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Efficient Approach for Sinusoidal Frequency
Estimation of Gapped Data
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Abstract—The problem of frequency estimation for noisy
sinusoidal signals from multiple segments or channels, which
are referred to as gapped data, is addressed. Based on linear
prediction and weighted least squares techniques, an iterative
relaxation-based frequency estimator is devised and analyzed.
The proposed algorithm is also extended to harmonically related
frequencies. Computer simulations are conducted to compare
the estimation performance of the developed approach with an
existing multichannel frequency estimator and Cramér-Rao lower
bound.

Index Terms—Frequency estimation, gapped data, multichannel
parameter estimation, weighted least squares.

I. INTRODUCTION

noisy data has attracted considerable attention [1][2]
because of its important applications in many fields such as
astronomy, radar, sonar, digital communications, biomedical
engineering, speech and music analysis as well as instrumen-
tation and measurement. The crucial step is to estimate the
frequencies because they are nonlinear functions in the received
data. Once the frequency estimates are obtained, the remaining
parameters can then be computed straightforwardly. Although
numerous frequency estimators have been proposed in the
literature, limited attention has been paid to the scenarios of
multiple segments or channels. The former occurs when the
data sequence acquired by a single receiver has gaps which are
due to the failure of the measuring device or the impossibility
of performing measurements for certain periods such as in
astronomical and radar applications [1][2]. On the other hand,
a representative application example for the latter is quantifica-
tion of magnetic resonance spectroscopy (MRS) signals from
multiple detector coils [3]. Basically, the signal models in both
cases are identical although the first and second correspond to
the temporal and spatial domains, respectively, and we refer
them to as gapped data [1][2]. The main contribution of this
work is to develop an efficient estimation approach for gapped
sinusoidal signals.

T HE problem of sinusoidal parameter estimation from
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Consider the temporal gapped data scenario, the signal of the
kth segment at time n can be modeled as

LTkn = Sk,n + dk,n,
M
Sk,n = E Alm COS(UJmTL + ¢km)

m=1

ey

withk=1,..., Kandn=1,..., N;. The K, N and M are
the number of segments, size of the kth segment and number
of sinusoids, respectively. It is assumed that M is known a
priori or accurately estimated by Akaike information criterion
or minimum description length while { Ny} are allowed to be
distinct among segments. The mth frequency is represented as
wm € (0, ), and the amplitude and phase of the mth sinusoid in
the kth segment are denoted by a, .., > 0 and ¢y, ., € (0, 27],
respectively. Note that for notation simplicity, we have aligned
the time index m in all segments by absorbing the effect in
the phase parameters. The noises {g} are assumed uncor-
related zero-mean white Gaussian random processes with un-
known variances o2, and extension to general Gaussian distri-
bution is straightforward as long as the noise covariance matrix
is known up to a multiplying constant. Our objective is to es-
timate wy,, m = 1,2,...,M given z ,, k = 1,..., K, and
n = 1, e ,N k-

The rest of this letter is organized as follows. Based on linear
prediction (LP) property of sinusoids and weighted least squares
(WLS) technique, an accurate frequency estimator for gapped
data is developed in Section II. The devised estimation algo-
rithm can be considered as an extension of our previous work
for the complete-data case [4]. The special case of harmonic si-
nusoidal signals, which corresponds to speech and music appli-
cations [5]—[7], is studied in Section III. Simulation results are
presented in Section IV to evaluate the performance of the pro-
posed approach by comparing with the multichannel parametric
Hankel-(matrix) singular value decomposition (MC-P-HSVD)
method [3] and Cramér-Rao lower bound (CRLB). Finally, con-
clusions are drawn in Section V.

II. ALGORITHM DEVELOPMENT
Based on LP property of {sj »}, we have

M-1

E a;(Skn—i + Skn—2Mm+i) + arSkn—nr =0
i=0
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withag =landn =2M +1,..., N, where a;,: =1,.... M

are called LP coefficients. The frequencies {w,, } are related to
the following polynomial:

M-1
Z a; (ZZ + 221\1_1) + aMzM =0 3
i=0

whose roots are z = exp(tjwy, ), m = 1,..., M. With the use

of z = exp(jw) and multiplying both sides of (3) by 2=,

{wm} can be determined in a more straightforward manner,
namely, their values are given by the roots of f(w):

M-1
flw) =2 Z a; cos (M —i)w) + an. %)
1=0

Using (2), a LP error vector for the kth segment, denoted by
ey, can be set up:

ek:Xka—bk7 k:l//K (5)

where (see the equation at the bottom of the page). Here, T is
the transpose operator. The WLS cost function is then

e Wye, (6)

where W, is a weighting matrix and its optimal form is [4]
-1

Wi =02 {E (exel)} " = (AzAT) 7

with F represents the expectation operator and

A= Toeplitz([l O1x(N—2Mm—1) ]T7

X[l a1 apr  apr—1

1 Oix(n—2m-1) ]) .

Here ~! stands for matrix inverse, Oy, is the u X v zero matrix,
Toeplitz(u, vT) is the Toeplitz matrix with u and v’ being
the first column and first row, respectively. Stacking X, and
by, k = 1,2,..., K to form X and b, respectively, the WLS
estimate of a, denoted by a, is obtained by extending (6) [8]:

a4 = argmine” We = (XTWX) ' X"Wb

K -1 /K
= (Z XZWka) (Z szkbk) )]

k=1 k=1
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TABLE I
ALGORITHM FOR FREQUENCY ESTIMATION OF GAPPED DATA

(i) Set Wy =1In,,k=1,2,---, K where I, denotes the u x u identity matrix
(ii) Estimate a using (8)

(iii) Construct Wy, k = 1,2,--- | K, using (7)

(iv) Repeat Steps (ii) and (iii) until parameter convergence

(v) Substitute a into (3) or (4) and solve the roots to obtain @, m =1,2,--- , M

blkdiag(W1, ..., W) with blkdiag(-) denotes block diag-
onal matrix. As the weighting matrices Wy, k = 1,2,... K,
depend on the unknown a, we follow [4] to estimate a in an
iterative relaxation manner and the procedure is summarized
in Table I.

To analyze the variances of the frequency estimates, we
first notice that when the data length and signal-to-noise ratio
(SNR) are sufficiently large, the mean and covariance matrix of
a, E{a} and cov(a), can be approximated as [4]:

E{a}~a )
and

cov(a) ~ o (STWS) (10)
where S is the noise-free version of X and W is assumed the
ideal form which is characterized by the true {a;}. Assuming
that f(w) is sufficiently smooth around w = w,, and the cor-
responding estimate w,,, is located at a reasonable proximity of
Wm, the variance of w,,, var(w,, ), is computed as [9]:

E{f*(w)}
E{(f"(@)*}omw,,

where {a;} are replaced by {a;} and their first-order and
second-order statistics are obtained from (9) and (10). Al-
though there is no closed-form expression for (11), empirical
studies show that (11) is identical to the CRLB for {w,, } (See
Appendix).

(11)

var(w, ) ~

III. MODIFICATION FOR HARMONIC FREQUENCIES

In this section, the proposed algorithm is applied to funda-
mental frequency estimation [5]-[7] which is important for
music and speech signal processing. Though both [5] and the
proposed algorithm utilize WLS technique, we consider real
sinusoids instead of complex cisoids. Moreover, results of [5]
indicates its suboptimality while it is shown in Section IV
that the performance of the proposed algorithm can attain the
CRLB when the SNR is sufficiently high. Unlike Section III,

_ _ T 71T _ . . . . .
where e = XTa - b X = [X] Xgl" b = the frequencies considered here are in harmonic relation, that
[bT b%]" and W = o?{E(ee”)} is, wy = mwi, m = 1,2,..., M with w is the fundamental
Tk,N,—1 + Tk, N, —2M+1 Tl,N,—M+1 T Th,N.—M—-1  Tk,N.—M
Tp,N,—2 + Tk N, —2M Tp,N,—M + TN, —M-2 Tk N,—M-1
Xy = )
TroM—1+ Tk2 T, M+1+ T, M1 Ty
T T
b, = — [xk,Nk + Tk,N,—2M Tk,N,—1 + Tk, N,—2M—1 TroM + il?k,1] ,a=lar ao an ] .
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TABLE II
SIMULATION SETTINGS OF Ay,

k
1 2 3 1415
1 1125|1543
2 213 15132
3 2|15 1 1|2
4 3] 2 2 (271

TABLE III
SIMULATION SETTINGS OF ¢,

0.7 1 0.5 2.1

2 11 U R SEH LR M

3 2 |05(29|05|24

4 25511 25 122 s
TABLE IV

W, /7™ IN THE FIRST TEST

m 1 2 3 4

0.1 026|052 0.8

TABLE V
SIMULATION SETTINGS OF NN},

20 | 30 { 50 | 100 | 200

Nk

frequency. In the first stage, we ignore the harmonic structure
of the frequencies and get a set of coarse frequency estimates
using the algorithm in Table I and denote the corresponding
vector by w = [y W)Y such that @y < --- < @pr. In
the second stage, the harmonic relation is exploited to obtain a
fine-tune estimate of w; by solving another WLS cost function:

O = arg ngn'rTR'r = (fTM)_l ¢'Ro (12)
where 7 = — &J, § = |1 e
R = o?{E(rr )}_ (cov (@)™ with cov()

denotes the unknown covariance matrix of w. It is seen
in (12) that the value of o2 is not required as it will be
canceled out. If SNR is sufficiently high, we expect that the
WLS estimate gives optimum performance and thus cov(w)
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is approximately equal to the CRLB matrix of w where

w=[w... wy]f withw; < -+ < wyy. In the Appendix
the CRLB matnx of all unknown parameters, denoted 7y
7 = [w' ("]" where { = [af ¢] ag

o, =[aga ak,M]T and ¢, = [ 1 ¢k,M]

derived and it is employed for the estimation of cov(w). Noting
that the complete CRLB matrix is also parameterized by ay
and ¢y, we suggest to use the least squares (LS) technique to
solve for them as follows. With the estimated fundamental
frequency, we construct a system of linear equations [8]:

kakzxk, kZl,...,K (13)

where (see the equation at the bottom of the page). The LS es-

timate of py, denoted by py, is
b= (GIGL)™

'GTx,. (14)

Based on (14), the estimates of ay, ,,, and ¢y, ,,, are then }k,m =

~2 ~2 n 174 ~
Piom—1+1 Prom and dpm (Pr.2m/Pr.om—1)
where py, ,, is the uth element of p;. Substituting W, &k, and

tan™

(;Aﬁkﬂn into the Fisher information matrix (FIM) of 1, cov(w)
is estimated as the upper left M x M submatrix of the FIM
inverse.

IV. SIMULATION RESULTS

Computer simulations have been conducted to evaluate the
frequency estimation performance of the proposed approach
for gapped sinusoidal signals in additive zero-mean white
Gaussian noise. The algorithm is terminated if the norm of
parameter difference in two successive iterations is less than
0.01. In our study, K = 5, M = 4 and the values of {ay, m}
{¢k,m}, {wm} and Ny are listed in Tables II-V. The SNR is
defined as the average 51gnal power (ASP) divided by o2 where
ASP = 1/2K Em:l Zk:l a3 ., We scale the noises {qxn}
to produce different SNR conditions. The mean square fre-
quency error (MSFE) is employed as the performance measure
to contrast with the MC-P-HSVD algorithm and CRLB. All
results provided are averages of 1000 independent runs.

In the first test, there is no harmonic relationship in the fre-
quency parameters. Fig. 1 shows the MSFEs for {w,, }.Itis seen
that the MSFE performance of the proposed approach is close
to the CRLB when SNR > 6 dB while that of the MC-P-HSVD
algorithm deviates from the CRLB by more than 5 dB. The vari-
ance expression of (11) is also validated for sufficiently high
SNR conditions. In the second test, all the simulation settings
remain unchanged except that the frequencies are harmonically
related and the structure is known a priori so that the two-step
approach is employed in this scenario. The fundamental fre-
quency is set to w; = 0.1w. The MSFE results are shown in

cos(wy) —sin(wy)
cos(Nywy) —sin(New)
P = [k 1cos(¢r1) axsin(dr1)
Xp = [Tr1 T2 A

COS((I)]\,{) — Sin((:)Aj)

cos(Npwpr)  —sin(Ngpwar)

aparcos(Brar) o arsin(gpar)]”
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= [DL DZL,1"
[Ql Qz QK]
D..s = blkdiag ([AIT o71" (AT

where

o
€
I

[ —ay1sin(wy + ¢r1)
Qk = . .
|~k sin(war + drar) =200 a7 8in(2war + droar)
[ cos(wi + ¢r1) cos(2w1 + ¢r1)
A=
L cos(war + pr,nr)  cos(2war + dr,ar)
[ —ag,1sin(wy + ¢r1)
P, =
L —aparsin(war + drar)  —oear sin(2war + droar)

T
a1 ...

—Qp.1 sin(2w1 =+ ¢Sk,1)
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1A% ef")
—20lk,1 Sin(2w1 + ¢k,1)

—Niag,1sin(Nywr + ¢p.1)

—Nyag,ar sin(Nywar + ¢dr,ar)
cos(Nrw1 + ¢r,1)

cos(Nywar + dwar)
—ay 1 sin(Nyw1 + dr1)

—ag, v Sin(Nywar + dr,ar)

x o byWLs
A @, byMC-P-HSVD

CRLB of , y
0, by WLS
©, by MC-P-HSVD

~ - —CRLBOfw,

Mean square frequency error (dB)
/
/

0, by WLS
@, by MC-P-HSVD
CRLB of ®,
0, by WLS
@, by MC-P-HSVD
CRLB of o,
7] | I —— R s L L L L )

-10 -5 0 5 10 15 20 25 30
SNR (dB)

Fig. 1. Mean square error of {w;} versus SNR.

0 o byWLs
= . ——CRLB

Mean square frequency error (dB)
3

10 15 20 2 30
SNR (dB)

Fig. 2. Mean square error of fundamental frequency versus SNR.

Fig. 2 and we observe again that the proposed method gives op-
timum estimation performance for sufficiently high SNR condi-
tion, say, SNR > 16 dB.

V. CONCLUSION

An iterative relaxation-based algorithm has been devised to
estimate the frequencies of gapped sinusoidal signals in additive
noise. The main ideas are to utilize the linear prediction property
of sinusoids and WLS technique. The variances of the frequency
estimates are derived and validated. Algorithm modification to

the periodic signals is achieved by using a second WLS step to
exploit the harmonic relationship. Simulation results show that
the mean square frequency errors of the proposed algorithm are
smaller than those of [3] and able to attain the CRLB when the
signal-to-noise ratio is sufficiently high.

APPENDIX
The probability density functioTn ofx = [xT ... xE]"
where xj, = [Tr1 Tp N, | 1S
—(x—8)T(x -

S)> (A1)
where N = Zszl Ny, and s is the noise-free version of x. The
FIM of 7 is FIM(n) = 1/0>DD? where D = 9s”/on. The
mathematical form of D is given by the equation shown at the
top of the page.

The CRLB of 7 is given by the diagonal elements of the in-
verse of FIM(n).

1
(2m)N/2gN xp < 202
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