheroni and Marinacci, 2003]. These valuations are
typical in situations of decreasing marginal utility,32 but are unapplicable in
our scenario because, as illustrated above, the UV function with the fatness
constraint is not necessarily sub-additive - the sum of the values of the parts
might be less than the value of the whole.

(b) Studies that consider general non-additive valuation functions but provide
only existence proofs [Sagara and Vlach, 2005, Dall’Aglio and Maccheroni, 2009,
Hüsseinov and Sagara, 2013]. These proofs are not constructive - no procedure
is given for finding the fair divisions that are guaranteed to exist - hence they
are not comparable to the current work.

(c) Studies that propose practical procedures for fair cake-cutting with non-
additive valuations, but impose other restrictions on the cake. In particular,
Su [1999] describes a procedure (attributed to Forest Simmons) that converges
to an envy-free division. It does not assume that the valuations are additive,
but it does assume that the cake is 1-dimensional.33 Caragiannis et al. [2011]
study a special kind of non-additive valuations - piecewise-uniform with minimal
length. An agent’s value for a piece of cake is proportional to the total length of

32Maccheroni and Marinacci [2003] give an example of cutting a pizza: the more you eat,
the more stuffed you become and the smaller the value you get from an enlargement of your
piece.

33If the procedure of Su [1999] is applied to a two-dimensional cake, the resulting pieces are
short narrow strips (see Figure 1/middle). The division is indeed envy-free, but the UV of each
agent might be very low. It is a challenging task to find a division that is both envy-free and
keeps the partial proportionality guarantee of Theorem 2. In a work that is yet unpublished,
we developed an algorithm for finding such a division for n = 2 agents. The challenge is still
open for n > 2.
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its intersection with the agent’s desired intervals, excluding sub-intervals in the
intersection that are shorter than the minimum length specified by the agent.
In their setting, similarly to ours, proportionality cannot be achieved. They give
tight bounds on the fraction of value that can be guaranteed and achieve the
optimal degree of proportionality together with perfect envy-freeness. They, too,
consider only 1-dimensional cakes. The procedure of Iyer and Huhns [2009] allows
any valuation function that can be represented as a set of n desired rectangles.
However, as explained in the introduction, the success of this procedure is not
guaranteed.

Our study is thus the first to provide fair cake-cutting division procedures with
non-additive valuations in two dimensions that are guaranteed to succeed.

7. CONCLUSION

In this paper, we made the first steps in the uncharted territory of fair division
with specific geometric constraints. We calculated upper and lower bounds on
the degree of proportionality that can be achieved in various cases; the bounds
are summarized in Table IV. The upper bounds imply the impossibility of the
implementation of common fairness (proportionality) as well as the quantifica-
tion of the minimal loss of proportionality due to the imposition of the fatness
constraint. The lower bounds represent the extent of possible alleviation of the
first impossibility result - the attainable partial fairness (proportionality).

Some of our open questions are:
More general land-cakes. The division procedure of Section 4 assumes that

the land-cake is rectangular. How can it be generalized to non-rectangular poly-
gons, in a way that matches the upper bound of Theorem 1?

More general pieces. The impossibility result of Section 3 assumes that
the pieces are axis-parallel rectangles. When the pieces are allowed to be rotated
rectangles, or even other commonly used shapes such as fat trapezoids, this lower
bound is no longer valid. Is it always possible to find a proportional division with
fat rotated rectangles? With fat trapezoids?

Unequal shares. Often, the agents who participate in a cake division have
unequal rights. For example, Alice may be entitled to 2

3 of the cake while George
is entitled to 1

3 . Robertson and Webb [1998] generalize the notion of proportional
cake-cutting to this case, showing how to give each agent a piece of cake which he
values as at least his due proportion of the entire cake. What is the meaning of
such a generalized proportional division in the presence of geometric constraints,
where each agent must receive less than his due share? How much should each
agent receive and how should such a division be carried out?

Additional properties of divisions. In addition to proportionality, the
cake-cutting literature deals with many other desirable properties of cake divi-
sions, such as: envy-freeness, Pareto efficiency, equitability, maxmin (Rawlsian),
maxsum (utilitarian), egalitarian-equivalence, strategy-proofness and more. Each
of these desirable properties raises an interesting issue for future research, namely,
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Cake →

Plots ↓

Square (L = 1) Rectangle with length/width ratio

L > 1

General polygon

Squares

(R = 1)

F1 = 1

F2 = 4

6n − 8 ≥ F
n≥2

≥ 2n

F1 = ⌈L⌉

F2 = ⌈L⌉ + 2

max(⌈L⌉ , 2) + 6n − 10 ≥ F
n≥2

≥

⌈L⌉ + 2n − 2

Cover ≥ F1 ≥ Indep

(equality when C is
hole-free).

Fn≥2 ≥ Indep+2n−2

R-fat

rectangles

(1 < R < 2)

F1 =
⌈

L
R

⌉

If 1 ≤ L ≤ R and RL < 2:

* F2 = 4

* 6n − 8 ≥ Fn≥2 ≥ 2n

If 1 ≤ R < L or RL ≥ 2:

* F2 =
⌈

L
R

⌉

+ 2

*

⌈

max(L,2)
R

⌉

+ 6n − 10 ≥ Fn≥2 ≥
⌈

L
R

⌉

+ 2n − 2

Cover ≥ F1 ≥ Indep

Fn≥2 ≥ Indep+2n−2

R-fat

rectangles

(2 ≤ R)

F1 = 1

F2 = 3

4n − 5 ≥ F
n≥2

≥ 2n − 1

F1 =
⌈

L
R

⌉

F2 =
⌈

L
R

⌉

+ 2
⌈

L
R

⌉

+ 4n − 6 ≥ F
n≥2

≥
⌈

L
R

⌉

+ 2n − 2

Rectangles

(R = ∞)

Fn = n (a proportional division is possible) Cover ≥ F1 ≥ Indep

(equality when C is
linearly convex).

Fn≥1 ≥ Indep + n − 1

TABLE IV

Summary of results - proportionality values for various land-cakes and
land-plots. Some of the information is redundant, but was included anyway for

the sake of clarity. Also, to save space in the table, the table contains the
inverse of the proportionality, instead of the proportionality - Fn is a

short-hand for 1
Prop(C,n,R)

, where C is the land-cake, n is the number of agents

dividing it and R is the bound on the length/width ratio of the pieces. Cover is a
shorthand for R-CoverNum(C) - the minimum number of R-fat rectangles whose
union equals C. Indep is a shorthand for R-IndepNum(C) - the maximum number

of disjoint squares in C such that no two of them are covered by the same R-fat
rectangle.
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the possibility of implementing it in conjunction with partially fair (proportional)
division in the presence of geometric constraints.

Geometric constraints shed new light on the theory of fair cake-cutting. Many
of the interesting challenges in this field become even more exciting in the pres-
ence of geometric constraints. Hopefully this paper will inspire further research
providing insight regarding the relationships between geometry and economics,
both within the settings proposed in this paper and other realistic settings.

APPENDIX A: PARTIAL PROPORTIONALITY OF FAIR-AND-SQUARE RECURSIVE

HALVING

This appendix proves Claim 3, which deals with dividing a 2-fat land-cake. The proof is
by induction on the number of agents n. The induction base is n = 2. Most of the proof is
identical for n = 2 and n > 2. Therefore, instead of two separate proofs for n = 2 and n > 2,
we present a single proof and indicate the places in which a special treatment is needed for the
case n = 2.

The proof follows a single agent, Alice, throughout the steps of the division procedure
described in Table II. Suppose that Alice values the entire land-cake as An− B, where n ≥ 2
is the total number of agents dividing that land-cake and the constants A and B match the
bounds in Claim 3, namely: A = 4, B = 5 if R ≥ 2; A = 6, B = 8 if R < 2.

The following claims are proved:
(1) Alice can follow the methods of Table III.
(2) If Alice follows these methods, then, either she is given an R-fat land-plot which she

values as at least 1, or she enters the procedure recursively to divide with k agents a land-cake
which she values as at least Ak −B (where 2 ≤ k < n).

Hence, by induction, the division procedure terminates after a finite number of steps and
gives Alice a land-plot she values as at least 1.

The proof uses the following inequalities on A and B:34

• B ≥ A+ ⌈ 2
R
⌉

• 2A−B ≥ ⌈ 2
R
⌉+ 2 ≥ 2⌈ 2

R
⌉

In Step 2, Alice declares Partners(WS) and Partners(ES). To verify that the values specified
by the Methods satisfy the requirements of the Rules (Partners(WS) + Partners(ES) ≥ n),
consider each of the 4 cases in turn:

• V (WS) < ⌈ 2
R
⌉ and Alice declares Partners(WS) = 0. By the additivity of V , V (ES) >

(An−B)−⌈ 2
R
⌉. Additionally 2A−B ≥ 2⌈ 2

R
⌉ so V (ES) > ⌈ 2

R
⌉ even in the case n = 2.

Therefore Alice declares Partners(ES) = n.

• Ak − B ≤ V (WS) < A(k + 1) − B for some k ∈ {1, .., n − 2} (Note that this case is
possible only for n ≥ 3). Alice declares Partners(WS) = k. By additivity, V (ES) ≥
(An − B) − (A(k + 1) − B) = A(n − k) − A. Because B > A, V (ES) ≥ A(n − k) − B
and Alice declares Partners(ES) ≥ n− k.

• A(n − 1) − B ≤ V (WS) ≤ An− B − ⌈ 2
R
⌉. Alice declares Partners(WS) = n − 1. By

additivity, V (ES) ≥ ⌈ 2
R
⌉ and Alice declares Partners(ES) ≥ 1.

• An−B−⌈ 2
R
⌉ < V (WS). Alice declares Partners(WS) = n. In any case Partners(ES) ≥

0.

In all cases, indeed, Partners(WS)+Partners(ES) ≥ n. Now the division can proceed in one
of several ways (we describe them for WG and WS ; the proof for EG and ES is symmetric):

34In fact, A and B were calculated as the minimal constants that satisfy these inequalities.
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• Alice is the single agent in WG. Alice is given the 2-fat rectangle WS, for which
she declared Partners(WS) ≥ 1. Assuming Alice followed the Methods, this means

V (WS) ≥ ⌈ 2
R
⌉, so by Claim 2 she can get an R-fat rectangle with a value of at least 1.

• Alice is in WG and |WG| = k ∈ {2, .., n − 1}. This group is sent to recursively divide
the 2-fat rectangle WS, for which Alice declared Partners(WS) ≥ k ≥ 2, which implies

V (WS) ≥ Ak −B. Hence the induction assumption holds.

• |WG| = n. This means that Alice has reported Partners(WS) = n, which implies

V (WS) > An−B − ⌈ 2
R
⌉ and the division proceeds at step 3.

In Step 3, Alice draws a rectangle P = [0, x]× [0, 1] with x ∈ [0, L
2
], such that the value of the

remaining rectangle is V ([x, L]× [0, 1]) =
⌈

2
R

⌉

. Now the division can proceed in one of several
ways:

• Alice’s rectangle is selected as the largest and she receives its complement [x,L]× [0, 1].
This is a 2-fat rectangle which Alice values as

⌈

2
R

⌉

, so by Claim 2 she can get an R-fat
rectangle with a value of at least 1.

• Alice’s rectangle is not selected as the largest, n = 2, and Alice is given the rectangle
[0, xm]× [0, 1], where xm ≥ x and xm ≥ 1

2
. This is a 2-fat rectangle which Alice values

as at least (2A−B)−
⌈

2
R

⌉

≥
⌈

2
R

⌉

, so by Claim 2 she can get an R-fat rectangle with a
value of at least 1.

• Alice’s rectangle is not selected as the largest, n > 2, and Alice is sent to recursively
divide a rectangle [0, xm]× [0, 1] with n− 1 agents, where xm ≥ x and xm ≥ 1

2
. This is

a 2-fat rectangle which Alice values as at least (An−B)−
⌈

2
R

⌉

> A(n−1)−B (because

A >
⌈

2
R

⌉

). Hence the induction assumption holds.

• All agents, including Alice, declared x < 1
2
. This means that V ([0, 1

2
] × [0, 1]) ≥ An−

B −
⌈

2
R

⌉

and the division proceeds at step 4.

In step 4, Alice declares Partners(NS) and Partners(SS), where NS ∪ SS = [0, 1
2
] ×

[0, 1]. Again we verify that the values specified by the Methods satisfy Partners(NS) +
Partners(SS) ≥ n in all 4 cases:

• V (NS) < 1 and Alice declares Partners(NS) = 0. By the additivity of V , V (SS) >
(An − B − ⌈ 2

R
⌉) − 1. Additionally, 2A − B ≥ ⌈ 2

R
⌉ + 2 so V (ES) > 1 even in the case

n = 2. Therefore Alice declares Partners(SS) = n.

• Ak−B ≤ V (NS) < A(k+1)−B for some k ∈ {1, .., n−2}. Alice declares Partners(NS) =
k. By additivity, V (SS) ≥ (An − B − ⌈ 2

R
⌉) − (A(k + 1) − B) = A(n − k) − A − ⌈ 2

R
⌉.

Because B ≥ A+⌈ 2
R
⌉, V (SS) ≥ A(n−k)−B and Alice declares Partners(SS) ≥ n−k.

• A(n − 1) − B ≤ V (NS) ≤ An − B − ⌈ 2
R
⌉ − 1. Alice declares Partners(NS) = n − 1.

By additivity, V (SS) ≥ 1 and Alice declares Partners(SS) ≥ 1.

• An−B−⌈ 2
R
⌉−1 < V (NS). Alice declares Partners(NS) = n. In any case Partners(SS) ≥

0.

In all cases, indeed, Partners(NS)+Partners(SS) ≥ n. Now the division can proceed in one
of several ways (we describe them for NG and NS ; the case for SG and SS is symmetric):

• Alice is the single agent in NG. Alice is given the square NS, for which she declared
Partners(NS) ≥ 1. Assuming Alice followed the Methods, V (NS) ≥ 1.

• Alice is in NG and |NG| = k ∈ {2, .., n− 1}. This group is sent to recursively divide the
square NS, for which Alice declared Partners(NS) ≥ k ≥ 2, which implies V (NS) ≥
Ak −B. Hence the induction assumption holds.

• |NG| = n. This means that Alice has declared Partners(NS) = n, which implies

V (NS) > An−B − ⌈ 2
R
⌉ − 1 and the division proceeds at step 5.

In Step 5, Alice draws a corner square P such that the value of the remaining L-shape is

V (C − P ) = 1 +
⌈

2
R

⌉

. Now the division can proceed in one of several ways:
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• Alice’s square is selected as the largest and she receives its complement L-shape. As-
suming Alice followed the methods, she values this L-shape as 1 +

⌈

2
R

⌉

. This L-shape

can be covered by one square on the north/south and additional
⌈

2
R

⌉

R-fat rectangles

on the east/west, for a total of 1 +
⌈

2
R

⌉

. Therefore by Claim 2 Alice can get an R-fat
rectangle with a value of at least 1.

• Alice’s square is not selected as the largest, and n = 2. Alice is given a square which
she values as at least (2A−B) − (1 +

⌈

2
R

⌉

) ≥ 1.

• Alice’s square is not selected as the largest, and n > 2. Alice is sent to recursively divide
a corner square with a side-length xm ≥ x with n−1 ≥ 2 agents. This is a square which
Alice values as at least (An− B)− (1 +

⌈

2
R

⌉

) ≥ A(n− 1) −B (because A ≥ 1 +
⌈

2
R

⌉

).
Hence the induction assumption holds.

This completes the proof of Claim 3.

APPENDIX B: PARTIAL PROPORTIONALITY FOR GENERAL RECTANGULAR

CAKES

A modified set of methods for agents dividing a general rectangular cake is given in Table
V.

Similarly to the proof of Claim 3 in Appendix A, Claim 4 is proved by induction on the
number of agents n, following a single agent, Alice, throughout the steps of the division proce-
dure described in Table II. Suppose that Alice values the entire land-cake as An− B′ + ⌈L

R
⌉,

where L ≥ 1 is the length/width ratio of the land-cake and n ≥ 2 is the total number of
agents dividing that land-cake. The constants A and B′ match the bounds in Claim 4, namely:
A = 4, B′ = 6 if R ≥ 2; A = 6, B′ = 10 if R < 2.

We prove the following claims:
(1) Alice can follow the methods of Table V.
(2) If Alice follows these methods, then, either she is given an R-fat land-plot which she values

as at least 1, or she enters the procedure recursively to divide a land-cake of length/width ratio

L′ > 2 which she values as at least Ak−B′ + ⌈L′

R
⌉ with k agents, or she enters the procedure

recursively to divide a 2-fat land-cake which she values as at least Ak−B with k agents (where
2 ≤ k < n).

Hence, by induction and using Claim 3, the division procedure terminates after a finite
number of steps and gives Alice a land-plot she values as at least 1.

The proof uses the following relations on A and B′:

• B′ ≥ A+ 2⌈ 2
R
⌉

• 2A−B′ ≥ 2

• B′ = B + ⌈ 2
R
⌉, where B is the corresponding constant from Claim 3.

The proof also uses the following arithmetic lemma:

Lemma (Ceiling Lemma) For every positive L ≥ 1, R ≥ 1 and x ∈ [0, L]:
⌈

max(x,2)
R

⌉

+
⌈

max(L−x,2)
R

⌉

≤
⌈

L
R

⌉

+ 2
⌈

2
R

⌉

− 1.

Hence:⌈L
R
⌉ − ⌈max(x,2)

R
⌉ ≥

⌈

max(L−x,2)
R

⌉

+ 1− 2
⌈

2
R

⌉

.

Proof: There are several cases:
1. x ≤ 2 and L − x ≤ 2. The LHS is 2

⌈

2
R

⌉

. Subtracting 2
⌈

2
R

⌉

from both sides, we get:

0 ≤
⌈

L
R

⌉

− 1, which is always true because L and R are positive.

2. x ≤ 2 and L−x > 2. Subtracting
⌈

2
R

⌉

from both sides, we get:
⌈

L−x
R

⌉

≤
⌈

L
R

⌉

+
⌈

2
R

⌉

−1,

which is always true because
⌈

2
R

⌉

≥ 1.
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New method for step 2 (cake-bipartition):

Let c be a part of the current land-cake (WS or ES), Lc its length/width ratio (note that
by the division rules ES and WS have the same dimensions so their length/width ratio is
identical) and n ≥ 2 the total number of agents who divide the current land-cake.

• If V (c) < ⌈Lc

R
⌉ then declare Partners(c) = 0.

• Else, if Ak − B′ + ⌈max(2,Lc)
R

⌉ ≤ V (c) < A(k + 1) − B′ + ⌈max(2,Lc)
R

⌉, for some k
in {1, .., n − 2}, then declare Partners(c) = k (Note that this case is possible only for
n ≥ 3).

• Else, if A(n − 1) − B′ + ⌈
max(2,Lc)

R
⌉ ≤ V (c) ≤ An − B′ + ⌈L

R
⌉ − ⌈Lc

R
⌉, declare

Partners(c) = n− 1.

• Else, An− B′ + ⌈L
R
⌉ − ⌈Lc

R
⌉ < V (c); declare Partners(c) = n.

New method for step 3 (agent-bipartition):

Draw a rectangle P = [0, x] × [0, 1] with x ∈ [0, L
2
], such that the value of the remaining

rectangle is V ([x,L]× [0, 1]) =
⌈

L−x
R

⌉

.

New method for step 4 (cake-bipartition):

Let c be a part of the current land-cake (NS or SS) and let n ≥ 2 be the total number of
agents who divide the current land-cake.

• If V (c) < 1, then declare Partners(c) = 0.

• Else, if Ak−B′ + ⌈ 2
R
⌉ ≤ V (c) < A(k+1)−B′ + ⌈ 2

R
⌉, for some k in {1, .., n− 2}, then

declare Partners(c) = k.

• Else, if A(n− 1) −B′ + ⌈ 2
R
⌉ ≤ V (c) ≤ An− B′ − 1, declare Partners(c) = n− 1.

• Else, An− B′ − 1 < V (c); declare Partners(c) = n.

New method for step 5 (agent-bipartition):

Draw a corner-square P such that the value of the remaining L-shape is: V (C−P ) = 1+
⌈

L
R

⌉

.

TABLE V

Fair-and-square recursive-halving methods for a general rectangular land-cake
with a length/width ratio of L (See subsection 4.3).
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3. x > 2 and L − x > 2. The LHS is:
⌈

x
R

⌉

+
⌈

L−x
R

⌉

, and by the properties of the ceiling

operator, it is at most
⌈

L
R

⌉

+ 1 ≥
⌈

L
R

⌉

+ 2
⌈

2
R

⌉

− 1. Q.E.D.

Back to Alice and the division rules:
In Step 2, Alice declares Partners(WS) and Partners(ES). According to the division rules,

the length/width ratio of each of these pieces is Lc = L
2
≥ 1 (since L ≥ 2). Hence ⌈ L

R
⌉−⌈Lc

R
⌉ ≥

⌈Lc

R
⌉ − 1 and ⌈ L

R
⌉ − ⌈

max(2,Lc)
R

⌉ ≥ ⌈
max(2,Lc)

R
⌉+ 1− 2

⌈

2
R

⌉

.
To assure that the values specified by the Methods satisfy the requirements of the Rules
(Partners(WS) + Partners(ES) ≥ n), consider each of the following 4 cases:

• V (WS) < ⌈Lc

R
⌉ and Alice declares Partners(WS) = 0. By additivity, V (ES) > An−

B′+⌈ L
R
⌉−⌈Lc

R
⌉ ≥ An−B′ +⌈Lc

R
⌉−1. Additionally 2A−B′ ≥ 2 so V (ES) > ⌈Lc

R
⌉+1

even in the case n = 2. Therefore Alice declares Partners(ES) = n.

• Ak−B′ + ⌈
max(2,Lc)

R
⌉ ≤ V (c) < A(k+1)−B′ + ⌈

max(2,Lc)
R

⌉ for some k ∈ {1, .., n− 2}
(Note that this case is possible only for n ≥ 3). Alice declares Partners(WS) = k. By

additivity, V (ES) ≥ (An−B′)− (A(k+1)−B′) + (⌈ L
R
⌉− ⌈max(2,Lc)

R
⌉). By the ceiling

lemma, V (ES) ≥ A(n−k)−A+(⌈
max(2,Lc)

R
⌉+1−2

⌈

2
R

⌉

). Because B′ > A+2
⌈

2
R

⌉

−1,

V (ES) > A(n− k)−B′ + (⌈
max(2,Lc)

R
⌉) and Alice declares Partners(ES) ≥ n− k.

• A(n − 1) − B′ + ⌈
max(2,Lc)

R
⌉ ≤ V (WS) ≤ An − B′ + ⌈ L

R
⌉ − ⌈Lc

R
⌉. Alice declares

Partners(WS) = n−1. By additivity, V (ES) ≥ ⌈Lc

R
⌉ and Alice declares Partners(ES) ≥

1.

• An − B′ + ⌈L
R
⌉ − ⌈Lc

R
⌉ < V (WS). Alice declares Partners(WS) = n. In any case

Partners(ES) ≥ 0.

In all cases, indeed, Partners(WS)+Partners(ES) ≥ n. Now the division can proceed in one
of several ways (we describe them for WG and WS ; the case for EG and ES is symmetric):

• Alice is the single agent in WG. Alice is given the rectangle WS for which she reported
Partners(WS) ≥ 1. Assuming Alice followed the Methods, this implies V (WS) ≥ ⌈Lc

R
⌉,

where Lc is the length/width ratio of WS. Hence by Claim 2 Alice can get an R-fat
rectangle with a value of at least 1.

• Alice is in WG and |WG| = k ∈ {2, .., n − 1}. This group is sent to recursively divide
the rectangle WS, for which Alice reported Partners(WS) ≥ k ≥ 2, which implies

V (WS) ≥ Ak−B′+⌈max(2,Lc)
R

⌉. If Lc ≤ 2 then this value equals Ak−B and by Claim
3 Alice will get at least 1. Otherwise Lc > 2 and the induction assumption holds.

• |WG| = n. This implies that Alice reported Partners(WS) = n, which implies V (WS) >

An− B′ + ⌈L
R
⌉ − ⌈Lc

R
⌉ ≥ An− B′ + ⌈Lc

R
⌉ − 1 and the division proceeds at step 3.

In Step 3, Alice draws a rectangle P = [0, x]× [0, 1] with x ∈ [0, L
2
], such that the value of

the remaining rectangle is V ([x,L]× [0, 1]) =
⌈

L−x
R

⌉

. Now the division can proceed in one of

several ways:

• Alice’s rectangle is selected as the largest and she receives its complement [x,L]× [0, 1].

This is a rectangle with an aspect ratio of L−x ≥ L
2
≥ 1, which Alice values as

⌈

L−x
R

⌉

.

Hence by Claim 2 Alice can get an R-fat rectangle with a value of at least 1.

• The largest rectangle is Pm = [0, xm] × [0, 1], where xm ≥ x and xm ≥ 1
2
. Define the

rectangle P ′ = [0,max( 1
2
, x)]× [0, 1]. P ′ contains P so its value is at least (An − B′ +

⌈L
R
⌉) −

⌈

L−x
R

⌉

≥ An−B′ +
⌈

x
R

⌉

− 1. There are several sub-cases:

– n = 2. Alice Receives Pm which contains P ′ which she values as at least (2A −

B′) +
⌈

x
R

⌉

− 1 ≥ 2 +
⌈

x
R

⌉

− 1 ≥ ⌈max(x,2)
R

⌉. The length/width ratio of P ′ is at
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most max(x, 2) so by Claim 3 it contains an R-fat rectangle with a value of at
least 1.

– n > 2 and xm ≤ 2. Alice is sent to divide Pm, which is a 2-fat rectangle, with
n − 1 agents. Alice values Pm as at least An − B′ +

⌈

x
R

⌉

− 1 ≥ An − B′ =

A(n− 1)+A−B−⌈ 2
R
⌉ ≥ A(n− 1)−B so by Claim 3 she gets a value of at least

1.

– n > 2 and xm > 2. Alice is sent to divide Pm with n− 1 agents. Pm contains P ′

which she values as at least An−B′+
⌈

x
R

⌉

−1 ≥ A(n−1)+A−B′+⌈max(x,2)
R

⌉−2 ≥

A(n− 1)−B′ + ⌈max(x,2)
R

⌉. The length/width ratio of P ′ is at most max(x, 2) so
by the induction assumption Alice gets a value of at least 1.

• All agents, including Alice, declared x < 1
2
. This means that V ([0, 1

2
]× [0, 1]) ≥ (An−

B′ + ⌈L
R
⌉) −

⌈

L−x
R

⌉

≥ An− B′ = An−B − ⌈ 2
R
⌉ and the division proceeds at step 4.

In step 4, Alice declares Partners(NS) and Partners(SS), where NS ∪ SS = [0, 1
2
]× [0, 1].

Again we must make sure that the values specified by the Methods satisfy Partners(NS) +
Partners(SS) ≥ n in all 4 cases:

• V (NS) < 1 and Alice declares Partners(NS) = 0. By the additivity of V , V (SS) >
An−B′ − 1. Additionally, 2A−B′ ≥ 2 so V (ES) > 1 even in the case n = 2. Therefore
Alice declares Partners(SS) = n.

• Ak−B′+⌈ 2
R
⌉ ≤ V (NS) < A(k+1)−B′+⌈ 2

R
⌉ for some k ∈ {1, .., n−2}. Alice declares

Partners(NS) = k. By additivity, V (SS) ≥ (An − B′) − (A(k + 1) − B′ + ⌈ 2
R
⌉) =

A(n− k)−A−⌈ 2
R
⌉. Because B′ ≥ A+2⌈ 2

R
⌉, V (SS) ≥ A(n− k)−B′ + ⌈ 2

R
⌉ and Alice

declares Partners(SS) ≥ n− k.

• A(n− 1)− B′ + ⌈ 2
R
⌉ ≤ V (NS) ≤ An− B′ − 1. Alice declares Partners(NS) = n− 1.

By additivity, V (SS) ≥ 1 and Alice declares Partners(SS) ≥ 1.

• An−B′−1 < V (NS). Alice declares Partners(NS) = n. In any case Partners(SS) ≥ 0.

In all cases, indeed, Partners(NS)+Partners(SS) ≥ n. Now the division can proceed in one
of several ways (we describe them for NG and NS ; the case for SG and SS is symmetric):

• Alice is the single agent in NG. Alice is given the square NS, for which she reported
Partners(NS) ≥ 1. Assuming Alice followed the Methods, V (NS) ≥ 1.

• Alice is in NG and |NG| = k ∈ {2, .., n−1}. This group is sent to recursively divide the
square NS, for which Alice reported Partners(NS) ≥ k ≥ 2, which implies V (NS) ≥
Ak −B′ + ⌈ 2

R
⌉ = Ak − B. Hence by Claim 3 Alice gets a value of 1.

• |NG| = n. This implies that Alice reported Partners(NS) = n, which implies V (NS) >
An− B′ − 1 and the division proceeds at step 5.

In Step 5, Alice draws a corner square P such that the value of the remaining L-shape is

V (C − P ) = 1 +
⌈

L
R

⌉

. Now the division can proceed in one of several ways:

• Alice’s square is selected as the largest and she receives its complement L-shape. As-

suming Alice followed the methods, she values this L-shape as 1 +
⌈

L
R

⌉

. This L-shape

can be covered by one square at the north/south and additional
⌈

L
R

⌉

R-fat rectangles at

the east/west, for a total of 1+
⌈

L
R

⌉

. Hence by Claim 2 Alice can get an R-fat rectangle

with a value of at least 1.

• Alice’s square is not selected as the largest, and n = 2. Alice is given a square which

she values as at least (2A−B′ +
⌈

L
R

⌉

)− (1 +
⌈

L
R

⌉

) = 2A−B′ − 1 ≥ 1.
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• Alice’s square is not selected as the largest, and n > 2. Alice is sent to recursively divide
a corner square with a side-length xm ≥ x with n−1 ≥ 2 agents. This is a square which

Alice values as at least (An−B′+
⌈

L
R

⌉

)−(1+
⌈

L
R

⌉

) = An−B′−1 = An−B−
⌈

2
R

⌉

−1 ≥

A(n−1)−B (because A ≥ 1+
⌈

2
R

⌉

). Hence by Claim 2 Alice can get an R-fat rectangle
with a value of at least 1.

This completes the proof of Claim 4. �

APPENDIX C: SUM OF VALUES IN FAIR-AND-SQUARE RECURSIVE HALVING

This appendix proves Claim 5, which makes the following assumptions:

• There is a 2-fat land-cake C that is to be divided among n ≥ 2 agents.

• All agents follow the methods of Table III with the same R.

• All agents assign the same value V to the entire land-cake.

For the sake of the proof, assume that all valuation functions are normalized so that V (C) =
V = An−B, where the constants A and B match the bounds in Claim 3, namely V = 4n− 5
for R ≥ 2 and V = 6n− 8 for R < 2. The proof is different for R ≥ 2 and R < 2.

C.1. R ≥ 2

We first prove by induction that if all n ≥ 1 agents value the entire land-cake as V then the
sum of allocated values is V − (n− 1).

Proof: The base is n = 1. Indeed a single agent can get the entire value.
For n > 1, consider the four places where the procedure can terminate with either an

allocation or a recursive application:
- In Step 2, when there are agents in both WG and EG (i.e. |WG| ≥ 1 and |EG| ≥ 1).

Let VWS be the minimal value assigned to WS by an agent from WG and VES the minimal
value assigned to ES by an agent from EG. By the division procedure, all agents from EG
assign to WS at most VWS and all agents from WG assign to ES at most VES . Hence VES ≥
V − VWS . By the induction assumption, the sum of values from the division of WS is at least
VWS−(|WG|−1) and the sum of values from the division of ES is at least VES−(|EG|−1). The
sum of allocated values is at least VWS−(|WG|−1)+VES−(|EG|−1) = V −(n−2) > V −(n−1)
and the induction step is satisfied.

- In Step 3, when the eastmost division line is at xm ≥ 1
2
. Agent m receives [xm, L]× [0,1]

and gets its entire value. The other n − 1 agents recursively divide [0, xm] × [0, 1]. By the
induction assumption, the total value allocated is at least V − (n− 2) > V − (n− 1).

If xm < 1
2

then all agents value WS as more than V − 1 and give away the eastern part
(C −WS) which has a value of less than 1 and the division proceeds at step 4.

- In Step 4, when there are agents in both NG and SG. Let VNS be the minimal value
assigned to NS by an agent from NG and VSS the minimal value assigned to SS by an agent
from SG. By the division procedure, VNS ≥ V − 1 − VES . Similarly to step 2, the sum of
allocated values is at least VNS − (|NG|−1)+VSS − (|SG|−1) = V −1− (n−2) = V − (n−1)
and the induction step is satisfied.

- In Step 5. The largest square is selected and divided to n − 1 agents, who value it as
V − 2. By the induction assumption, the sum of values allocated from that square is at least
V − 2 − (n − 2). Adding the value of at least 1 allocated to the n-th agent gives the sum of
V − (n− 1) and the induction step is satisfied. Q.E.D.

Initially all agents value the entire land-cake as V = 4n− 5 so the sum of allocated values
is V − (n− 1) = 3n− 4.
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C.2. R < 2

We first prove by induction that if all n ≥ 2 agents value the entire land-cake as V then the

sum of allocated values is
V −2(n−2)

2
.

Proof: The base is for n = 2. Indeed when there are two agents each of them can have at
least a quarter of the total value, so the sum of values is at least V

2
.

For n > 2, consider the four places where the procedure can terminate with either an
allocation or a recursive application:

- In Step 2, when there are agents in both WG and EG (i.e. |WG| ≥ 1 and |EG| ≥ 1).
Let VWS be the minimal value assigned to WS by an agent from WG and VES the minimal
value assigned to ES by an agent from EG. By the division procedure, all agents from EG
assign to WS at most VWS and all agents from WG assign to ES at most VES . Hence
VES ≥ V − VWS . Now there are two sub-cases for WG: If |WG| ≥ 2 then WS is divided
recursively among |WG| agents. By the induction assumption, the sum of values from this

division is at least VWS−2(|WG|−2)
2

. Otherwise, |WG| = 1 and WS is given to a single agent

who receives at least VWS

2
. There are similar sub-cases for EG. The worst case (when n > 2)

is when |WG| = 1 and |EG| = n−1 ≥ 2 (or vice versa). The sum of allocated values is at least
VWS

2
+

VES−2(n−3)
2

=
V −2(n−3)

2
>

V −2(n−2)
2

and the induction step is satisfied.

- In Step 3, when the eastmost division line is at xm ≥ 1
2
. Agent m receives [xm, L]× [0,1]

and gets at least half its value. The other n − 1 agents recursively divide [0, xm] × [0, 1]. By

the induction assumption, the total value allocated is at least
V −2(n−3)

2
>

V −2(n−2)
2

.

If xm < 1
2

then all agents value WS as more than V − 2 and give away the eastern part
(C −WS) which has a value of less than 2 and the division proceeds at step 4.

- In Step 4, when there are agents in both NG and SG. Let VNS be the minimal value
assigned to NS by an agent from NG and VSS the minimal value assigned to SS by an agent
from SG. By the division procedure, VNS ≥ V − 2 − VES . Similarly to step 2, the sum of

allocated values is at least
V −2−2(n−3)

2
=

V −2(n−2)
2

and the induction step is satisfied.
- In Step 5. The largest square is selected and divided among n− 1 agents, who value it as

V − 3. By the induction assumption, the sum of values allocated from that square is at least
V −3−2(n−3)

2
. Adding the value of at least 1 allocated to the n-th agent gives V −1−2(n−3)

2
>

V −2(n−2)
2

and the induction step is satisfied. Q.E.D.

Initially all agents value the entire land-cake as V = 6n− 8 so the sum of allocated values

is
V −2(n−2)

2
= 2n− 2.
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