
How Do Fixes Become Bugs?

A Comprehensive Characteristic Study on Incorrect Fixes in Commercial and
Open Source Operating Systems

Zuoning Yin‡, Ding Yuan‡, Yuanyuan Zhou†, Shankar Pasupathy∗, Lakshmi Bairavasundaram∗

‡Department of Computer Science, Univ. of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
{zyin2, dyuan3}@cs.uiuc.edu

†Department of Computer Science and Engineering, Univ. of California, San Diego, La Jolla , CA 92093, USA
yyzhou@cs.ucsd.edu

∗NetApp Inc., Sunnyvale, CA 94089, USA
{pshankar, lakshmib}@netapp.com

ABSTRACT
Software bugs affect system reliability. When a bug is ex-
posed in the field, developers need to fix them. Unfor-
tunately, the bug-fixing process can also introduce errors,
which leads to buggy patches that further aggravate the
damage to end users and erode software vendors’ reputa-
tion.

This paper presents a comprehensive characteristic study
on incorrect bug-fixes from large operating system code bases
including Linux, OpenSolaris, FreeBSD and also a mature
commercial OS developed and evolved over the last 12 years,
investigating not only the mistake patterns during bug-fixing
but also the possible human reasons in the development pro-
cess when these incorrect bug-fixes were introduced. Our
major findings include: (1) at least 14.8%∼24.4% of sam-
pled fixes for post-release bugs 1 in these large OSes are
incorrect and have made impacts to end users. (2) Among
several common bug types, concurrency bugs are the most
difficult to fix correctly: 39% of concurrency bug fixes are
incorrect. (3) Developers and reviewers for incorrect fixes
usually do not have enough knowledge about the involved
code. For example, 27% of the incorrect fixes are made by
developers who have never touched the source code files as-
sociated with the fix. Our results provide useful guidelines
to design new tools and also to improve the development
process. Based on our findings, the commercial software
vendor whose OS code we evaluated is building a tool to
improve the bug fixing and code reviewing process.

Categories and Subject Descriptors: D.2.0 [Software
Engineering]: General

General Terms: Reliability

1These only include those fixes for bugs discovered after
software releases.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE’11,September 5–9, 2011, Szeged, Hungary.
Copyright 2011 ACM 978-1-4503-0443-6/11/09 ...$10.00.

Keywords: Incorrect fixes, software bugs, bug fixing, hu-
man factor, testing

1. INTRODUCTION

1.1 Motivation
As a man-made artifact, software suffers from various er-

rors, referred to as software bugs, which cause crashes, hangs
or incorrect results and significantly threaten not only the
reliability but also the security of computer systems. Bugs
are detected either during testing before release or in the
field by customers post-release. Once a bug is discovered,
developers usually need to fix it. In particular, for bugs
that have direct, severe impact on customers, vendors usu-
ally make releasing timely patches the highest priority in
order to minimize the amount of system down time.

Unfortunately, fixes to bugs are not bullet proof since they
are also written by human. Some fixes either do not fix the
problem completely or even introduce new problems. For ex-
ample, in April 2010, McAfee released a patch which incor-
rectly identified a critical Windows system file as a virus [8].
As a result, after applying this patch, thousands of systems
refused to boot properly, had lost their network connections,
or both. In 2005, Trend Micro also released a buggy patch
which introduced severe performance degradation [22]. The
company received over 370,000 calls from customers about
this issue and eventually spent more than $8 million to com-
pensate customers. The above two incidents are not the
only cases in recent history. As a matter of fact, there were
many other similar events [2, 15, 4] in the past which put
the names of big companies such as Microsoft, Apple and
Intel under spotlight.

We had also conducted a study on every security patch
released by Microsoft in its security bulletin [1] since Jan-
uary 2000 to April 2010. Surprisingly, out of the total 720
released security patches, 72 of them were buggy when they
were first released. These patches were expected to fix some
severe problems. Once released, they were usually applied
to millions of users automatically. Therefore, they would
have enormous impacts and damages to end users as well as
software vendors’ reputation.

Mistakes in bug fixes may be caused by many possible
reasons. First, bug fixing is usually under very tight time
schedule, typically with deadlines in days or even hours,

char buf[256] ;

 …... (52 lines omitted)

sprintf(buf, "You have an existing file %s.\
n", …)
sprintf(buf, "You have an existing file
%s", Do you want to rename the existing
keytab (a very long message ?)\n", …)

kerberos.c (FreeBSD)First fix Second fix
char buf[256] ;
char buf[400] ;

 …... (52 lines omitted)

sprintf(buf, "You have an existing file
snprinf(buf, sizeof(buf), "You have an…
%s", Do you want to rename the existing
keytab (a very long message ?)\n", …)

Figure 1: An incorrect fix example from FreeBSD. A

part of the first fix appended a console message with

some additional information, unfortunately introducing

a buffer overflow (The added lines are in bold while the

deleted lines are crossed out).

definitely not weeks. Such time pressure can cause fixers 2

to have much less time to think cautiously, especially about
the potential side-effects and the interaction with the rest
of the system. Similarly, such time pressure prevents testers
from conducting thorough regression tests before releasing
the fix. Figure 1 shows a real world example from FreeBSD,
the original bug fix appended a log message with additional
information. Unfortunately, the fixer did not pay attention
to the buffer length defined 52 lines upwards in the same file
and introduced a buffer overflow.

SOCK_LOCK(so);
if (INP_CHECK_SOCKAF(so, PF_INET)) {
 if (so->so_pcb == NULL) return;
 …...
}

SOCK_UNLOCK(so);

audit_arg.c (FreeBSD)First fix Second fix
SOCK_LOCK(so)
if (INP_CHECK_SOCKAF(so, PF_INET)) {
 if (so->so_pcb == NULL){
 SOCK_UNLOCK(so); return;
 }
 …...
}
SOCK_UNLOCK(so)

Figure 2: An incorrect fix example from FreeBSD. The

first fix tried to fix a data race bug by adding locks,

which then introduced a deadlock as it forgot to release

the lock via SOCK_UNLOCK before return.

Second, bug fixing usually has a narrow focus (e.g., remov-
ing the bug) comparing to general development. As such,
the fixer regards fixing the target bug as the sole objective
and accomplishment to be evaluated by his/her manager.
Therefore, he/she would pay much more attention to the
bug itself than the correctness of the rest of the system.
Similarly, such narrowly focused mindset may also be true
for the testers: Tester may just focus on if the bug symptom
observed previously is gone, but forget to test some other
aspects, in particular how the fix interacts with other parts
and whether it introduces new problems. As shown in Fig-
ure 2, the fixer just focused on removing the data race bug by
adding locks. While the data race bug was removed, the fix
unfortunately introduced a new bug: a deadlock. This dead-
lock was obviously not discovered during regression testing.

Third, the two factors above can be further magnified if
fixers or reviewers are not familiar with the related code.
While an ideal fixer could be someone with the most knowl-
edge about the related code, in reality it may not always
be the case. Sometimes, it may be difficult to know who is
the best person to do the fix. Even if such person is known,
he/she may be busy with other tasks or has moved to other
projects, and is therefore unavailable to perform the fix.
Sometimes, it is due to the development and maintenance
process. Some software projects have separate teams for

2we will refer the developer who fixes the bug as the “fixer”
in the rest of the paper.

developing and maintaining software. All these real world
situations can lead to the case that the fixer does not have
enough knowledge about the code he/she is fixing, and con-
sequently increases the chance of an incorrect fix. This
might help explaining the incorrect fix shown in Figure 3
from the commercial OS we evaluated. When we measure
the fixer’s knowledge based on how many lines he had con-
tributed to the file involved in the patch, we found that he
had never touched this file in the past, indicating that he
may not have sufficient relevant knowledge to fix the bug
correctly.

if (correct_sum())
if (correct_sum() && blk->count())
 blk_clear_flag(blk, F_BLK_VALID);

rescan.c (a commercial OS)First fix Second fix
if (correct_sum() && blk->count())
if (correct_sum() && blk->count()
&&!blk_scan_exist(blk,BLKS_CALC))
 blk_clear_flag(blk, F_BLK_VALID);

Figure 3: An incorrect fix that hadn’t fixed the problem

completely. This example is from the large commercial OS

we evaluated. The first fix tried to address a semantic

bug by modifying the if condition. Unfortunately, the

revised condition was still not restrictive enough.

Regardless what is the reason for introducing these errors
during bug fixing and why they were not caught before re-
lease, their common existences and severe impacts on users
and vendors have raised some serious concerns about the
bug fixing process. In order to come up with better process
and more effective tools to address this problem, we need to
first thoroughly understand the characteristics of incorrect
fixes, including:

• How significant is the problem of incorrect fixes? More
specifically, what percentages of bug fixes are incorrect?
How severe are the problems caused by incorrect fixes?

• What types of bugs are difficult to fix correctly? Are some
types of bugs just more difficult to fix correctly so that fix-
ers, testers and code reviewers for these types of bug fixes
should pay more attention and effort to avoid mistakes?

• What are the common mistakes made in bug fixes? Are
there any patterns among incorrect bug fixes? If there are
some common patterns, such knowledge would help alert-
ing developers to pay special attention to certain aspects
during bug fixing. Additionally, it may also inspire new
tools to catch certain incorrect fixes automatically.

• What aspects in the development process are correlated to
the correctness of bug fixing? For example, does fixers
and reviewers’ relevant knowledge have a high correlation
to incorrect fixes?

A few recent studies had been conducted on certain as-
pects of incorrect fixes [6, 36, 33, 13]. For example, Śliwerski
et al. [36] proposed an effective way to automatically locate
fix-inducing changes and studied the incorrect fix ratios in
Eclipse and Mozilla. They found developers are easier to
make mistakes during bug fixing on Friday. Purushothaman
et al. [33] studied the incorrect fix ratio in a switching system
from Lucent, but their focus was on the impact of one-line
changes. Gu et al. [13] studied the incorrect fix ratio in three
Apache projects, but they focused on providing a new patch
validation tool.

While these studies have revealed some interesting find-
ings, most of them focused more on incorrect fix ratios and
studied only open source code bases, providing one of the
first steps toward understanding incorrect bug fixes. This

Importance of Incorrect Fixes Implications
(1) At least 14.8%∼24.4% of examined fixes for post-release
bugs are incorrect. 43% of the examined incorrect fixes can
cause crashes, hangs, data corruptions or security problems.

Although the ratio of incorrect fixes is not very high, the impact
of the incorrect fixes indicate that the problem of incorrect fixes
is significant and worth special attention.

(2) Among common types of bugs and based on our samples,
fixes on concurrency bugs (39% of them) are most error-prone,
followed by semantic bugs (17%) and then memory bugs (14%).

Developers and testers should be more cautious when fixing
concurrency bugs.

Incorrect fixes to Concurrency bugs Implications
(3) Fixes on data race bugs can easily introduce new deadlock
bugs or do not completely fix the problem.

The synchronization code added for fixing data races need to
be examined in more detail to avoid new deadlock. Knowing
all the access locations to the shared objects is the key to fix
data race completely.

(4) Fixes to deadlock bugs might reveal bugs which were hidden
by the previous deadlock.

Fixers need to further examine the path after deadlock in case
there are some bugs hidden due to the existence of the deadlock.

Incorrect fixes to Memory bugs Implications
(5) Fixing buffer overflows by statically increasing the buffer
size is still vulnerable to future overflows. Fixing buffer over-
flows by dynamically allocating memory could introduce null
pointer dereference bugs if the allocated memory is used with-
out check.

It is better to use safe string functions (e.g., snprintf) or bound
checking to fix buffer overflow. Fixers need to be aware of the
potential memory leaks and the failure of allocation when fixing
buffer overflows by dynamically allocating memory.

(6) Fixing memory leaks can introduce dangling pointer bugs
when freeing the memory without nullifying the pointer, and
memory corruption when freeing something that should not be
freed, or do not solve the problem completely when forgetting
to free the members of a structure.

It is good to nullify the pointer after freeing the memory. It is
also important to clearly understand what and when should be
freed to avoid overreaction. Fixers should remember to free the
structure members when freeing a complex structure to avoid
an incomplete fix.

Human reasons to incorrect fixes Implications
(7) Comparing to correct fixes, the developers who introduced
incorrect fixes have less knowledge (or familiarity) with the
relevant code. 27% of the incorrect fixes are even made by
fixers who previously had never touched the files involved in
the fix.

Code knowledge has influence on the correctness of bug fixes.
It is dangerous to let developers who are not familiar with the
relevant code to make the fix.

(8) Interestingly, in most of the cases, the developers who are
most familiar (5∼6 times of the actual fixers) with the relevant
code of these incorrect fixes are still working on the project,
but unfortunately were not selected to do the fixes.

Having a right software maintenance process and selecting the
right person to fix a bug is important.

(9) The code reviewers for incorrect fixes also have very poor
relevant knowledge.

It is also important to select a developer who is familiar with
the relevant code as the code-reviewer.

Table 1: Our major findings of real world incorrect bug fix characteristics and their implications. Please take our

methodology and potential threats to validity into consideration when you interpret and draw any conclusions.

paper goes much beyond prior work, studying both com-
mercial and open source, large operating system projects,
and investigating not only incorrect fix percentages, but also
other characteristics such as mistake patterns during bug
fixing, types of bugs that are difficult to fix correctly, as
well as the potential reasons in the development process for
introducing incorrect bug fixes.

1.2 Our Contribution
To the best of our knowledge, this paper presents one

of the most comprehensive characteristic studies on incor-
rect fixes from large OSes including a mature commercial
OS developed and evolved over the last 12 years and three
open-source OSes (FreeBSD, OpenSolaris and Linux), ex-
ploring not only the mistake patterns but also the possible
human reasons in the development process when these in-
correct fixes were introduced. More specifically, from these
four OS code bases, we carefully examined each of the 970
randomly selected fixes for post-release bugs and identified
the incorrect fixes. To gain a deeper understanding of what
types of bugs are more difficult to fix correctly as well as
the common mistakes made during fixing those bugs, we
further sampled another set of 320 fixes on certain impor-
tant types of bugs. The details of our methodology and
potential threats to validity are described in Section 2.

Our major findings are summarized in Table 1. These
findings provide useful guidelines for patch testing and vali-

dations as well as bug triage process. For example, motivated
from our findings, the large software vendor whose OS code
was evaluated in our study is building a tool to improve its
bug fixing and code review process.

While we believe that the systems and fixes we examined
well represent the characteristics in large operating systems,
we do not intend to draw any general conclusions about all
the applications. In particular, we should note that all of the
characteristics and findings in this study are associated with
the types of the systems and the programming languages
they use. Therefore, our results should be taken with the
specific system types and our methodology in mind.
Paper outline: In Section 2, we discuss the methodology
used in our study and threats to validity. Section 2. After
that we present our detailed results on the incorrect fix ratio
in Section 3. Then we further study which types of bugs are
more difficult to fix and what common mistakes could be
made in Section 4. After that we study the human factors
which could lead to incorrect fixes in Section 5. Section 6 is
the related work and we conclude in Section 7.

2. METHODOLOGY
In this section, we first discuss the software projects used

in our study (Section 2.1), the techniques to find incorrect
fixes (Section 2.2), how we select bug samples (Section 2.3)
and how we study the influence of human factors on bug

fixing(Section 2.4). At the end, we talk about the threats
to the validity of our study (Section 2.5).

2.1 Software projects under study

App LoC Open src?

The commercial OS confidential N
FreeBSD 9.97M Y
Linux 10.94M Y
OpenSolaris 12.99M Y

Table 2: The four OSes that our study uses.

Table 2 lists the four code bases we studied, including a
commercial, closed-source OS from a large software vendor 3

and three open-source OSes (FreeBSD, Linux and OpenSo-
laris). We chose to study OS code because they are large,
complex and their reliability is critically important. Addi-
tionally, as OS code is developed by many programmers,
contains lots of components, uses a variety of data struc-
tures and algorithms, it could provide us a broad base to
understand incorrect fix examples.

The four OSes have different architectures. The commer-
cial OS is especially designed for high-reliability systems
with many enterprise customers like big financial compa-
nies and government agencies. It has evolved for almost
12 years. The other three open-source OSes have differ-
ent origins. FreeBSD originates from academia (Berkeley
Unix). OpenSolaris originates from a commercial OS (So-
laris). Linux completely originates from the open-source
community. We think the variety in data sources would
help us find general software laws or interesting specificities.

These OSes usually have multiple branches (series) in their
OS families. We focus on those branches which are both sta-
ble and widely deployed. For the commercial OS, we chose
the branch which is most widely deployed. For FreeBSD,
we chose FreeBSD 7 series. For Linux, we chose Linux 2.6
series. For Opensolaris, it has a different release model so
we just studied the releases since its 2008.5 version.

In order to further preserve the privacy and reputation for
the software vendor, we anonymized the results in Section 3,
4 and 5. The four code bases will be just referred as A, B,
C and D with the mapping information hidden. We know
that such anonymization may prevent us from making some
interesting comparison between open source and commercial
code bases, but fortunately we can still make many other
findings like the ones summarized in Introduction.

2.2 Finding incorrect fixes
The definition of incorrect fix: A bug fix fx is defined
as an incorrect fix if there is another following bug fix fy

that fixes either a new problem introduced by fx, or the
original problem that was not completely fixed by fx.

Note that we consider only fixes to bugs, not any gen-
eral or non-essential changes [16] (e.g., feature addition or
renaming). This is identified by checking whether a fix is
associated with a bug report. This screening criteria is im-
portant to the fidelity of our study since bug reports often
contain rich information which is important for us to under-
stand the fix. It is hard to obtain a complete picture from
the bug fix itself alone.

Unfortunately, the link between fixes and bug reports is
not always systematically maintained [5]. For the commer-
cial OS and OpenSolaris, the SCM (software configuration
3Due to confidentiality agreement, we can neither mention
the company’s name nor the LoC of its OS.

management) systems record the link between every bug re-
port and every change. However, for FreeBSD and Linux,
such links are only documented voluntarily by developers
in an unstructured way. To identify such links, we use a
method similar to the methods used in [11, 36, 40]. The
main idea is to leverage the verbal information in the bug
reports or change logs to reconstruct the links. For example,
developers may write “the bug is fixed by change 0a134fad”
in a bug report. Then we can link the bug to the change
0a134fad.

After the above process, we will have a set of bug fixes
linked with bug reports. We then randomly select a tar-
get number of bug fixes and then semi-automatically check
whether each one is an incorrect fix or not. We call the pro-
cess semi-automatic because we use a two-step process: first
step automatically selects potential incorrect fix candidates,
while the second step manually verifies each candidate.

Two techniques are used in the first step to automatically
identify potential incorrect fix candidates. First, we look at
the source code overlap between changes. This technique is
similar to the methods used in [36, 33]. If there is source
code overlap between two changes, then the latter change
may be made to correct the previous change. More specif-
ically, if a latter change fy overwrites or deletes the code
written in the previous change fx or fy just adds code in
the proximity (+/-25 lines) of fx, we regard fx as an in-
correct fix candidate for manual examination. The second
technique is to search for specific keywords in the bug report
and change log of each fix that may suggest an incorrect fix.
For example, if we find “this patch fixed a regression intro-
duced by the fix in Bug 12476” in the bug report linked with
fy , we regard the fix in “Bug 12476” as an incorrect fix can-
didate. In general, we find the first technique to be more
comprehensive.

Please note that the first step is only identifying candi-
dates. We still need to manually examine each candidate,
which is the unique challenge in our study. We examined all
the relevant code related to each fix. We also examined the
bug reports and change logs to get proof from developer’s
explanation. For some fixes, we even discussed with devel-
opers of these systems to ensure the correct understanding
on them. Then based on all the evidences we got, we finally
decide whether a fix is incorrect or not.

Also note that the first step may prune a few incorrect
fixes out, especially those incorrect fixes whose next fixes
in a completely different location without any overlap at all
(i.e. beyond the +/-25 lines proximity). But we expect such
incorrect fixes are very rare as two subsequent fixes to the
same problem usually has good locality in terms of code
changes. And we did try to relax the proximity requirement
to be “within” the same file but did not find more incorrect
fixes.

2.3 The target bugs to study
In this study we used two sets of bug fixes with different

focuses.
Sample set 1: To get this sample set, we first randomly
sampled a total of 2,000 bug fixes (500 from each OS) that
are associated with bug reports. From these 2,000 bug fixes,
we further select only those fixes to post-release bugs (970
in total). Selecting such post-release bug fixes allows us
to focus on fixes to bugs that made high impacts to both
customers and vendors. Post-release bugs are selected after

the random sampling instead of before the sampling because
the manual effort in verifying all bug fixes would be too huge.
We then use the process described in the previous subsection
to identify and study incorrect fixes.
Sample set 2: This sample set is used to further zoom in
certain bug types observed in sample set 1 whose fixes are
most error-prone. Specifically, we chose to study the fixes to
memory leak, buffer overflow, data race and deadlock bugs.
However, it is difficult to reuse the bugs in sample set 1,
since there are not statistically sufficient number of bug fixes
for these types of bugs. Therefore, we deliberately sampled
more bug fixes focusing on these four types. Specifically, we
used all the related keywords to search for the bug fixes of
a specific type. Keyword search is enough to get these bug
fixes since there are only limited ways to name them. Then
we randomly selected 20 from each type for each code base.
In total, we sampled 320 fixes which provide us a richer
base-set to study the incorrect fixed patterns. This set is
only used in Section 4.

2.4 Measuring code knowledge
To understand why a programmer cannot fix a bug cor-

rectly, we also dive deeper into his/her knowledge about the
relevant code. In this study, we measure code knowledge by
checking the cumulative “authorship” of each line of code at
a particular version, which can be systematically measured.
From SCM, we obtain the authorship of each line for a file at
a given version by using commands such as “svn annotate”.
Assume a developer d, a file F, a function f and a version v,
we calculate code knowledge at two levels of granularity:

K_Filed,F,v =
The LoC written by d for F at v

The total LoC in F at v

K_Funcd,f,F,v =
The LoC written by d for f in F at v

The total LoC in the f at v

We use percentage as the unit of K_File and K_Func.
For example, “K_Filed,F,v=75%” means 75% of code lines
in F at version v are written by d. d may write these code
lines in any version that is not later than v. Both fixers’ and
reviewers’ knowledge are measured in our study in this way.

2.5 Threats to validity
Real world empirical studies are all subject to validity

problems, so is our study. Potential threats to the validity of
our study are the representativeness of the selected software
projects, the representativeness of the incorrect fix samples,
our classification process and evaluation methodology.
Representativeness of software: Both commercial and
open-source software are covered in this study, so we believe
that we have a good coverage for at least OS code. We do not
intend to draw any general conclusions in all software, but
some of the findings such as fixers and reviewers’ knowledge
would also apply to other applications.
Representativeness of bug fix samples: We studied
only those bug fixes that could be linked to a bug report.
The set of fixes that cannot be linked were not covered, and
some of our findings might not hold in them [5]. Fortunately,
the results from the commercial OS and OpenSolaris are
immune to this threat since every bug fix is linked to a bug
report. Since the results from FreeBSD and Linux show a
similar trend as the commercial OS and OpenSolaris, which
may ease the concern on this threat for this problem.

As discussed earlier, there is also a potential problem in

our automatic filtering process, i.e., we can potentially fil-
ter out an incorrect fix if its subsequent fix does not have
any proximity in code location. Fortunately our exercises of
relaxing the proximity constraint did not discover any more
incorrect fixes, which indicates that the amount of missed
incorrect fixes should be very low.
Threats of manual classification: Our study involves
manual classification on bug reports and fixes which cannot
be replaced by automatic techniques. Therefore, subjectiv-
ity is inevitable. However, we tried our best to minimize
such subjectivity by using double verification. Also the au-
thors have previous experience in studying bugs and familiar
with OSes [19, 42, 38, 21]. For every incorrect fix candidate,
we examined all the information sources we could have, in-
cluding source code, bug reports, change logs, etc. Besides,
for some fixes we also discussed with developers of these
systems to ensure the correct understanding on them. Since
we manually examined each incorrect fix candidate and clas-
sify it as incorrect only if we have concrete evidence, we are
confident that the number of false positives should be very
low.
Limitation in measuring the knowledge: The way we
measure code knowledge is relatively simple since we only
want to check the fixers and reviewers’ knowledge in a coarse-
grain, qualitative way. A more sophisticated knowledge
model might provide us more accurate results in Section 5,
which remains as our future study.

3. IS INCORRECT FIX REALLY A SIGNIF-
ICANT PROBLEM?

The ratio of incorrect fixes among all bug fixes and the
impact of bugs introduced by incorrect fixes are important
for us to accurately understand whether incorrect bug fix
is a significant problem. As described in Section 2, we first
randomly sampled 2,000 bug fixes from the four OSes (500
from each OS), among them 970 are fixes to post-release
bugs.

App
of post-release # of incorrect

Ratio
bug fixes fixes

A 189 39 20.6%±3.0%
B 309 46 14.8%±2.9%
C 267 41 15.3%±2.6%
D 205 50 24.4%±3.7%

Table 3: The ratio of incorrect fixes on sampled post-

release bugs in the four OSes. A 95% confidence interval

is used.

Table 3 shows the ratio of incorrect fixes based on our sam-
ples is 14.8%∼24.4% among the four OSes. As discussed in
Section 2.5, this is only a lower-bound estimation. Consider-
ing that the fixes on post-release bugs would be applied by a
lot of customers and users, even this ratio can still have sig-
nificant impact. Since regression testing had already been
applied before releasing the fixes, it also indicates general
testing techniques may need to be tailored to be more effec-
tive in capturing the errors in patches.

We further studied the impact of the bugs introduced by
the examined incorrect fixes. We judge the impact based
on the symptoms described in the bug reports. We found
14.0% of them introduced crash, 8.4% caused system to
hang, 15.4% led to data corruption or data loss, 5.6% caused
security problem, 7.0% degraded the performance, and 45.1%
introduced incorrect functionality. Some bugs introduced

are actually more severe than the original bugs. Moreover,
for some bugs, they could even be incorrectly fixed for sev-
eral times.

Finding: At least 14.8%∼24.4% of the sampled bug fixes
are incorrect. Moreover, 43% of the incorrect fixes resulted
in severe bugs that caused crash, hang, data corruption or
security problems.

Implication: Incorrect fix is indeed a significant problem
that requires special attentions from software vendors.

4. INCORRECT FIX PATTERNS
Though bug fix patterns had already been studied in [17,

31], few had studied the patterns of incorrect fixes before.
In this section, we first study which types of bugs are more
likely to introduce incorrect fixes. Then we probe deeper
into each of these bug types and try to understand their
incorrect fix patterns via case studies. Finally, we discuss
how we can leverage those patterns to detect incorrect fixes
in the testing process.

4.1 Which types of bugs are more difficult to
fix correctly?

We classified all the 970 sampled fixes into three categories
based on the bugs they fix: memory bug, concurrency bug
or semantic bug. Semantic bugs are those bugs that cannot
be classified as memory or concurrency bug and are usually
application specific problems. This classification is adopted
from previous literature [19].

App Concurrency Memory Semantic
A 4/13 (31%) 3/17 (18%) 32/159 (20%)
B 9/21 (43%) 5/44 (13%) 32/244 (13%)
C 7/19 (37%) 6/43 (14%) 28/205 (14%)
D 10/23 (44%) 5/30 (17%) 35/152 (23%)

Overall 30/76 (39%) 19/134 (14%) 127/760 (17%)

Table 4: The number of incorrect fixes among all the

sampled fixes and the incorrect fix ratio for the three

categories of bugs in the four OSes.

Table 4 shows the ratio of incorrect fixes to each type
of bug. Based on our samples, concurrency bugs have the
largest incorrect fix ratio (39% overall), indicating concur-
rency bugs are the hardest to fix. Semantic bugs and mem-
ory bugs have similar ratio, 17% and 14%, respectively.

We focus on studying concurrency bugs and memory bugs,
while only providing some high level discussion on semantic
bugs (Section 4.2.5). This is because semantic bugs have
very diverse root causes so that it is difficult to observe gen-
eral patterns from their fixes and the mistakes in the fixes.

Bug types and their percentages
data race 33% deadlock 29%
buffer overflow 8% memory leak 6%
uninitialized read 4% null pointer deref 4%

Table 5: The most observed bug types among all the

concurrency bugs and memory bugs being fixed incor-

rectly. Only top six are shown.

To select the important types of bugs for a detailed study,
we further dive into all the concurrency bugs and memory
bugs being fixed incorrectly to see which sub-types are most
observed. The result is shown in Table 5. Among all the
bug types, data race (33%), deadlock (29%), buffer overflow
(8%) and memory leak (6%) are the top four types of the

most observed concurrency bugs and memory bugs which
were fixed incorrectly. Therefore, we just focused on the
characteristics of bug fixes to these four types of bugs.

App
Bug types

race deadlock buf overflow mem leak
A 9/20 (45%) 5/20 (25%) 2/20 (10%) 1/20 (5%)
B 11/20 (55%) 6/20 (30%) 1/20 (5%) 3/20(15%)
C 11/20 (55%) 8/20 (40%) 3/20 (15%) 0/20 (0%)
D 8/20 (40%) 9/20 (45%) 1/20 (5%) 4/20 (20%)
All 39/80 (49%) 28/80 (35%) 7/80 (9%) 8/80 (10%)

Table 6: The number of incorrect fixes among the all the

fixes and the incorrect fix ratio for the four important

types of bugs from sample set 2 .

Table 6 further shows the ratio of incorrect fixes for these
four types of bugs. The result is from 320 fixes only to these
bug types (sample set 2 mentioned in Section 2.3), where
for each type we randomly sampled 20 fixes from each code
base. We use this data set instead of the one used above be-
cause among the original 970 fixes (sample set 1 mentioned
in Section 2.3), there are not statistically sufficient number
of bug fixes for these four types of bugs. sample set 2 pro-
vides us a richer base-set of incorrect fixes to conduct our
case studies in Section 4.2. As indicated in Table 6, fixes to
data race and deadlock are most error-prone, with an incor-
rect fix ratio of 49% and 35% respectively, which is generally
4x∼6x of buffer overflow and memory leak.

Finding: Based on our samples, concurrency bugs are
the most difficult (39%) to fix right. Among concurrency
and memory bugs which were fixed incorrectly, the four
most observed bug types are: data race, deadlock, buffer
overflow and memory leak.

Implication: Developers and testers should be more
cautious when fixing concurrency bugs. The allocation of
fixing and testing resources could consider the types of
bugs to be fixed.

4.2 Mistakes in bug fixing
After understanding which types of bugs are more diffi-

cult to fix right, it would be interesting to understand the
common mistakes (patterns) when fixing a particular type
of bugs and the consequence introduced by those incorrect
fixes. In this Section, we use the incorrect fix examples got
from sample set 2. Generally, we find there are two types of
incorrect fixes: incomplete fixes and introducing new prob-
lems, while each type of bug also has its own incorrect fix
patterns. We also discuss techniques to detect or reveal
these mistakes: either extending current techniques or sug-
gesting new approaches.

4.2.1 Fixing data races
The most common practice for fixing data race is to add

synchronization primitives (e.g., locks) to create mutual ex-
clusion on shared resources. However, delivering a correct
fix requires deep reasoning on all the side-effects of the newly
added synchronization, which is often error-prone.

Specifically, adding locks might introduce deadlock. This
incorrect fix pattern is observed in all the four code bases
we evaluated and in 16.4% (6 out of 39) of the incorrect
fixes to data race bugs. Figure 4 shows one of the exam-
ples. In the first fix, a lock sc was added to avoid a race.
However, the function bus_teardown_intr is not supposed

FXP_LOCK(sc);
ether_ifdetach(&sc->arpcom.ac_if);
…..
bus_teardown_intr(sc->dev, ...);
FXP_UNLOCK(sc);

if_fx.c (FreeBSD)First fix Second fix

FXP_LOCK(sc);
ether_ifdetach(&sc->arpcom.ac_if);
…..
FXP_UNLOCK(sc);
bus_teardown_intr(sc->dev, ...);

Figure 4: Incorrect fix to a data race introduced a dead-

lock. The function bus_teardown_intr cannot be called

with lock held, otherwise deadlock will be introduced.

to be called inside the critical section, otherwise it can lead
to deadlock. Unfortunately, developers were not aware of
this rule and made the incorrect fix. To fix this deadlock,
bus_teardown_intr was moved out of the critical section.
Figure 2 (in Section 1) is another example of this pattern
that fixing data race introduces deadlock. The fixer for-
got to release the lock via SOCK_UNLOCK before a return
statement therefore a deadlock happened.
Implications: When adding synchronization primitives,
fixers need to make sure the newly added primitives (e.g.,
lock) will not introduce deadlocks with the existing synchro-
nization code. This can be checked by extending deadlock
detectors to only focus on the synchronization primitives
newly added. Besides, lock and unlocks should be added
in pairs along all the execution paths in the newly formed
atomic region. This can be checked automatically by extend-
ing some existing path-sensitive bug detection tools such as
RacerX [9] or PR-Miner [20] to only scan the code regions
touched by the fix.

spin_lock_irqsave(&hcall_lock,flag);
plpar_hcall9(…);
spin_unlock_irqrestore(&hcall_lock, flag);
…...
plpar_hcall9_norets(…);

hcp_if.c (Linux)First fix Second fix
spin_lock_irqsave(&hcall_lock,flag);
plpar_hcall9(…);
spin_unlock_irqrestore(&hcall_lock, flag);
…...
spin_lock_irqsave(&hcall_lock,flag);
plpar_hcall9_norets(…);
spin_unlock_irqrestore(&hcall_lock, flag);

Figure 5: Fix to a data race was not complete.

The first fix only added locks to protect function

plpar_hcall9, while forgot to protect plpar_hcall9_noret

(which contains the access to the same shared objects in

plpar_hcall9).

Fixing data races could be incomplete such that not all the
data races are fixed. This incorrect fix pattern is observed in
three of the code bases we evaluated and in 10.2% (4 out of
39) of the incorrect fixes to data race bugs. For example, as
shown in Figure 5, when adding locks, the developer forgets
to lock all the places she should lock.
Implications: For a complete fix to data race, it is im-
portant to know all the accesses to the shared objects which
could race with each others. We can design checkers to de-
tect where the same shared objects are protected by lock in
some paths but unprotected in some others [10], and make
these checkers focus only on checking the patched code.

4.2.2 Fixing deadlocks
To fix a deadlock, developers may either reverse the order

of locks, or even drop some locks. However, these means
need to be applied with caution.

Specifically, fixing deadlocks could still lead to deadlock
bugs. This incorrect fix pattern is observed in three of the
code bases we evaluated and in 14.3% (4 out of 28) of the
incorrect fixes to deadlocks. Figure 6 shows such an exam-
ple. The root cause of this incorrect fix is similar to the one

down_write(&(bonding));
If(...){
 rtnl_lock();
 If(atomic_read(...)>cnt){
 rtnl_unlock();
 goto out:
 }
 bond_destroy(bond);
 rtnl_unlock();
 goto out:
}
...
out:
up_write(&(bonding));

First fix Second fix

If(...){
 rtnl_lock();
 down_write(&(bonding));
 If(atomic_read(...)>cnt)
 goto out:
 }
 bond_destroy(bond);
 up_write(&(bonding));
 rtnl_unlock();
 goto out:
}
...
out:

bond_sysfs.c (Linux)

If(...){
 rtnl_lock();
 down_write(&(bonding));
 If(atomic_read(...)>cnt)
 goto out_unlock:
 }
 bond_destroy(bond);
 goto out_unlock:
}
...
out_unlock:
up_write(&(bonding));
rtnl_unlock();
out:

Original bug

Figure 6: Incorrect fix to a deadlock introduced a new

deadlock. The first fix reversed the order of locks to pre-

vent deadlock, but forgot to release locks before taking

a goto path.

rw_enter(iss->iss_lockp);
mutex_enter(stmf_lock);
for (i = 0; i < nentries; i++)
{...}
mutex_exit(stmf_lock);
rw_exit(iss->iss_lockp);
...
for (i = 0; i < nentries; i++)
{...}

First fix Second fix

mutex_enter(stmf_lock);
rw_enter(iss->iss_lockp);
for (i = 0; i < nentries; i++)
{...}
rw_exit(iss->iss_lockp);
mutex_exit(stmf_lock);
...
for (i = 0; i < nentries; i++)
{...}

stmf.c (OpenSolaris)

mutex_enter(stmf_lock);
rw_enter(iss->iss_lockp);
for (i = 0; i < nentries; i++)
{...}
...
for (i = 0; i < nentries; i++)
{...}
rw_exit(iss->iss_lockp);
mutex_exit(stmf_lock);

Original bug

Figure 7: A fix to a deadlock exposed a hidden data

race bug.

in Figure 2. Therefore we can again extend some current
path-sensitive bug detection tools to spot the deadlock.

Additionally, fixing deadlock may reveal some other bugs
that were originally hidden by the deadlock, especially data
race bugs. This incorrect fix pattern is observed in two of
the code bases we evaluated and in 7.1% (2 out of 28) of
the incorrect fixes to deadlocks. Though we only spotted
2 such cases, we think this is still an interesting pattern.
Figure 7 shows one of the examples. There are two bugs
in the original code: a deadlock caused by the wrong order
of the two locks, and a data race caused by an unprotected
shared variable in the second for loop. However, the data
race is hidden by the existence of the deadlock since the
execution would not even reach the second for loop due to
the deadlock. The first fix resolved the deadlock. However,
it also enables the execution to proceed so that the data race
is much easier to manifest.
Implications: The hang introduced by deadlock bugs
might prevent some execution paths from being exercised
thoroughly, which could make some bugs hidden in those
paths difficult to manifest. After removing deadlock bugs,
fixers should further test those execution paths.

4.2.3 Fixing buffer overflow
We also found some interesting incorrect fixes examples

for memory bugs. However, since the total numbers of in-
correct fixes to buffer overflows and memory leaks in sample
set2 is not statistically large enough (7 and 8 respectively),
we do not claim those examples are frequently observed in-
correct fix patterns. However, we assume these examples
could be common for the incorrect fixes to buffer overflows
and memory leaks (shown in Section 4.2.4) if we can further
enlarge our sample set.

Common techniques to fix buffer overflow include: a) re-
strict the length of the data which will be stored into buffer
by using safe string functions (e.g., snprintf) or do bound

checking b) increase the buffer size statically from stack c)
allocate larger buffer dynamically from heap to replace a
stack buffer.

Based on our observation, technique a) is usually safe and
seldom introduces any further incorrect fixes since it eradi-
cates the chance of a buffer overflow in the future.
Implications: The good practice to fix buffer overflow is
to use safe string functions or do bound check when possible.

vm_offset_t avail[10];
vm_offset_t avail[20];
for (indx = 0; avail[indx + 1] != 0; indx += 2)
 size1 = avail[indx + 1] - avail[indx];

machdep.c (FreeBSD)First fix Second fix
vm_offset_t avail[20];
vm_offset_t avail[100];
for (indx = 0; avail[indx + 1] != 0; indx += 2)
 size1 = avail[indx + 1] - avail[indx];

Figure 8: Incorrect fix to a buffer overflow by increasing

static buffer size. The first fix enlarged the buffer size to

20, but the size was still not big enough. Under certain

input, avail was still overflown.

Technique b) is potentially problematic if the developer
cannot anticipate the input size accurately. The buffer size
after increasing may still be not enough for an untested in-
put in the future. As shown in Figure 8, the first fix was
incomplete. After it increased the size of avail to 20, avail
was still overflown later. Actually even the second fix might
still be flawed. Since the developer does not add a bound
check, a future input beyond the size 100 could still overflow
avail.
Implications: Increasing the static buffer size can be dan-
gerous if the input size cannot be accurately estimated.

char tempMail[24];
char *tempMail;
len = strlen(tmpdir);
tempMail = (char *) malloc (len+…);
strcpy(tempMail, tmpdir);

temp.c (FreeBSD)First fix Second fix

char *tempMail;
len = strlen(tmpdir);
if((tempMail = malloc(len + …)) == NULL)
 panic("Out of memory");
strcpy(tempMail, tmpdir);

Figure 9: Incorrect fix to a buffer overflow by allocating

heap memory. The first fix allocated heap memory to

replace stack buffer, but the return value of malloc was

unchecked.

For technique c), developers need to be aware of the rules
to use memory allocation functions. The memory allocated
needs to be freed after use, otherwise it may introduce a
memory leak. Besides, developers need to consider to do
error handling if memory allocation fails. As shown in Fig-
ure 9, the fixer did fix the buffer overflow, but introduced a
potential invalid memory access.
Implications: When allocating memory dynamically to
fix buffer overflow, developers also need to follow the safety
rules of using memory allocation functions.

4.2.4 Fixing memory leak
Once a memory leak is detected, writing fixes may be

straightforward, but mistakes can still be made.
Specifically, fixing memory leak can introduce dangling

pointer or null pointer dereference if the pointer would still
be accessed after the free. Figure 10 shows an example where
a dangling pointer bug was introduced.
Implications: It is a good practice to nullify the pointer
after freeing it, which can avoid dangling pointer bugs.

Developer may also not be aware of the condition to free
an object. They should only free an object when it is no
longer used. If they overreact, they could mistakenly free
an object still in use under certain conditions. Figure 11
shows such an example which led to data corruption.

void blk_online_work(online_t *p) {
 …...
 kmem_free(p);
 return;
}

void blk_scan(){
 blk_online_work(info);
 find_blk_by_id(info, WIT_FS)
}

toc.c (a commercial OS)First fix Second fix
void blk_online_work(online_t *p) {
 …...
 kmem_free(p);
 p = null
 return;
}
void blk_scan(){
 blk_online_work(info);
 find_blk_by_id(info, WIT_FS)
}

Figure 10: Incorrect fix to memory leak introduced a

dangling pointer. The pointer p was later used in func-

tion find_blk_by_id with null pointer check. However,

the first fix simply freed p without nullifying it.

…...
acm_free(M_USM,case_username);

auth.c (a commercial OS)First fix Second fix

if (IS_DEFAULT(get_choices())) {
 acm_free(M_USM,case_username);
}

Figure 11: Incorrect fix to a memory leak introduced

data corruption. The first fix freed the data indexed

by case_username unconditionally. However, the data

should be freed only under certain conditions.

Implications: Before fixing memory leak, developers should
make sure when and what should be freed.

if (lseek(cat->fd, nextSet, 0) == -1) {
 …...
 free(cat->set);
}

msgcat.c (FreeBSD)First fix Second fix
if (lseek(cat->fd, nextSet, 0) == -1) {
 …...
 if (!cat->set->tag) free(cat->set->data);
 free(cat->set);
}

Figure 12: Incomplete fix to a memory leak. The first

fix only freed cat->set but forgot to free its member data.

Besides, fixing memory leak can be incomplete. For some
complex data structures, fixers may forget to free all their
members. Figure 12 shows such an example.
Implications: For complex data structures, fixers should
remember to free all their members.

4.2.5 Fixing semantic bugs
Semantic bugs have very diverse root causes, so the ways

to fix them are also diversified. However, we still observed
one common incorrect fix pattern for semantic bugs: con-
ditions (e.g., if condition) are difficult to fix correctly. As
shown in Figure 3 in Section 1, the first fix to the if condi-
tion was still not restrictive enough. Though this pattern is
frequently observed, it is not easy to leverage current tech-
niques to detect them. We think fixing semantic bugs cor-
rectly may require more application specific knowledge from
fixers.

4.2.6 General approaches to detect incorrect fixes

Understanding the impact of the change: A funda-
mental reason for developers to make mistakes during bug
fixing is that they do not know all the potential impacts of
the newly fixed code. For example, in Figure 4, the fixer
was not aware that the newly added lock sc would dead-
lock with the function bus_teardown_intr. If all such po-
tential “influenced code” (either through control- or data-
dependency) is clearly presented to developers, they may
have better chances to detect the errors. We envision com-
piler techniques such as program slicing [41, 12, 14, 43] can
be extended to analyze such information, using the depen-
dencies to the patch as the slicing criterion.

App
Actual fixer for Actual fixer for Potential
incorrect fixes correct fixes optimal fixer

K_File K_Func K_File K_Func K_File K_Func
A 13.2% (0.022) 18.1% (0.046) 18.3% (0.019) 20.5% (0.012) 65.0% (0.043) 75.1% (0.031)
B 9.5% (0.013) 11.5% (0.023) 15.4% (0.016) 27.9% (0.031) 39.7% (0.024) 51.4% (0.022)
C 12.8% (0.024) 16.1% (0.037) 17.2% (0.021) 18.4% (0.023) 69.8% (0.031) 78.1% (0.026)
D 7.9% (0.017) 12.5% (0.035) 15.5% (0.024) 16.4% (0.021) 78.0% (0.023) 78.4% (0.039)
AVG 10.9% 14.6% 16.6% 20.8% 63.1% 70.8%

Table 7: The fixers’ average code knowledge on the buggy files/functions. The variance of the code knowledge is

shown in the parentheses. Code knowledge is shown in the form of percentage (e.g., 13.2% means a knowledge value

of 0.132). “Potential optimal fixer” is the developer with the most knowledge on the buggy files/functions but might

not be always assigned the bug fixing task.

Apply checkers incrementally As discussed before, it is
possible for some existing bug detection tools (checkers) [20,
9, 10] to detect some types of incorrect fixes. However, ap-
plying these tools directly on the full code base after the fix is
not practical: it may take a very long time for them to scan
the entire code base, which may be redundant with the orig-
inal testing steps, or not always necessary. Also it may pro-
duce too many false positives. Instead, developers may want
to check the code influenced by the patch first. One obser-
vation is that sometimes, just checking within the function
boundary is enough to detect problems in the patch. For
example, in Figure 2 (Section 1), a path-sensitive checker
that simply checks the rule “lock is always paired with an
unlock” can easily detect the missed SOCK_UNLOCK by
only scanning the function that the patch modified.
Dealing with incomplete fixes Some incomplete fixes
are introduced by the fact that fixers may forget to fix all
the buggy regions with the same root cause. This types of
incomplete fixes can be mitigated by using technique [30, 28]
which searches for other places that have the same patterns
or usage scenarios in entire code. For example, in Figure 5,
the first fix that suggested certain shared objects need to
be protected. Then developers can try to find the other
places where those objects are accessed without protection.
However, this technique is less effective when a consistent
pattern is difficult to learn. Moreover, those incomplete fixes
related to conditions (Figure 3 in Section 1) cannot be solved
by this technique.

5. LACK OF KNOWLEDGE
Multiple factors can influence developers to make an in-

correct fix. In this section, we focus on programmers’ code
knowledge. Intuitively, if a file or a function is mostly writ-
ten by a developer, the developer may have higher chance
to give a correct fix to a bug rooted in that file or function.

We first measured the K_File and K_Func (defined in
Section 2.4) for the fixers who made the incorrect fixes. The
incorrect fixes are from sample set 1. The results are shown
in Table 7. We found that in general these fixers who made
the incorrect fixes were not knowledgeable about the buggy
files/functions. Specifically, they had only contributed on
average 10.9% to the files and 14.6% to the functions in-
volved in the patch before they made the incorrect fix. In
comparison, Table 7 also shows the fixers’ knowledge in cor-
rect fixes. The correct fixes are from the complement of the
incorrect fix set (Table 3). We found those fixers who made
the correct fixes had contributed on average 16.6% to the
files and 20.8% to the functions. In other words, the knowl-
edge of the fixers who made the correct fixes is 1.5 times of
that of the fixers who made the incorrect fix based on our

code knowledge metrics, indicating source code knowledge
could be a factor to incorrect fixes.

But can we really find a developer who is more knowl-
edgeable than the actual fixer of the incorrect fix? Table 7
also answered this question: surprisingly, by selecting the
most knowledgeable developer who is still active in the de-
velopment when the bugs need to be fixed as the fixer, the
K_File and K_Func can reach as high as 63.1% and 70.8%
respectively, which is 5∼6 times of the knowledge of the
actual fixers in incorrect fixes. Additionally, by selecting
the two of the most knowledgeable developers as review-
ers (two is the average number of reviewers in the OSes
we studied), the K_File and K_Func can reach 68.2%
and 78.8% respectively, which is 6∼7 times of the knowl-
edge of the actual reviewers on each incorrect fix. Note that
these “potential optimal fixers” are still reachable when the
bugs were opened, which suggests that the current bug fixing
and reviewing process is not always assigning the problem
to the developers who could be most “knowledgeable” with
the bug.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

K = 0% 0< K <= 1% 1% < K <= 5% 5% < K <= 50% K > 50%

K_File

K_Func

Different levels of knowledge (K)

%
 o

f i
nc

or
re

ct
 fi

xe
s

Figure 13: The distribution of incorrect fixes in different

knowledge scales.

Figure 13 further studies why the K_File and K_Func
in incorrect fixes are low by probing deeper into the distri-
bution of incorrect fixes in different knowledge scales. We
found the low K_File and K_Func are caused by a large
portion of incorrect fixes that were made by fixers with zero
prior knowledge to the buggy files/functions. As shown in
Figure 13, 27.2% of the fixers had not contributed any lines
to the file (K_File = 0%) they were about to fix. It is even
worse at the function level. 51.4% of fixers had not con-
tributed any lines of code to the function they were about
to fix. These “first touches” could be dangerous since the
developer could have little knowledge about the particular
part of code when they are doing the fix.

Besides studying the effect of code knowledge in terms of
K_File and K_Func, we further study the code knowledge
in terms of whether the fixer actually fixed the lines of code
previously written by him. The intuition behind this is that
even though a fixer had written small amount of code (i.e.,
small K_File/K_func), as long as the fixer was modifying
the code regions that he had written, he might be still con-
sidered as the knowledgeable person for the fix. Specifically,
for each fix, if any code line modified by the fix was also

previously written by the same fixer, we count this fixer is
fixing his own code. The result is shown in Table 8.

App for incorrect fixes for correct fixes
A 7.7% 26.2%
B 16.4% 44.8%
C 18.2% 25.9%
D 8.0% 24.1%
AVG 12.6% 30.3%

Table 8: The percentage of fixes that fixer is fixing his

own code. For example, the number 7.7% in the first cell

means: among all the incorrect fixes from OS A, 7.7% of

them were actually fixed by developers who were fixing

their own code.

Table 8 shows large difference between correct fixes and
incorrect fixes. The ratio of the fixers who fixed their own
code for correct fixes is 2.5 times of the ratio for incorrect
fixes (30.3% v.s. 12.6%). This suggests fewer fixers (in term
of ratio) are fixing their own code for incorrect fixes than for
correct fixes, which further suggests that fixing code written
by others might be prone to incorrect fixes.

Based on our study in code knowledge, a software vendor
is building a tool to find knowledgeable fixers and reviewers.
Sometimes when the bug report just arrives it may be un-
clear which files/functions contain the bug. In these cases
the knowledge is more useful to assign reviewers who are
knowledgeable to the files/functions involved in the fix after
the fix is made. This knowledge can also be used in prior-
itizing patch testing efforts to pay more attentions to the
patches fixed by less-knowledgeable fixers.

Finding: The fixers’ knowledge on the buggy files/func-
tions in correct fixes is 1.5 times of the fixers’ knowledge
in incorrect fixes. Fewer fixers (in term of ratio) are fixing
their own code for incorrect fixes than for correct fixes.
Moreover, nearly 27% of the incorrect fixes are made by
developers who have not contributed a single line to the
entire file they are about to fix. The potential “Optimal”
developer who is most familiar with the buggy code has
5∼6 times knowledge of that of the actual fixer in incorrect
fixes.

Implication: It might be beneficial to assign the bugs
to developers with more knowledge during the bug-triage
process. The knowledge can also be considered as a factor
in prioritizing the testing efforts on patches.

6. RELATED WORK
Studying incorrect fixes As briefly discussed in Introduc-
tion, several previous studies [6, 36, 33, 13] had also studied
incorrect fixes. Our work is complementary in several ways:
(1) we focus on large OS code, while previous studies focused
on certain types of applications. (2)We study both commer-
cial and open source code bases, while previous work studied
only either open source or commericial. (3) Previous stud-
ies more focused on measuring incorrect fix ratios, while we
went much beyond and also studied what types of bug fixes
are more error-prone, the common mistake patterns, as well
as the possible human reason in the development process for
introducing incorrect fixes.

Śliwerski et al. [36] proposed an effective way to auto-
matically locate fix-inducing changes by linking a version
archive to a bug database. They studied the incorrect fix

ratio in Eclipse and Mozilla and also found developers are
easier to make incorrect changes on Friday. Purushothaman
et al. [33] studied the incorrect fix ratio in a switching sys-
tem from Lucent, but their focus was the impact of one-line
changes. Gu et al. [13] studied the incorrect fix ratio in three
Apache projects, but they focused on providing a tool to val-
idate the patch. Baker et al. [6] visualized the incorrect fix
ratio for a switch system in AT&T.
Human factors The influence of code knowledge on gen-
eral code changes had been explored in [34, 26]. Mockus
et al. [26] found that changes made by more experienced
developers were less likely to induce failures. Rahman et
al. [34] found file owner with higher knowledge is less as-
sociated with fix-inducing code. Our study focused on bug
fixes and measured the knowledge of the fixers who made the
incorrect fixes in commercial and widely used open source
OSes. We found 27% of the incorrect fixes are made by
fixers with zero knowledge, suggesting there might be some
flaws in the overall bug assignment process. Some work [3,
24] also studied human factors for designing recommenda-
tion systems. Anvik et al. [3] suggested to assign fixer based
on bug history. McDonald et al. [24] suggested to find the
person who last modified the code. We proposed to assign
fixer/reviewer based on code knowledge defined at line level.
Besides, other aspects of human factors had also been stud-
ied. Meneely et al. [25] found that independent developer
groups were more likely to introduce a vulnerability. Bird
et al. [7] found that a binary might be more buggy if more
developers are working on it. Nagappan et al. [27] studied
the organizational structure and used it to build model to
predict the failure proneness in Windows Vista.
Taming incorrect fixes There are different ways to solve
the problem of incorrect fixes including predicting or isolat-
ing buggy changes [37, 18, 23, 44], patch validation [13, 39],
automatic patching [32] and regression testing [35, 29]. Śliw-
erski et al. built a plug-in for Eclipse which shows the risk of
changing a particular code location based on previous revi-
sion information. Kim et al. [18] also leveraged the historical
source repository data to train models for predicting the cor-
rectness of a future change. McCamant et al. [23] compared
operational abstractions generated from the old component
and the new component to predict the safety of a component
upgrade. Zeller et al. [44] proposed automated delta debug-
ging to locate the bug introducing changes. ClearView [32]
automatically generates patches without human interven-
tion, which can reduce the chance of incorrect fixes. Besides,
regression testing [35, 29] is also a common practise to ensure
patches don’t break the previously working functionalities.
Our study discovered some incorrect fix patterns which are
helpful for detecting/exposing/avoiding incorrect fixes. We
studied what mistakes programmers should be aware of dur-
ing bug fixing, which are also useful to design new detection
tools to detect errors in fixes. Besides, we also proposed a
bug assignment process based on code knowledge, which is
being implemented by a large software vendor.

7. CONCLUSION AND FUTURE WORK
This paper presents one of the most comprehensive char-

acteristic studies on incorrect bug-fixes from large operat-
ing system code bases, including a commercial OS project.
We first studied the ratio and impact of incorrect fixes, and
found incorrect fix is a significant problem that requires spe-

cial attention. We also studied the common patterns of mis-
takes made in incorrect fixes that can be used to alert the
programmers as well as to design detection tools to catch
incorrect fixes. We finally studied the code knowledge of
developers and found 27% of incorrect fixes are made by de-
velopers who have not contributed a single line to the entire
file they are about to fix. A tool based on our findings to
assign the most-knowledgeable developer to fix/review the
bug is being built into the bug assignment process of a large
software vendor.

Though we had already done some preliminary study on
the the fixes to semantics bugs, there are still some inter-
esting questions waiting to be answered considering their
diversity. Therefore, we plan to have a more comprehensive
study on the fixes to semantics bugs in the future. Besides,
we also plan to extend the characteristic study to non-OS
applications, such as server applications and client applica-
tions. Another possible direction we want to proceed is to
build some checkers to detect incorrect fixes based on the
patterns we learned.

8. REFERENCES
[1] Microsoft security bulletin. http:

//www.microsoft.com/technet/security/current.aspx.
[2] After buggy patch, criminals exploit Windows flaw.

http://www.infoworld.com/d/security-central/
after-buggy-patch-criminals-exploit-windows-flaw-848.

[3] J. Anvik, L. Hiew, and G. C. Murphy. Who should fix this
bug? In ICSE’06.

[4] Apple updates leopard again.
http://voices.washingtonpost.com/fasterforward/2008/
02/apple_updates_leopardagain.html.

[5] A. Bachmann, C. Bird, F. Rahman, P. Devanbu, and
A. Bernstein. The missing links: Bugs and bug-fix commits.
In FSE’10.

[6] M. J. Baker and S. G. Eick. Visualizing software systems.
In ICSE’94.

[7] C. Bird, N. Nagappan, P. Devanbu, H. Gall, and
B. Murphy. Does distributed development affect software
quality? An empirical case study of Windows Vista. In
ICSE’09.

[8] Buggy McAfee update whacks Windows XP PCs.
http://news.cnet.com/8301-1009_3-20003074-83.html.

[9] D. Engler and K. Ashcraft. RacerX: effective, static
detection of race conditions and deadlocks. In SOSP’03.

[10] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf.
Bugs as deviant behavior: a general approach to inferring
errors in systems code. In SOSP’01.

[11] M. Fischer, M. Pinzger, and H. Gall. Populating a release
history database from version control and bug tracking
systems. In ICSM’03.

[12] K. B. Gallagher and J. R. Lyle. Using program slicing in
software maintenance. IEEE Transactions on Software
Engineering, 17(8):751–761, 1991.

[13] Z. Gu, E. T.Barr, D. J.Hamilton, and Z. Su. Has the bug
really been fixed? In ICSE’10.

[14] M. Harman, D. Binkley, and S. Danicic. Amorphous
program slicing. Journal of Systems and Software,
68(1):45–64, October 2003.

[15] Intel reissues buggy patch. http://www.pcworld.com/
businesscenter/article/126918/rss.html.

[16] D. Kawrykow and M. P. Robillard. Non-essential changes
in version histories. In ICSE’11, May 2011.

[17] S. Kim, K. Pan, and J. E. James Whitehead. Memories of
bug fixes. In FSE’06, November 2006.

[18] S. Kim, E. J. Whitehead, Jr., and Y. Zhang. Classifying

Software Changes: Clean or Buggy? IEEE Trans. Software
Engineering, 34(2):181–196, March 2008.

[19] Z. Li, L. Tan, X. Wang, S. Lu, Y. Zhou, and C. Zhai. Have
things changed now? An empirical study of bug
characteristics in modern open source software. In ASID’06.

[20] Z. Li and Y. Zhou. PR-Miner: Automatically extracting
implicit programming rules and detecting violations in
large software code. In FSE’05.

[21] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from
mistakes – a comprehensive study on real world
concurrency bug characteristics. In ASPLOS, March 2008.

[22] McAfee to reimburse customers for bad patch. http://www.
computerworlduk.com/technology/security-products/
prevention/news/index.cfm?newsId=20005.

[23] S. McCamant and M. D. Ernst. Predicting problems caused
by component upgrades. In FSE’03.

[24] D. W. McDonald and M. S. Ackerman. Expertise
recommender: a flexible recommendation system and
architecture. In CSCW’00.

[25] A. Meneely and L. Williams. Secure open source
collaboration: An empirical study of linus’s law. In CCS’09.

[26] A. Mockus and D. M. Weiss. Predicting risk of software
changes. Bell Labs Technical Journal, 5:169–180, 2000.

[27] N. Nagappan, B. Murphy, and V. R. Basili. The influence
of organizational structure on software quality. In ICSE’08.

[28] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. Al-Kofahi,
and T. N. Nguyen. Recurring bug fixes in object-oriented
programs. In ICSE’10, May 2010.

[29] A. Orso, N. Shi, and M. J. Harrold. Scaling regression
testing to large software systems. In FSE’04.

[30] Y. Padioleau, J. Lawall, R. R. Hansen, and G. Muller.
Documenting and automating collateral evolutions in linux
device drivers. In Eurosys’08.

[31] K. Pan, S. Kim, and J. E. James Whitehead. Toward an
understanding of bug fix patterns. Empirical Software
Engineering, 14(3):286–315, November 2009.

[32] J. H. Perkins, S. Kim, S. Larseng, S. Amarasinghe,
J. Bachrach, M. Carbin, C. Pachecod, F. Sherwood,
S. Sidiroglou, G. Sullivan, W.-F. Wong, Y. Zibin, M. D.
Ernst, and M. Rinard. Automatically patching errors in
deployed software. In SOSP’09, October 2009.

[33] R. Purushothaman and D. E. Perry. Towards
understanding the rhetoric of small changes. In MSR’04.

[34] F. Rahman and P. Devanbu. Ownership and experience in
fix-inducing code. In UC Davis Department of Computer
Science, Technical Report CSE-2010-4, 2010.

[35] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold.
Prioritizing test cases for regression testing. IEEE
Transactions on Software Engineering, 27:929–948, 2001.

[36] J. Śliwerski, T. Zimmermann, and A. Zeller. When do
changes induce fixes? In MSR’05.

[37] J. Śliwerski, T. Zimmermann, and A. Zeller. Hatari:
Raising risk awareness (research demonstration). In
FSE’05, September 2005.

[38] L. Tan, D. Yuan, and Y. Zhou. /* icomment: Bugs or bad
comments? */. In SOSP, October 2007.

[39] J. Tucek, W. Xiong, and Y. Zhou. Efficient online
validationwith delta execution. In ASPLOS’09.

[40] D. Čubranić and G. C. Murphy. Hipikat: Recommending
pertinent software development artifacts. In ICSE’03.

[41] M. Weiser. Program slicing. In ICSE’83.
[42] Z. Yin, M. Caesar, and Y. Zhou. Towards understanding

bugs in open source router software. ACM SIGCOMM
Computer Communication Review, 40(3):34–40, July 2010.

[43] D. Yuan, H. Mai, W. Xiong, L. Tan, Y. Zhou, and
S. Pasupathy. Sherlog: error diagnosis by connecting clues
from run-time logs. In ASPLOS’10.

[44] A. Zeller. Yesterday, my program worked. today, it does
not. why? In FSE’99.

