To overcome huge range of resistor used in weighted resistor D/A converter, R-2R ladder D/A converter is introduced. In my previous post I discussed about weighted resistor D/A converter. Now question is why we use R-2R ladder D/A converter?
Why we use R-2R ladder D/A converter?
As we know the vital problem in weighted register D/A converter is use of huge range of different resistance. Suppose we have to design 8-bit weighted register D/A converter then we need the resistance value 20R+21R+….+27R. So the largest resistor corresponding to bit b8 is 128 times the value of the smallest resistor correspond to b1. But in case of R-2R ladder D/A converter, Resistors of only two value (R and 2R) are used. Now in bellow see the simple ladder network.
Working Process
In ladder circuit the output voltage is also weighted sum of the corresponding digital input. Let take an example to understand how it works? As we can see the above network is a 4-bit ladder network so we take an example to convert analog signal correspond of 1000 digital bit. For 1000 bit we can see only MSB got 1 and rest all bits got 0. See the bellow picture to understand how it work if it got 1000.
Firstly, at node1 (N1) resistor 2R connecting in b4 parallel with resistor 2R. And those 2R parallel 2R resistors make equivalent register of R shown in bellow diagram.
Secondly, for N2 same thing happen B3 series with 2R and parallel with R + R resistors. It will also make equivalent resistor R at N3. See the bellow diagram
Thirdly, repeating the same process we got equivalent of R resistor at N4.
Fourthly, at N4, if we calculate the output analog equivalent voltage then we will get
VA = VR*2R/(R+R+2R)
= VR/2
Thus when bit 1000 the output is VR/2. Similarly it can be found that using above process for bit 0100 the output will be VR/4, for bit 0010 output will be VR/8 and for bit 0001 output will be VR/16.
By using superposition theorem we can find in any n-bit ladder network the output voltage will be
VA = VR/21 + VR/22 + VR/23 + ……. + VR/2n
Where n is the total number of bits at the input.
Finally, the practical circuit arrangement of 4-bit R-2R ladder D/A converter using op amp.
The inverting input terminal of the op amp work as a summing amplifier for the ladder inputs. So we can get out put voltage by bellow equation.
V0 = VR*(RF/R)[b1/21 + b2/22 + b3/23 + b4/24]
Let’s check how you learn “R-2R ladder D/A converter” with a simple quiz.
0 of 5 questions completed Questions: Analogue to Digital Converter You have already completed the quiz before. Hence you can not start it again. Quiz is loading... You must sign in or sign up to start the quiz. You have to finish following quiz, to start this quiz: 0 of 5 questions answered correctly Time has elapsed You have reached 0 of 0 points, (0) The time taken by the ADC from the active edge of SOC(start of conversion) pulse till the The popular technique that is used in the integration of ADC chips is Which is the ADC among the following? The number of inputs that can be connected at a time to an ADC that is integrated with The conversion delay in successive approximation of an ADC 0808/0809 isADC
Quiz-summary
Information
Results
Average score Your score Categories
1. Question
active edge of EOC(end of conversion) signal is called 2. Question
3. Question
4. Question
successive approximation is 5. Question
4 thoughts on “R-2R ladder D/A converter”
Hello,
I am writing a research paper for my senior design project at UCF. I am wondering if I can use your binary ladder network figure (the first one listed) in my paper. The figure will be used as a reference and will be cited appropriately. Thanks.
i think thats the best answer found on entire internet!!! Loved it and very comprehensively explained.
Very helpful content. Thanks
How to do it for 1010… N ….0101