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Abstract

A method is proposed for the determination of the
optimum value of the regularization parameter
(Lagrange multiplier) when applying indirect trans-
form techniques in small-angle scattering data
analysis. The method is based on perceptual criteria
of what is the best solution. A set of simple criteria is
used to construct a total estimate describing the
quality of the solution. Maximization of the total
estimate is straightforward. Model computations
show the effectiveness of the technique. The method is
implemented in’ the program GNOM [Svergun,
Semenyuk & Feigin (1988). Acta Cryst. Ad4,
244-250].

1. Introduction

Indirect methods are widely used in small-angle
scattering (SAS) data treatment. Using a few a priori
assumptions about the object being investigated, they
often allow reliable results to be obtained, even with
poor expetimental data.

Indirect approaches in SAS are based on the
assumption that the experimentally measured set of
intensities J = J(s;), i=1,..., N, can be related by
some integral transform K to a distribution function
in real space p = p(r). Here, N is the number of
experimental points, s is the modulus of the scattering
vector s [s = (4n/A) sin 8, A is the wavelength, 20 the
scattering angle] and the distribution function is
assumed to have a finite support, i.e. p(r) differs from

zero only in the interval D, <r < D_,,. This can be
written in the form J = Kp or
Dinas
Jis)= | K(s, rp(r)dr. (1)
Drin

The principle of the indirect approach, first proposed
by Glatter (1977), is to solve (1) with respect to p(r).
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Here, p(r) can be a pair distribution function
(monodisperse systems) or a size distribution (poly-
disperse systems); the operator K includes corre-
sponding Fourier transform and smearing effects, if
necessary.

The advantages in using indirect transforms have
been extensively described in the literature (Glatter,
1982; Feigin & Svergun, 1987). The main difficulty is
that the solution of (1) is an ill-posed problem, i.e.
small errors in J(s;) may lead to large errors in p(r).
Several algorithms are known (Glatter, 1977; Moore,
1980; Taupin & Luzzati, 1982; Provencher, 1982;
Svergun, Semenyuk & Feigin, 1988; Mangani, Puliti
& Stefanon, 1988; Hansen & Pedersen, 1991). In most
of them (1) is solved by using the regularization
method (Tikhonov, 1943; Tikhonov & Arsenin, 1977),
i.e. by minimizing the functional

TIp] = |J — Kplj + 22[p]. 2

Here, |J — Kpj; denotes the function norm in
reciprocal space which is normally taken in the form

N
IJ —Kpl; = {(N -t Z o’
i=1
Drmax 23y1)2
xP@—jMMWﬂ@H,(n

Dmin

o; being the standard deviation at the ith data point.
Q[p] is a stabilizer containing a priori information
about the solution. A frequently used stabilizer is, for

example, v

d 2
ﬂﬂ=f[$qdn

Diin

)

which requires p(r) to be a smooth function. A
non-negative regularization parameter a plays the role
of the Lagrange multiplier.

Such an approach allows a stable solution of (1) to
be obtained. The procedure is, however, not
straightforward, because some auxiliary parameters
have to be specified. If one supposes that the range
[D.in» Dmax] and the stabilizer Qfp] are fixed, the
value of a becomes the crucial parameter. Indeed, with
o = 0, one obtains the unstable solution produced by
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conventional least-squares methods. Too large values
of « yield solutions that fulfil the a priori requirements
in real space [e.g. p(r) is very smooth], but correspond
to strong deviations from the experimental data in
reciprocal space. According to the regularization
theory (Tikhonov & Arsenin, 1977), an optimal value
of & should exist somewhere in between these
extremes, provided the assumptions leading to (1) are
valid.

The problem of choosing o has been considered by
various authors. One way to estimate it, given by the
%2 criterion (Bevington, 1969), is to select a value such
that |J — Kp,||, ~ 1, where p, = p,(r) is the solution
corresponding to the given o. This, however, requires
reliable estimates of the standard deviations, which
are not always available in practice. Moreover, this
criterion leads sometimes to oversmooth solutions
(Hofmann, 1986, ch. 4.3.1), corresponding to « values
that are too large. A second criterion is given by the
point-of-inflection (Glatter, 1977) or quasi-optimality
methods (Tikhonov & Arsenin, 1977; Hofmann, 1986,
p. 96), which assume that the best solution is most
stable with respect to changes in «. This criterion may
also fail in practice especially as unacceptable
solutions obtained as &« — 0 and « — o0 are also very
‘stable’.

There is thus no universal recipe to choose the
regularization parameter and such a recipe may not
even exist in principle. Often the users of the indirect
methods rely upon their expectations, that is they just
visually compare results obtained for different « and
select the most acceptable solution. This is, in
principle, a reasonable although very tedious way of
solving ill-posed problems. In this paper, this
perceptual approach is formulated in mathematical
terms and an algorithm to select the regularization
parameter is proposed.

2. Perceptual criteria

We first mathematically formulate criteria that are
often used to select the solution visually in real and
reciprocal space. In the following, the notation || f| is
used for the norm of an arbitrary function f{r) in real
space,

Dmax 12
1Al =[ [EG dr] : 5

Dmin

Oscillations. 1t is generally assumed in visual
interpretation that the best distribution function p,(r)
is smooth. A measure of smoothness is provided by
the ratio | p,|/|Ip.|l, where p'(r) = dp(r)/dr denotes the
derivative of the function. This estimate can be put on
an absolute scale by comparison with the same ratio
for a smooth reference function. For example, a sine
function f(r) = sin (rnr/AD), AD = D,.x — Dpin» With

max

n an integer, gives || f'|/I| f1| = nr/AD. Therefore, if the
criterion

OSCILL = (llp;|/1lp.1)/(n/AD) (6)

is close to 1, p,(r) is a smooth monomodal function
(e.g. the pair distribution function of a sphere gives
OSCILL = 1.1), OSCILL =~ 2 corresponds to either
a smooth bimodal or an oscillating monomodal
distribution, and so on.

Systematic deviations. The most important criterion
in reciprocal space is related to the systematic
deviations of the restored function J, = Kp, from the
experimental data set. This can be estimated by
analyzing the residuals 4; = J(s;) — J,{s;), for example,
by counting the number N of successive residuals 4;
that change sign (Hamming, 1971). In the absence of
systematic deviations, the probability of two succes-
sive differences having the same sign is 0.5, whereas
this probability increases if there are systematic
deviations. N, is thus randomly distributed around
half the total number of points N/2 with a dispersion
N2 in the absence of systematic deviations and it
decreases when such deviations are present. In the
absence of systematic deviations in reciprocal space,
the value of the criterion

SYSDEV = N_/(N/2) 7

must be close to 1.

Discrepancy. This criterion measures whether the
residuals obtained correspond to the experimental
errors. It can be taken in the standard form of the
so-called generalized discrepancy (Tikhonov &
Arsenin, 1977, ch. 2)

DISCRP = [|J — Kp,|§ — p*K, p]'2%  (8)

Here, p(K, p) = inf, ., |J — Kp,|I7 is the measure of
inconsistency of the problem, i.e. the ¥2 value of the
best obtainable fit to the experimental data points.
The value of u*(K, p) should be equal to zero when
the p(r) function is described by a number of
parameters N, equal to the number of experimental
points N and increases with increasing ration N/N,,.
In practice, #2(K, p) is never zero due to the rounding
errors. According to the y? criterion (see Introduc-
tion), DISCRP for the optimum solution should be
somewhat lower than 1. For practical application,
values in the range 0.7 < DISCRP < 095 are rec-
ommended (see, for example, Hofmann, 1986, p. 129).

Stability. This criterion, describing how much the
solution changes with changing «, can be formulated
in relative terms as

STABIL = (IIp, — Pa+sall/l1p21)/(S0t/20). ©)

As discussed in the Introduction, according to the
point-of-inflection and the quasi-optimality methods,
a value of STABIL « 1 can be expected in the vicinity
of the correct solution.
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Positivity. In many cases, it is known that p(r)
should be a non-negative function. The natural
measure of non-negativity of p,(r} is

POSITV = | p; I/Ilp.ll,

where p*(r) = p(r) if p(r) > 0, otherwise p*(r) =
a non-negative function, POSITV = 1.

Validity in the central part of p(r). Normally, when
the range [D.;,, D, is correctly specified (i.e.
corresponds to the actual range of sizes in the given
system), most information is contained in the central
part of the distribution p(r), which corresponds to the
largest values of p(r). These values must not only be
the largest but should also be reasonable from the
physical point of view. To avoid unstable solutions
oscillating around zero, the criterion that measures
the validity of the central part of p(r) can be
formulated as

(10a)
0. For
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otherwise p*r) =0 (here 4D = D,,, — D,,;,). The
maximum value is taken from the integrals along the
portions of p(r) with a constant sign. For example, for
the p(r) of a solid sphere, VALCEN = 0.95.

The characterization of the solution in terms of the
criteria just introduced is best achieved with a few
examples. Fig. 1 illustrates some possible types of
real-space distribution functions together with the
corresponding values of OSCILL, POSITV and
VALCEN. The value of D,;, is taken as zero for
simplicity. Among the functions shown, the curves
{a), (c), (e) and (g) are the ones that a trained observer
would most probably select as plausible solutions.
Curve (a) could correspond to a globular particle, (¢)
to an anisometric particle, (e) is a typical profile of a
bilayer and (g) is a bimodal size-distribution function.
Using these examples, one can estimate the plausible
range of the criteria (namely, OSCILL < 3, VAL-
CEN > 0.5; the meaning of POSITYV is clear). Curve

VALCEN = max{||p* R 10b . . -
Pz 1}/l (105) (b), which might correspond to an understabilized
where p*(r) = p(r) if D, + AD/4 <r < D,,,, — AD/4, solution, would probably not be selected. It has a
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) Fig. 1. Different types of characteristic functions and corresponding values of the

perceptual criteria.
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value of OSCILL that is too large for a monomodal
function. Curves (d) and (f) are definitely to be
rejected. The former represents an unstable solution,
characterized by high OSCILL and small VALCEN.
Curve (f), which could be obtained when the range
[Din> Dmax) 18 incorrect, has an unacceptable value
of VALCEN.

In Fig. 2, the reciprocal-space criteria are illustrated
using generated model data. Plot (a) shows the
‘normal’ case: DISCRP and SYSDEYV are close to 1.
The points in this pattern were obtained from the
smooth curve by a random-number generator with a
relative error of 5%. Plot (b) simulates an under-
stabilized solution: DISCRP is somewhat smaller
than 1. Plots (c) and (d) illustrate the result of incorrect
estimates of the standard deviations. Plot (¢) is
identical to plot (a), but the error bars are halved,
therefore DISCRP is too large. In plot (d), a constant
is added to the smooth curve and the error bars are
doubled. Although an acceptable DISCRP is ob-
tained, SYSDEYV indicates that this fit is incorrect.

The parameter STABIL describes the solution
dynamics resulting from the use of the regularization
procedure. To get its estimate on the absolute scale,
the following example can be given: STABIL = 0.01
means that, when doubling «, the solution p,(r)
changes on average by exp (0.01 In 2) = 1.007 times,
i.e. there is a difference of 0.7%. Thus, if STABIL
~ 1072, the solution can be considered to be stable.

The behavior of these criteria with changing o is
demonstrated by example 1, a smeared scattering
curve from a solid sphere with statistical noise (not
shown here), using the method of Svergun, Semenyuk
& Feigin (1988). Fig. 3 illustrates dependence of the
six criteria on o, which correspond well to the
qualitative expectations. The left arrow indicates the
optimum value of « providing the best solution, the
right arrow indicates the theoretical maximum value
of a: o, =~ |K|3/||J||l; (Tikhonov & Arsenin, 1977,
ch. 2). For higher « values, the fit to the experi-
mental data is poor and therefore DISCRP > 1,
SYSDEV « 1. In the lower o range [unstable
solution: p(r) oscillating around zero], OSCILL >» 1
and POSITV ~ 0.5. VALCEN is also small for the
low o values, shows a maximum in the vicinity of the
correct solution and then decreases again, because the
p,(¥) function degrades to a constant for very large o.
STABIL shows a minimum in the range of plausible
a, being, however, small for very low and very high o
as well. The dependencies illustrated here are typical.
A similar behavior has been observed for numerous
theoretical and experimental examples.

3. Total estimate

The perceptual criteria reflect different properties of
the solution and they are fulfilled in the different
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ranges of «. In general, acceptable values of the
reciprocal-space criteria DISCRP and SYSDEV
require lower o values in order to fit the data.
However, good values OSCILL and POSITYV require
larger values of « to avoid oscillating p,(r) functions.
In addition, in the vicinity of the correct solution,

I(s), relative
@+ DISCRP 0.88
u b SYSDEV 0.8
o8 |
[ X.19
i
041
0.2
0.2 0.4 08 08 1
s, relative
(a)
I(s), relative
1t DISCRP 0.61
SYSDEV 1.20
0.8 }
0.6+ el
]
04} M?rum,
0.2
0.2 0.4 0.6 08 1
s, relative
(b)
I(s), relative
”_ DISCRP 177

! h SYSDEV 0.88

0.2 04 0.8 0.8 1
s, relative

(©)

I(s), relative
DISCRP 0.93
SYSDEV 0.28

0.2 04 0.8 0.8 1
s, relative

(@)

Fig. 2. Types of fit in reciprocal space. Smooth curves correspond
to J,(s), points with error bars correspond to J(s;). For details,
see text.
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VALCEN is likely to have a maximum, whereas
STABIL should be small. A combination of these
parameters can then be used to construct an estimate
that summarizes the impressions of an expert and
describes the quality of the solution.

~é— STABIL
~— SYSDE

1+ — TOTAL

)

Fig. 3. Dependence of the perceptual criteria and the total estimate
on the regularization parameter « for example 1. In each plot,
the left arrow indicates the value of « corresponding to the best
solution and the right arrow the theoretical maximum value of o.
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To relate the numerical values of the criteria to a
common scale, ‘probability’ estimates

Pj=exp {~[(4;,= B)/C;)’}, j=1,....6 (1)

can be introduced, where A4; is an expected (‘ideal’)
value of the jth criterion. B; its actual value and C;
specifies the width of the distribution. Using this
representation, all the estimates are between 0 and 1,
the constants C; being ‘scale factors’ for the criteria
presented in Fig. 3.

A compromise between these probabilities can be

found by constructing a total estimate in the form
TOTAL = ). W,.Pj/z W, (12)
J 7
where W, describes the weight (significance) of the jth
estimate. The total estimate also ranges between 0
(totally unacceptable) and 1 (ideal solution).

Numerous test calculations have been carried out
with various sets of parameters 4;, C; and W;. The
set presented in Table 1 provides the optimum balance
between the criteria. Here, the optimum values of
OSCILL, POSITV and VALCEN are those of the
solid sphere. The allowed deviations are largest for
DISCRP and OSCILL because the values of these
criteria may vary significantly with «. OSCILL,
STABIL and SYSDEV are taken as the most
important criteria. This choice will be discussed in
more detail in the next section.

The dependence of TOTAL corresponding to this
parameter set is also presented in Fig. 3. It displays a
pronounced maximum allowing easy determination of
the optimal «. The characteristics of the solution are
given in Table 1.

4. Model examples

Example 1 is trivial and the solution need not
be shown. Since the real-space perception criteria are
based on a solid sphere, the corresponding scattering
curve should be handled perfectly. The resulting
TOTAL = 0.99 could not be obtained in a practical
case.

The question arises naturally as to what would
happen if the characteristic function differed signifi-
cantly from the assumed monomodal distribution.
The present approach works well for such cases even
without changing the parameters of the total estimate.
If one assumes, for example, that the p(r) function is
actually trimodal, the resulting solution p,(r) could
only have OSCILL ~ 1 for large o values, for which
SYSDEV, DISCRP and VALCEN differ significantly
from the expected values, leading to a low total
estimate. On the other hand, in the vicinity of the
correct solution, where OSCILL ~ 3, the correspond-
ing probability is nearly zero and thus does not
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Table 1. Set of default parameters and the resulting estimates for the model examples

Parameter DISCRP OSCILL STABIL
w; 1.00 3.00 3.00
C; 0.30 0.60 0.12
A; 0.70 1.10 0.00
Example
no.
1 0.66 1.08 0.02
2 0.81 5.82 0.11
3 6.02 1.10 0.20
4 0.43 3.06 0.05
5 1.19 3.87 0.03

influence the position of the maximum of the total
estimate due to the other parameters. This maximum
may be less pronounced and the value of TOTAL will
certainly be smaller than for a monomodal distribu-
tion indicating that the solution is somewhat different
from the expected one.

These qualitative considerations are illustrated
below by a series of model calculations. The method
has been implemented for automatic determination of
the regularization parameter in the program package
GNOM (Svergun, Semenyuk & Feigin, 1988; Svergun,
1991; Semenyuk & Svergun, 1991). Starting with the
theoretical value «,,, the program performs a
conventional golden-section search (Press, Flannery,
Teukolsky & Vetterling, 1989) to maximize the total
estimate. In all the following examples, the set of
default parameters shown in Table 1 was used and the
solutions presented here correspond in each case to
the maximum total estimate found automatically. The
corresponding values of the perception criteria and
the total estimates are summarized in Table 1.

Examples 2 and 3 (see Fig. 4) use a simulated
scattering curve from a densely packed polydisperse
system of solid spheres (generated by J. Skov
Pedersen). The number distribution function of
spheres, N(R), which specifies the number of particles
of radius R, is described by a Gaussian centered at
R =30A with the full width at half-maximum of
20 A (average radius of gyration R, =318 A). The
volume fraction of spheres is 0.2. The intensity is
calculated using the Percus—Yevick approximation
(van Beurten & Vrij, 1981) and 5% statistical noise is
added. The interference effects are very strong and the
correlation radius is approximately 250 A. When
treating the sytem as monodisperse with D, =
250 A (example 2), a mixture of particle scattering and
of the interference function is obtained. In this case,
smooth and positive p,r) functions are simply
impossible. Therefore, the total estimate, relying
mainly on SYSDEV and DISCRP, provides the
solution shown in Fig. 4 curves (@) and (b). The result
is totally different if the same data are treated as a

SYSDEV POSITV VALCEN
3.00 1.00 1.00
0.12 0.12 0.12
1.00 1.00 095
TOTAL
1.10 1.00 0.92 0.99
1.06 0.83 0.55 0.44
0.53 1.00 0.94 043
1.14 0.99 0.35 0.58
0.94 091 0.79 0.55
polydisperse system of spheres with D_; =0,

D, = 50 A, asillustrated in example 3 [Fig. 4 curves
(a) and (b)]. In this case, it is not possible to find a
reasonable solution that would fit the data and,
therefore, DISCRP and SYSDEV are sacrificed in
favor of the real-space criteria. As a result, the fit in
reciprocal space is poor, whereas the obtained volume
distribution function, p(r) = V(R) ~ R*N(R), provides
a reasonable average radius of gyration, R, = 24.8 A.
Better restoration of the initial distribution function
is obviously impossible due to the extremely large
interference effects. It must be noted that both
examples describe very special cases; this is reflected
in low values of the maximum total estimates.

Another example (no. 4) was taken from the
paper of May & Nowotny (1989) and presents the
application of the method to a multidomain structure.
The scattering intensity in Fig. 5(a) corresponds to the
two-domain particle consisting of eight spheres,
shown in Fig. 5(b). The corresponding calculated data
contain 6% statistical noise. In this case, a
monomodal function cannot fit the data, therefore,
OSCILL plays no role. The quality of the resulting
solution is fairly good compared to the results of other
indirect methods (Hansen & Pedersen, 1991, example
3).
The application of the method to real experimental
data (example 5) is illustrated using the scattering
pattern of an aqueous solution of phospholipids
(Somjen, Coleman, Koch, Wachtel, Billington, Towns-
Andrews & Gilat, 1991). The experimental data shown
in Fig. 6(a) were collected on the X33 camera (Koch
& Bordas, 1983) of the EMBL at DESY in Hamburg,.
Since standard deviations were not known, a constant
relative error of 5% was assumed. The sample
contained 3.9% (weight percent) of egg lecithin, 2.2%
sodium taurocholate and 93.9% aqueous solution of
0.05 M TRIS-HCl, 0.15M NaCl and 00015 M
EDTA. Under these conditions, disc-like phospho-
lipid bilayers are formed. The resulting profile of the
p(r) function illustrated in Fig. 6(b) is typical for a
bilayer.
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5. Discussion

The examples illustrate that the method selects a
plausible solution using the set of default parameters
for different systems. Of course, any a priori
information can be used to improve the reliability of
the procedure. If, for example, no reliable error

I, relative

0.1 —
o 0.05

01, g1 015 0.2
(a)
p(r), relative
0.06f
VN
0 \\ e
-0.06. >
00 2 200
(b)

|, relative

0.1 —
0 0.05

0.1 s i Q.15 0.2

(©

0s V(R), relative

0.4 ye AN

0.3 \

[} 20 % 40

(d)

Fig. 4. Treatment of the simulated scattering from a densely packed
polydisperse system of spheres. Example 2, curves (a) and
(b): treated as a monodisperse system with D_, =250A;
example 3, curves (¢) and (d): treated as a polydisperse
system with D, =0, D, = 50 A. Dots indicate the simulated
data points containing statistical errors, solid lines indicate the
restored intensities and characteristic functions.
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I, relative

™

5t \.

0.5 —
0 0.05 0.1 s

(a)

p(r), relative

0 50

(b)

Fig. 5. Treatment of the two-domain particle scattering (example
4). Dots indicate the simulated data points containing
statistical errors, solid lines indicate (a) restored intensities and
(b) characteristic functions. The bold curve in (b) corresponds to
the theoretical p(r) function of the model, which is schematically
shown as eight full circles.

' R 100

|, relative

100}

p(r), relative

0 50 r, £ 100

()
Fig. 6. Scattering from phospholipid bilayers (example 5).
Dots: experimental data points; solid curves: (a) restored
intensity and (b) pair distribution function.
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estimates are available, it is better to switch off
DISCRP by setting its weight equal to 0. If one
expects a bilayer structure, the ideal values can be set
for OSCILL ~ 3 and POSITV ~ 0.6. The program
allows the modified set to be saved and used
afterwards for similar objects.

The relationship between DISCRP and SYSDEV
deserves attention. In principle, when the standard
deviations are known, DISCRP can be more sensitive
than SYSDEV. However, incorrect values of the
standard deviations may result in incorrect estimates
(¢f. Fig. 2). Moreover, the ideal value of DISCRP is
not well defined and may vary between 0.5 and 0.9.
Therefore, SYSDEV has more significance in the
default set, but this can easily be changed by the user.

Examples 1, 4 and 5 illustrate that in the normal
cases the correct solution is really stable (criterion
STABIL is low). In some special cases, e.g. examples
2 and 3, the stability is poor and, although the
point-of-inflection or quasi-optimality methods may
fail, the perceptual criteria are still able to provide the
solution.

Other criteria could also be included in the total
estimate. For example, the Fisher information (see, for
example, Frieden, 1989)

Il = | (PO/pe)} dr=min  (13)

may be used to describe the smoothness of p(r).
The difference from OSCILL is that in (13) one
demands more smoothness from the less informative
portions of p(r) [ie. where p(r) is small]. This is
theoretically reasonable, but in practice, since these
parts make small contributions to the scattering
intensity, /[ p] may become a hypersensitive criterion.
If a prior estimate of p(r) is available, one can also
use the maximume-entropy criterion (Skilling, 1989)

S[p, m] = [—p, In(pi/my) + p — m] = max, (14)
k

where m(r) is the prior distribution. Unfortunately,
with an incorrect (or neutral, for example, a constant)
prior estimate, this criterion only degrades the
solution. One should also note that both (13) and (14)
formally require positivity of p(r). Since they
are not dimensionless, additional scaling procedures
are required. In the current version of the program,
criteria (13) and (14) are not implemented.

The present approach is not claimed to be a
universal recipe. Cases may exist where the default set
does not work and a priori information is to be taken
into account for reliable estimation of the o value. In
such cases, however, a low value of the maximum total
estimate (say TOTAL < 0.5) indicates the poor
quality of the solution in terms of the initial
expectations. Normally, when dealing with single-
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domain particles or a monomodal or bimodal
distribution, values of TOTAL ~ 0.7-0.8 can be
obtained using the set of default parameters.

Concluding remarks

The proposed method based on perceptual criteria
allows the optimum value of the regularization
parameter to be determined automatically and also
allows a quantitative estimate of the quality of the
solution to be obtained. Numerous calculations with
model data as well as applications to real objects
illustrate that the set of default parameters for the
total estimate ensures a straightforward solution for
various kinds of objects. This set can, if necessary, be
altered to take into account the user’s experience
and/or a priori information. A similar approach could
also be applied to the methods based on Shannon’s
theorem (Moore, 1980; Taupin & Luzzati, 1982),
where the maximum particle diameter D, becomes
a variable.
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