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This supplementary material provides the following information: Section 1
explains how we determined the match filtering thresholds for the learned meth-
ods. Section 2 contains the additional results mentioned in the main paper (e.g.,
ETH3D [11] triangulation results on each individual dataset and independent
results of each method on the Local Feature Evaluation Benchmark [10]) as well
as some qualitative examples before and after refinement. Section 3 presents an
ablation study for both the two-view and the multi-view refinement procedure.
Section 4 details the query keypoint refinement protocol used for camera localiza-
tion on the ETH3D dataset. Section 5 describes the filtering steps used during
the generation of the two-view training dataset.

1 Match filtering

Match filtering is an essential step before large-scale SfM because it significantly
reduces the number of wrong registrations due to repetitive structures and
semantically similar scenes. To determine a good threshold (either for similarity
or ratio to the second nearest neighbor), we adopt the methodology suggested
by Lowe [8] – we plot the probability distribution functions for correct and
incorrect mutual nearest neighbors matches on the sequences from the HPatches
dataset [1]. A match is considered correct if its projection error, estimated using
the ground-truth homographies, is below 4 pixels. To have a clear separation,
the threshold for incorrect matches is set to 12 pixels. All matches with errors
in-between are discarded. Figure 1 shows the plots for all learned methods as
well as SIFT (used as reference).

For SIFT [8], the ratio threshold traditionally used (0.8) filters out 16.7%
of correct matches and 96.8% of wrong ones. For SuperPoint [4], we use the
cosine similarity threshold suggested by the authors (0.755) which filters out
82.0% of wrong matches. For Key.Net [2] and R2D2 [9], we empirically determine
thresholds with a similar filtering performance to the ones used for SIFT and
SuperPoint. The only method that is not compatible with either the ratio test
or similarity thresholding is D2-Net [5]. Thus, for it, we settle on a conservative
similarity threshold of 0.8, filtering out only 62.7% of incorrect matches.
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Fig. 1: Match filtering. Following the protocol of Lowe [8], we plot the proba-
bility distribution function (PDF) of the correct and incorrect mutual nearest
neighbors matches. The horizontal axis represents either the ratio to the second
nearest neighbor or the cosien similarity to the first nearest neighbor.

2 Additional results

For the Local Feature Evaluation Benchmark [10], the results reported in the
main paper show the sparse 3D reconstruction statistics on the images registered
by both the refined and unrefined versions of each feature - this was done in
order to allow a fair comparison in terms of number of observations, track length,
and reprojection error. Nevertheless, we also provide the independent results for
each local feature in Table 1.

Due to space constraints, in the main paper, we only reported the average
results on indoor and outdoor scenes for the ETH3D triangulation evaluation [11].
Tables 3 and 4 show the results for each of the 13 datasets. For the learned
features, the results with refinement are always better. For SIFT, the only scene
where the results after refinement are worse is Meadow; this is a textureless scene
where SIFT has troubles correctly matching features. Due to the low number of
matches passed to COLMAP, its triangulation results are very sensitive to small
changes in the input. Some qualitative examples are shown in Figures 2 and 3.
A short video with additional examples is available at https://www.youtube.

com/watch?v=eH4UNwXLsyk.

3 Ablation study

In this section, an ablation study for the proposed refinement procedure will be
presented. We will first start by studying the effect of training data on the two-

https://www.youtube.com/watch?v=eH4UNwXLsyk
https://www.youtube.com/watch?v=eH4UNwXLsyk
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Fig. 2: Courtyard. We show top-down partial views of point clouds triangulated
on the Courtyard scene. We overlap the point-cloud obtained from refined key-
points and the point-cloud from raw keypoints. The noise levels are drastically
reduced nearby planar surfaces. Best viewed on a monitor.
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Fig. 3: Delivery Area. We show top-down partial views of point clouds triangu-
lated on the Courtyard scene. We overlap the point-cloud obtained from refined
keypoints and the point-cloud from raw keypoints. The noise levels are drastically
reduced nearby planar surfaces. Best viewed on a monitor.
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Table 1: Evaluation on the Local Feature Evaluation Benchmark. We
report the results for each method independently, instead of considering only the
commonly registered images for refined and unrefined features.

Dataset Method
Reg.

images
Num.
obs.

Track
length

Reproj.
error

Method
Reg.

images
Num.
obs.

Track
length

Reproj.
error

Madrid
Metropolis

1344 images

SIFT 393 188.7K 6.84 0.70 SURF 296 121.4K 6.22 0.76
SIFT + ref. 390 189.7K 6.90 0.66 SURF + ref. 274 116.6K 6.26 0.66

D2-Net 392 683.6K 6.01 1.46 R2D2 422 357.2K 10.17 0.90
D2-Net + ref. 405 773.4K 7.26 0.96 R2D2 + ref. 427 359.5K 10.15 0.76

SP 422 272.1K 7.64 0.98 Key.Net 317 114.4K 9.28 0.94
SP + ref. 425 279.9K 8.23 0.72 Key.Net + ref. 323 119.4K 9.39 0.75

Gendarmen-
markt

1463 images

SIFT 879 440.7K 6.34 0.82 SURF 475 164.1K 5.45 0.90
SIFT + ref. 882 442.2K 6.41 0.75 SURF + ref. 483 165.6K 5.42 0.78

D2-Net 865 1.482M 5.33 1.44 R2D2 988 1.102M 9.94 0.98
D2-Net + ref. 959 1.805M 6.38 1.02 R2D2 + ref. 935 1.044M 10.04 0.89

SP 919 627.4K 6.84 1.05 Key.Net 817 253.9K 7.08 0.99
SP + ref. 972 680.6K 7.07 0.88 Key.Net + ref. 828 260.5K 7.21 0.86

Tower of
London

1576 images

SIFT 562 448.9K 7.90 0.69 SURF 433 212.2K 5.94 0.71
SIFT + ref. 566 449.6K 7.96 0.59 SURF + ref. 432 212.9K 5.92 0.58

D2-Net 653 1.417M 5.93 1.48 R2D2 693 758.2K 13.44 0.92
D2-Net + ref. 661 1.568M 7.64 0.91 R2D2 + ref. 700 760.8K 13.73 0.76

SP 625 443.3K 8.06 0.95 Key.Net 500 186.9K 9.03 0.85
SP + ref. 633 458.9K 8.52 0.69 Key.Net + ref. 495 190.8K 9.18 0.66

view refinement network. Secondly, we will study how each step of the multi-view
refinement influences the final result.

3.1 Two-view refinement

The architecture used for the two-view refinement between tentative matches is
described in Table 4. For the layers with batch normalization, we place it before
the non-linearity (i.e., the order is convolution followed by batch normalization
and finally non-linearity) as suggested in the reference paper [6].

For this ablation study, we focus on the HPatches Sequences dataset [1],
because it allows to isolate the network output. Given a tentative match u, v, we
run a forward pass of the patch alignment network to predict du→v and use u and
v + du→v as keypoint locations. As can be seen in Figure 4, training only with
synthetic data (i.e., pairs consisting of a patch and a warped version of itself) is
not sufficient to achieve the final performance. By using real pairs extracted from
the MegaDepth dataset [7], we allow the network to learn different illumination
conditions as well as occlusions / large viewpoint changes.

3.2 Multi-view refinement

We use the largest dataset with ground-truth data available (Facade from
ETH3D [11]) to study the relevance of the following steps of our pipeline: graph
partitioning, inter-edges, 3×3 displacement grid. The ablation results are summa-
rized in Table 2. For the purpose of this section, we define the set of intra-edges
connecting nodes within a track as Eintra = {(u→ v) ∈ E|tu = tv} and the set of
inter-edges connecting nodes of different tracks as Einter = {(u→ v) ∈ E|tu 6= tv}
on the entire graph G (without graph-cut).
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Layer
Batch
Norm.

ReLU
Output
shape

input, RGB 33 × 33 × 3

conv1 1, 3 × 3 X 33 × 33 × 64
conv1 2, 3 × 3 X 33 × 33 × 64

max pool1, 3 × 3, stride 2 17 × 17 × 64

conv2 1, 3 × 3 X 17 × 17 × 128
conv2 2, 3 × 3 X 17 × 17 × 128

correlation 17 × 17 × 289

reg conv1, 5 × 5 X X 13 × 13 × 128
reg conv2, 5 × 5 X X 9 × 9 × 128
reg conv3, 5 × 5 X X 5 × 5 × 64
reg conv4, 5 × 5 X X 1 × 1 × 64

reg fc 2
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Fig. 4: Two-view refinement. Left – architecture: We use a slightly modified
version of VGG16 up to conv2 2 for feature extraction. The results of the dense
matching are processed by a sequence of convolutional and fully connected layers.
Right – ablation: The results for D2-Net without refinement are reported by a
solid line. We compare a network trained on synthetic pairs only (dotted) and
one trained with both synthetic and real data (dashed).

Without any graph partitioning, the optimization can be formulated as:

min
xp

∑
(u→v)∈E

su→vρ(‖x̄v − x̄u − Tu→v(x̄u)‖2)

s.t.‖x̄p‖1 = ‖xp − x0p‖1 ≤ K,∀p .

(1)

Despite the long track length, the reprojection error is generally larger and the
point clouds are less accurate - this is mainly due to wrong tentative matches.
Moreover, this formulation has one of the highest optimization runtimes.

After partitioning the graph into tracks, one could ignore the inter-edges:

min
xp

∑
(u→v)∈Eintra

su→vρ(‖x̄v − x̄u − Tu→v(x̄u)‖2)

s.t.‖x̄p‖1 = ‖xp − x0p‖1 ≤ K,∀p .

(2)

This formulation can be solved independently for each track and is thus the
fastest. However, detectors often fire multiple times for the same visual feature.
Since we restrict the tracks to only contain one feature from each image, these
multiple detections will never be merged into a single point.

To address this, the inter-edges must be considered:

min
xp

∑
(u→v)∈Eintra

su→vρ(‖x̄v − x̄u − Tu→v(x̄u)‖2)+

∑
(u→v)∈Einter

su→vψ(‖x̄v − x̄u − Tu→v(x̄u)‖2)

s.t.‖x̄p‖1 = ‖xp − x0p‖1 ≤ K, ∀p .

(3)

The main issue with this formulation is its runtime due to having the same number
of residuals as Equation 1. However, it generally achieves similar accuracy and
reprojection error to Equation 2 while having a better track length.
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Table 2: Multi-view refinement ablation study. Reconstruction statistics
are reported for the Facade scene of ETH3D [11] consisting of 76 images for
different formulations of the multi-view optimization problem.

Method
Comp. (%) Accuracy (%) Track

length
Reproj.
error

Optim.
runtime1cm 2cm 5cm 1cm 2cm 5cm

SIFT

no refinement 0.06 0.36 3.08 36.04 52.10 73.28 5.42 1.07

no graph partitioning 0.09 0.50 3.85 44.52 62.26 82.74 5.86 0.81 49.7s

intra-edges 0.09 0.51 3.84 45.16 62.56 82.44 5.80 0.80 10.2s
+ inter-edges 0.09 0.50 3.83 45.46 62.58 82.65 5.82 0.80 54.1s
+ graph-cut (full) 0.09 0.50 3.82 45.19 62.32 82.38 5.81 0.80 13.3s

full (constant flow) 0.09 0.49 3.72 44.12 61.33 80.65 5.75 0.84 11.9s

D2-Net

no refinement 0.02 0.18 2.26 7.56 14.21 29.90 3.20 1.60

no graph partitioning 0.11 0.71 5.50 28.20 43.64 67.50 5.64 1.09 317.7s

intra-edges 0.16 1.01 8.17 34.85 53.05 75.80 5.05 0.85 20.0s
+ inter-edges 0.16 1.01 8.16 34.88 53.18 75.90 5.06 0.85 223.6s
+ graph-cut (full) 0.16 1.01 8.18 34.86 53.32 76.02 5.06 0.85 31.1s

full (constant flow) 0.13 0.87 7.53 29.37 46.05 69.51 4.78 0.99 28.1s

SuperPoint

no refinement 0.07 0.49 4.95 18.82 32.21 54.72 4.21 1.54

no graph partitioning 0.09 0.62 5.54 25.77 41.67 66.16 4.95 1.28 246.7s

intra-edges 0.14 0.90 7.21 35.16 53.12 74.72 5.23 0.94 32.4s
+ inter-edges 0.14 0.89 7.21 35.73 53.36 75.32 5.31 0.93 255.8s
+ graph-cut (full) 0.14 0.90 7.23 35.73 53.49 75.48 5.25 0.94 47.6s

full (constant flow) 0.12 0.78 6.66 30.41 47.57 69.90 5.12 1.06 43.2s

By using recursive graph cut to split the connected components into smaller
sets and solving on each remaining component independently, we strike a balance
between the performance of Equation 3 and the efficiency of Equation 2.

While the constant flow assumption also improves the performance of local
features, it is not sufficient to explain all structures. The 3× 3 deformation grid
is better suited and achieves a superior performance across the board.

The runtime of the proposed graph optimization procedure is shown in
Figure 5 for all datasets of our evaluation. The top-right points correspond to
the internet reconstruction from the Local Feature Evaluation Benchmark [10]
(Madrid Metropolis, Gendarmenmarkt, Tower of London). For these datasets,
the runtime remains low (1− 5 minutes depending on the method) compared to
the runtime of the sparse 3D reconstruction (15− 30 minutes).

4 Query refinement

For the localization experiments, we used the tentative matches {u1, u2, . . . } of
each query feature q to refine its location. First, all matches corresponding to
non-triangulated features are discarded since they cannot be used for PnP. For
each remaining match ui ↔ q, let πi be the 3D point associated to ui and ûi be
the reprojection of πi to the image of ui.

Since these matches are purely based on appearance, the points ui might
correspond to different 3D points of the partial model. Each matching 3D location
Π is considered as an independent hypothesis. Given that the reprojected locations
are fixed, the optimization problem can be simplified by considering only one-
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Fig. 5: Graph optimization runtime. The runtime is plotted as a function of
the number of keypoints and matches. We respect the color coding from the main
paper: SIFT [8], SURF [3], D2-Net [5], R2D2 [9], SuperPoint [4], and Key.Net [2].

directional ui → q edges:

min
xq

∑
ui s.t. πi=Π

sui→qρ(‖x̄q − dûi→q‖2)

s.t.‖x̄q‖1 = ‖xq − x0q‖1 ≤ K .

(4)

The central point flow in the above formulation is considered from the reprojected
feature ûi in a view of the partial model to the query feature q.

After removing the robustifier and supposing that the two-view displacements
are always smaller than K, the problem can be rewritten as follows:

min
xq

∑
ui s.t. πi=Π

sui→q‖x̄q − dûi→q‖2 . (5)

This formulation has a closed-form solution:

xΠq = x0q +

∑
ui s.t. πi=Π

sui→qdûi→q∑
ui s.t. πi=Π

sui→q
. (6)

Thus, for each query feature q with triangulated tentative matches, we obtain
one or more refined 2D-3D correspondences (xΠq , Π) which can be used for pose
estimation.

5 Training dataset

As mentioned in the main paper, several steps were taken to improve the quality
of the training data extracted from MegaDepth [7].

Scene filtering. We discarded 16 scenes due to inconsistencies between sparse
and dense reconstructions. This was done automatically using the following
heuristic: from each scene, 100000 random pairs of matching 2D observations
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part of the 3D model were selected; for each such pair (k1, k2), the Multi-View

Stereo (MVS) depth was used to warp k1 to the other image obtaining k̂2; a

keypoint is inconsistent if its reprojection k̂2 is more than 12 pixels away from
its feature position k2, i.e., |k̂2 − k2| > 12. The following scenes were removed for
having a low number of consistent points: 0000, 0002, 0011, 0020, 0033, 0050,
0103, 0105, 0143, 0176, 0177, 0265, 0366, 0474, 0860, 4541.

Depth consistency. We enforce depth consistency to make sure that the
central pixel is not occluded. The MVS depth D1 of a source image is used to
back-project a keypoint k1 to 3D and obtain p. We then reproject this 3D point
to the target image to obtain k̂2 and depth d. The depth consistency verifies that
the MVS depth from the second image D2 is consistent with the 3D point p, i.e.,
|D2(k̂2)− d| < 10−2.
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Table 3: ETH3D triangulation evaluation - Indoors. We report triangula-
tion statistics on each indoor dataset for methods with and without refinement.

Dataset Method
Comp. (%) Accuracy (%)

Method
Comp. (%) Accuracy (%)

1cm 2cm 5cm 1cm 2cm 5cm 1cm 2cm 5cm 1cm 2cm 5cm

Deliv. Area
44 images

SIFT 0.06 0.34 2.29 61.59 74.40 86.98 SURF 0.03 0.20 1.35 53.91 70.15 83.18
SIFT + ref. 0.09 0.44 2.66 71.65 82.47 91.64 SURF + ref. 0.06 0.30 1.76 68.67 80.26 89.72

D2-Net 0.08 0.53 3.53 30.99 47.16 67.35 R2D2 0.17 0.86 5.26 52.09 66.80 82.29
D2-Net + ref. 0.40 1.93 9.87 65.00 77.26 88.51 R2D2 + ref. 0.27 1.11 5.81 70.57 81.63 91.29

S 0.15 0.80 5.36 56.80 71.42 85.10 Key.Net 0.05 0.28 1.78 52.08 69.11 85.33
SP + ref. 0.22 1.07 6.36 74.39 85.36 93.89 Key.Net + ref. 0.09 0.38 2.15 74.01 84.16 92.56

Kicker
31 images

SIFT 0.27 1.29 5.64 71.78 82.69 91.63 SURF 0.22 1.08 4.78 65.20 77.94 90.31
SIFT + ref. 0.33 1.44 5.92 77.32 86.61 93.90 SURF + ref. 0.31 1.34 5.31 77.43 86.12 93.82

D2-Net 0.20 1.16 6.18 38.41 56.54 75.83 R2D2 0.46 1.87 8.41 68.08 80.30 89.91
D2-Net + ref. 0.87 3.51 11.20 69.53 79.72 88.16 R2D2 + ref. 0.56 2.12 8.89 75.12 84.28 91.48

SP 0.44 2.08 9.24 67.88 79.43 89.01 Key.Net 0.18 0.84 4.28 62.94 79.51 90.44
SP + ref. 0.57 2.46 10.05 79.23 87.04 92.01 Key.Net + ref. 0.25 1.07 4.85 72.73 84.31 92.92

Office
26 images

SIFT 0.11 0.53 2.72 75.48 84.81 93.30 SURF 0.06 0.26 1.36 70.50 86.47 95.17
SIFT + ref. 0.12 0.55 2.64 77.27 86.98 94.69 SURF + ref. 0.07 0.34 1.58 70.72 85.57 96.01

D2-Net 0.12 0.76 3.76 38.78 57.62 82.58 R2D2 0.33 1.45 6.02 54.97 70.53 87.52
D2-Net + ref. 0.54 2.08 6.21 65.46 79.30 91.47 R2D2 + ref. 0.42 1.66 6.53 61.07 75.67 89.38

SP 0.27 1.19 5.27 75.36 85.47 95.46 Key.Net 0.11 0.53 2.73 63.14 77.22 90.43
SP + ref. 0.34 1.37 5.46 84.05 91.69 96.96 Key.Net + ref. 0.17 0.71 3.19 80.63 90.29 95.87

Pipes
14 images

SIFT 0.06 0.27 1.11 73.23 80.52 87.53 SURF 0.02 0.10 0.52 66.90 74.19 90.30
SIFT + ref. 0.08 0.34 1.50 80.66 86.61 93.52 SURF + ref. 0.03 0.14 0.64 77.65 84.04 91.84

D2-Net 0.14 0.76 3.53 54.80 76.15 91.93 R2D2 0.22 0.97 4.83 68.50 79.42 87.92
D2-Net + ref. 0.59 2.08 5.69 87.10 93.23 97.50 R2D2 + ref. 0.31 1.19 5.21 75.22 82.71 88.68

SP 0.41 1.77 7.30 85.31 90.70 96.23 Key.Net 0.05 0.24 1.27 76.85 87.68 93.31
SP + ref. 0.55 2.17 8.25 91.15 94.15 96.07 Key.Net + ref. 0.07 0.30 1.55 82.15 92.89 95.36

Relief
31 images

SIFT 0.30 1.35 5.19 81.88 91.02 96.29 SURF 0.09 0.46 2.20 73.72 86.39 94.79
SIFT + ref. 0.35 1.46 5.43 86.59 92.80 96.61 SURF + ref. 0.13 0.55 2.40 83.11 89.60 95.07

D2-Net 0.45 2.51 9.29 46.72 67.65 88.16 R2D2 0.52 2.16 9.86 71.12 85.64 95.50
D2-Net + ref. 1.82 6.45 16.58 87.71 92.03 95.33 R2D2 + ref. 0.70 2.48 10.45 87.07 93.13 96.89

SP 0.49 2.25 9.17 77.73 88.05 95.52 Key.Net 0.14 0.66 3.23 65.82 80.47 92.78
SP + ref. 0.60 2.49 9.75 91.01 94.82 97.07 Key.Net + ref. 0.18 0.74 3.41 83.26 89.70 94.99

Relief 2
31 images

SIFT 0.16 0.80 3.74 76.67 86.48 93.35 SURF 0.05 0.29 1.41 64.15 82.25 93.02
SIFT + ref. 0.20 0.89 4.00 83.77 91.19 95.64 SURF + ref. 0.08 0.37 1.62 80.24 89.38 94.64

D2-Net 0.25 1.48 7.63 46.03 64.57 84.66 R2D2 0.49 2.10 10.16 74.70 86.28 94.43
D2-Net + ref. 1.36 5.24 16.12 86.58 91.56 95.01 R2D2 + ref. 0.67 2.47 10.84 88.42 93.04 96.73

SP 0.32 1.58 7.80 77.21 88.20 94.85 Key.Net 0.11 0.58 3.00 59.26 76.71 93.30
SP + ref. 0.41 1.83 8.42 89.62 94.49 97.05 Key.Net + ref. 0.16 0.70 3.32 79.91 90.00 95.35

Terrains
42 images

SIFT 0.44 1.46 4.60 89.51 93.47 96.76 SURF 0.11 0.46 2.14 70.22 75.98 80.49
SIFT + ref. 0.50 1.60 5.01 90.14 93.81 96.29 SURF + ref. 0.15 0.58 2.55 76.13 82.15 85.45

D2-Net 1.99 5.59 15.11 72.96 84.66 92.26 R2D2 1.49 4.87 15.15 77.45 85.81 92.74
D2-Net + ref. 4.51 10.40 25.10 88.34 92.13 95.37 R2D2 + ref. 1.71 5.21 15.81 85.44 89.72 93.33

SP 2.07 5.82 17.89 86.51 93.60 96.93 Key.Net 0.51 1.64 4.77 85.47 92.35 95.69
SP + ref. 2.30 6.20 18.58 92.77 95.80 97.74 Key.Net + ref. 0.58 1.78 5.05 90.91 93.30 96.09



Multi-View Optimization of Local Feature Geometry 11

Table 4: ETH3D triangulation evaluation - Outdoors. We report triangula-
tion statistics on each outdoor dataset for methods with and without refinement.

Dataset Method
Comp. (%) Accuracy (%)

Method
Comp. (%) Accuracy (%)

1cm 2cm 5cm 1cm 2cm 5cm 1cm 2cm 5cm 1cm 2cm 5cm

Courtyard
38 images

SIFT 0.08 0.47 3.72 67.94 81.80 92.04 SURF 0.06 0.31 1.88 66.40 80.04 89.58
SIFT + ref. 0.10 0.56 4.03 75.17 86.01 94.00 SURF + ref. 0.08 0.41 2.25 79.96 87.53 94.03

D2-Net 0.03 0.24 2.07 22.63 38.53 61.33 R2D2 0.07 0.37 2.73 45.72 62.08 79.61
D2-Net + ref. 0.21 1.14 5.98 66.78 79.04 89.40 R2D2 + ref. 0.10 0.52 3.33 63.91 78.18 90.29

SP 0.13 0.79 5.04 45.36 60.61 77.84 Key.Net 0.02 0.12 0.83 41.60 62.78 79.38
SP + ref. 0.21 1.12 6.68 63.98 77.69 88.95 Key.Net + ref. 0.03 0.16 0.99 63.54 77.83 89.96

Electro
45 images

SIFT 0.03 0.15 0.94 63.76 78.46 88.84 SURF 0.01 0.07 0.48 47.54 65.22 81.48
SIFT + ref. 0.03 0.18 1.05 65.82 79.19 90.11 SURF + ref. 0.02 0.11 0.68 62.75 75.20 87.06

D2-Net 0.03 0.19 1.50 30.30 45.29 66.46 R2D2 0.12 0.57 3.66 57.32 73.33 87.98
D2-Net + ref. 0.19 0.95 4.99 68.36 79.57 89.56 R2D2 + ref. 0.17 0.72 4.00 70.96 82.32 91.46

SP 0.06 0.34 2.45 60.66 75.89 89.26 Key.Net 0.02 0.11 0.83 45.09 65.80 82.31
SP + ref. 0.09 0.44 2.77 76.96 87.29 93.75 Key.Net + ref. 0.03 0.17 1.01 65.93 81.83 91.56

Facade
76 images

SIFT 0.06 0.36 3.08 36.04 52.10 73.28 SURF 0.05 0.36 3.18 25.17 41.25 63.75
SIFT + ref. 0.09 0.50 3.82 45.19 62.32 82.38 SURF + ref. 0.11 0.66 4.71 43.41 63.28 83.43

D2-Net 0.02 0.18 2.26 7.56 14.21 29.90 R2D2 0.05 0.28 2.17 25.07 40.83 64.42
D2-Net + ref. 0.16 1.01 8.18 34.86 53.32 76.02 R2D2 + ref. 0.08 0.42 2.91 37.34 56.66 78.81

SP 0.07 0.49 4.95 18.82 32.21 54.72 Key.Net 0.01 0.06 0.58 15.21 25.12 49.91
SP + ref. 0.14 0.90 7.23 35.73 53.49 75.48 Key.Net + ref. 0.01 0.08 0.74 29.77 43.53 71.33

Meadow
15 images

SIFT 0.01 0.04 0.35 60.25 78.01 89.47 SURF 0.00 0.01 0.10 30.77 63.64 84.62
SIFT + ref. 0.01 0.05 0.40 49.26 73.95 87.12 SURF + ref. 0.00 0.02 0.13 55.56 65.31 80.70

D2-Net 0.00 0.03 0.35 21.89 34.05 57.35 R2D2 0.02 0.14 0.95 50.23 70.77 87.10
D2-Net + ref. 0.03 0.17 1.19 49.89 62.62 77.82 R2D2 + ref. 0.03 0.17 1.05 63.15 81.45 91.74

SP 0.02 0.12 1.06 51.05 68.91 88.18 Key.Net 0.00 0.01 0.06 46.67 56.25 64.71
SP + ref. 0.03 0.16 1.21 66.67 78.85 88.02 Key.Net + ref. 0.00 0.01 0.07 51.72 64.52 85.71

Playground
38 images

SIFT 0.15 0.80 4.86 66.57 78.10 90.58 SURF 0.03 0.18 1.14 57.25 73.61 86.05
SIFT + ref. 0.18 0.91 5.27 70.70 81.76 91.73 SURF + ref. 0.06 0.27 1.57 74.60 83.76 92.70

D2-Net 0.05 0.31 2.42 28.01 46.88 69.61 R2D2 0.26 1.28 7.71 63.69 78.08 91.31
D2-Net + ref. 0.46 2.01 8.19 71.63 83.73 93.60 R2D2 + ref. 0.37 1.58 8.29 78.03 88.76 96.53

SP 0.19 0.97 5.63 59.09 72.42 86.01 Key.Net 0.03 0.15 1.26 45.61 59.18 80.10
SP + ref. 0.28 1.29 6.83 70.30 79.84 90.09 Key.Net + ref. 0.04 0.22 1.54 64.06 78.65 91.32

Terrace
23 images

SIFT 0.04 0.20 1.66 55.32 70.28 83.23 SURF 0.01 0.06 0.56 38.13 54.91 72.80
SIFT + ref. 0.05 0.26 1.93 63.53 78.10 88.41 SURF + ref. 0.02 0.10 0.75 61.00 72.97 84.68

D2-Net 0.02 0.19 2.21 17.73 31.53 55.85 R2D2 0.12 0.64 4.46 50.46 69.33 86.43
D2-Net + ref. 0.22 1.24 8.26 62.92 75.78 87.34 R2D2 + ref. 0.19 0.84 4.90 69.73 81.24 91.69

SP 0.10 0.56 4.04 63.03 77.40 88.71 Key.Net 0.02 0.10 0.96 41.31 58.29 77.42
SP + ref. 0.14 0.72 4.75 77.76 87.87 93.94 Key.Net + ref. 0.03 0.14 1.13 58.70 70.11 83.46
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