

Network Regulation by Norm Model:

Empirical Equivalence, Pricing, and Performance of Electric Utilities in Sweden

Tooraj Jamasb University of Cambridge

Magnus Söderberg Centre for Regulation and Market Analysis University of Southern Australia

SIRE Energy & Environment workshop 4 December 2009, Heriot-Watt University

Outline

- Background
- Electricity sector reform and network regulation by norm model in Sweden
- Research questions
- Data, method, results
- Conclusions

First Economic Visions

W. Gladstone: "Of what use is this electricity?"
M. Faraday: "I do not know, but I suspect that one day you will tax it."

"We will make electric light so cheap that only the rich will be able to burn candles".

Edison (1879)

Incentive Regulation

- Regulation of the sector and incentive schemes date back to early days of the industry:
 - Sheffield Company, sliding scale for town gas (1855), Metropolis Gas Act to prevent "wasteful" competition among natural monopolies (1860), House of Commons (1882)
- More recent developments in incentive regulation:
 - Practice: Littlechild (1983), RPI-X based price/revenue cap
 - Theory: Shleifer (1985), yardstick regulation
- 1980-90s Reforms Network regulation an afterthought
- Benchmarking in incentive regulation:
 - Real firms (DEA, SFA, COLS) UK and Norway
 - Norm or reference models Spain, Chile, Peru, Brazil, Sweden

Swedish Reform & Incentive Regulation

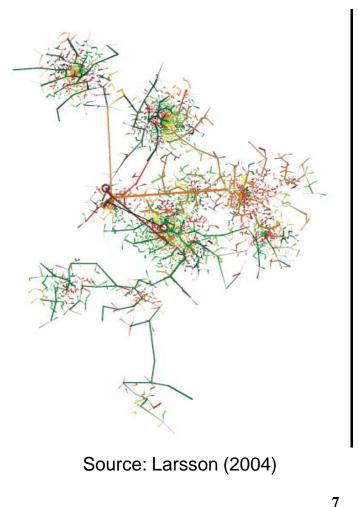
- Electricity sector reform in year 1996.
- Unbundling of the system:
 - generation and supply (competitive),
 - transmission and distribution (regulated natural monopolies)
- Forming the Nordic wholesale market (w. Norway) in 1990

- The Electricity Act, (SFS 1997:875) states that "network tariffs shall be based on <u>objective criteria</u>."
- The Act requires that distribution tariffs be based on:
 - (1) No. of connections, (2) Geographic co-ordinates of connections, (3) Distributed generation, (4) Subscribed power, (5) Cost of regional / HV network, and (6) Quality of service.

Network Performance Assessment Model

- NPAM (an engineering bottom-up model of a "reasonably" efficient network) is used as benchmark for assessing efficiency of real networks.
- Revenue cap, ex-post regulation.
- Charge Grade = Actual firm revenue / Cost of norm model
 - CG > 1 indicates inefficient firm
 - CG < 1 indicates efficient firm
- Threshold CGs set for detailed regulatory investigation:
 - 1.3 in 2003
 - 1.2 in 2004 and 2005
 - 1.1 in 2006.

NPAM: Design


- Several critical parameters derived from hyperbolic tangent functions that are based on customer density and 5 constant terms to resemble empirical data.
- Parameters dependent on customer density:

(1) Lines, (2) Back-up lines, (3) Back-up transformers, (4) Cost of land for transformers, (5) Geometrical adjustment,
(6) Energy losses, (7) Interruption cost, (8) Expected interruption cost.

• For each parameter at each voltage level, the functions are estimated using "reference values".

ModTanh(x) = $(k_1 + k_2 * tanh(k_3 * (x - k_4)))^{k_0}$

-x density (meters of line/customer) -k0, ..., k4 constants

Research Questions

- Do norm models capture the main features of the actual networks?
- How do they affect the pricing behaviour?
- How is network performance affected?
 - Average cost
 - Quality of service
 - Network energy losses
- Are there differences in private vs. public utilities?

Variable		Mean (Std.dev.)		Min		Max	
	Description and measurement unit	Eq (1)	Eqs (2)-(5)	Eq (1)	Eqs (2)-(5)	Eq (1)	Eqs (2)-(5)
ANCost	Average norm cost (SEK/kWh)	0.1951 (0.0442)		0.1157		0.4125	
ACost	Average cost (SEK/kWh)		0.1730 (0.0439)		0.0868		0.3748
Price	Average price (SEK/kWh)		0.2084 (0.0468)		0.0967		0.4096
Cust	No. of customers	20 783 (39 520)	18 877 (36 541)	770	770	455 230	459 668
Leng	Network length (km)	1 577 (2 438)	1 409 (2 093)	116	113	25 180	25 180
LV	Share of deliveries on low volt network	0.7534 (0.1310)	0.7585 (0.1284)	0.2931	0.2711	1	1
ACon	Average customer consumption (kWh/cust)	19 793 (4 531)	19 866 (4 531)	9 642	9 642	44 148	44 148
Dens	Customer density (no./area)	95.751 (178.10)	93.739 (171.59)	0.8606	0.8606	2 104	2 124
Q	Electricity delivered (MWh)	402.6 (684.1)	367.0 (630.4)	11.998	11.692	7 215	7 473
Load	Network load factor	0.4881 (0.0698)	0.4977 (0.0697)	0.2424		/ER 619039 OF ABRIDGE	

Pele	Price of electricity; (SEK/kWh) ^a	0.3270 (0.2337)	0.3188 (0.2279)	0.1000	0.0958	1.1617	1.1897
Pcap	Price of capital; (SEK/SEK)	0.0948 (0.0371)	0.0983 (0.0404	0.0228	0.0228	0.3095	5 0.4142
Plab	Price of labour; average total labour cost (SEK/employee)	19 176 (598.6)	18 690 (893.0)	17 811	16 900	20 913	3 20 913
OT	Outage time (total outage time / no. of outages)	114.7 (329.8)	91.978 (202.13)	0.0300	0.0300	5 667	4 330
OF	Outage frequency (no of outages / no. of customers)	1.0053 (2.4040)	0.9466 (2.0621)	0	0	58.39	58.39
T	Trend	6.0093 (1.4020)	4.7058 (2.2404)	4	1	8	8 8
Reg	Indicator for regulatory regime based on NPAM		0.6720 (0.4697		0		1
CG'	1 - charge grade		0.0304 (0.1395)		-0.3760		0.7910
10	Investor owned utility		0.1344 (0.3413)		0		1
Loss	Amount of energy losses (kWh)		15 389 (25 700)		421		341 181
Out	OT·OF		147.04 (518.56)		0		11 345
Ws20	Number of days maximum daily wind speed has exceeded 20 m/s		0.2159 (0.8586)				
Fore	Share of service area covered by forest		0.4050 (0.2332		CAMBR	RIDGE	Electricity Polic Resea <mark>rင့ရှင</mark> ်္ဌလုပ

^a Eq(1) and eqs(2)-(5) cover the 2003-07 (n=643) and 2000-07 (n=945) periods respectively.

Model Equivalence, Pricing, and Cost Effect

	Dep var: ANCost Eq (1)			Dep v	ar: A	Cost	Dep var: Price		
				Eq (2)			Eq (3)		
Variables	Coeff.		HAC	Coeff.		HAC	Coeff.	HAC	
			std. err.			std. err.		std. err.	
L1_ACost				1			0.2955 **	* 0.0757	
Cust	-4.89·10 ⁻⁶	*	2.75.10-6	-4.19.10	5 **	2.02.10-6			
Cust ²	1.86.10-11	*	9.83·10 ⁻¹²	1.93.10-1	l **	8.31·10 ⁻¹²			
Leng	-1.03.10-5		1.31.10-5	-6.91.10	5	6.55·10 ⁻⁶			
Leng ²	4.18·10 ⁻¹⁰		3.11·10 ⁻¹⁰	3.29.10-1) *	1.82.10-10			
LV	-0.0298		0.0225	-0.0448	8**	0.0180			
ACon	-6.72·10 ⁻⁶	***	1.09.10-6	-2.17.10	5 ***	7.76.10-7			
Dens	6.13·10 ⁻⁴		4.51·10 ⁻⁴	0.0012		3.70·10 ⁻⁴			
Dens ²	-1.04.10-6	*	5.37·10 ⁻⁷	-1.09.10	5 ***	4.21·10 ⁻⁷			
Q^{-1}	2.4182	**	1.0224	3.4463	; ***	1.0493			
Q	5.36.10-5		3.41·10 ⁻⁵	-5.18.10	5 *	2.66.10-5	-5.67.10-4 **	* 8.56·10 ⁻⁵	
Q^2							1.56.10-7 **	* 3.76·10 ⁻⁸	
Load	-0.0114		0.0302	-0.0228	3	0.0205			
Pele	0.0240	*	0.0123	0.0423	; ***	0.0087			
Pcap	-0.0182		0.0375	0.0870	5 ***	0.0317			
Plab	-7.37·10 ⁻⁷		2.87·10 ⁻⁶	6.63.10	5 ***	2.53·10 ⁻⁶			
OF	-2.51·10 ⁻⁴		2.03·10 ⁻⁴	-5.69.10	**	2.86.10-4	-3.61.10-5	1.10.10-4	
OT	-3.87·10 ⁻⁶	**	1.93.10-6	2.64.10	5 ***	7.44·10 ⁻⁶	-7.95.10-8	2.43.10-6	
Т	0.0118	***	0.0010	-0.0017	**	8.03·10 ⁻⁴	0.0035 **	* 4.73·10 ⁻⁴	
T·small							0.0014 **	6.26.10-4	
Reg				0.0065	***	0.0018	-0.0058 **	* 0.0017	
L2_CG				-0.0059	>	0.0073	-0.0195 **	* 0.0076	
L2_CG-B				0.0112	2	0.0173	0.0250	0.0225	
IO·L2_CG				-0.0393	; ***	0.0113	-0.0039	0.0186	
IO·L2_CG·B				-0.3793		0.2304	2.4703	4.5248	
R ² (within)	0.771			0.455			0.431		
n	643			945			775		

ty Policy h Group

1

Test of Similarity - Eqs. (1) and (2) (Avg Cost vs. Norm Cost)

Wald test on	X ² value	Ρ >χ ²
All common slope parameters	895.83	0.000
Cust	1.22	0.269
Cust ²	0.93	0.336
Leng	0.23	0.628
Leng ²	0.19	0.661
LV	7.13	0.008
ACon	65.20	0.000
Dens	0.52	0.473
Dens ²	0.75	0.386
$\frac{Q^{-1}}{Q}$	0.28	0.598
Q	4.73	0.030
Load	0.91	0.339
Pele	1.78	0.182
Pcap	2.96	0.085
Plab	122.83	0.000
OF	0.02	0.901
OL	0.57	0.449

12 UNIVERSITY OF | Electricity Policy CAMBRIDGE | Research Group

Effect on Quality & Energy Losses

	Dep. vari	iable:	Outage	Dep. variable: Losses Eq (5)			
	E	Eq (4)) – – – – – – – – – – – – – – – – – – –				
Variable	Coeff.		Robust Std. err.	Coeff.		Robust Std. err.	
L1_Out	-0.0889	***	0.0215				
L1_Loss				-0.4333	***	0.0786	
L2_Loss				-0.1945	***	0.0617	
Q				27.650	**	12.549	
Q^2				-0.0028		0.0027	
Dens	2.9234		4.7515				
Asset	-9.25·10 ⁻⁴	**	3.94.10-4				
Y05	95.011	**	44.518				
Т	-0.6102		7.8886	-81.929		70.186	
Plab	84.438		138.68				
Ws20	12.797	*	7.7430				
Fore	744.65		1991.2				
Reg	4.3492		17.308	-320.41		236.08	
Load	789.39	*	459.44	-315.28		2190	
Leng	0.2678	***	0.0921	-2.1222		2.7583	
L2_CG	143.83		343.33	-1125.9	*	617.36	
$L2_CG \cdot B$	-312.50		572.20	3626.3		2957.3	
IO·L2_CG	-378.43		565.73	298.98		2905.0	
IO·L2_CG·B	5087.6		3942.4	-119410	*	62284	
Constant	-1081.4		946.86	24425		11083	
Wald χ^2	63.68 ^a			67.98 ^a			
n	781			648			

^a Significantly different from 0.

13 ectricity Policy search Group

Conclusions 1

- Norm models reflect main features of actual networks
- But there are shortcomings in incentive properties:
 - Input prices may need to be taken into account.
 - Quality of service has not influenced the performance benchmark, indicating possible sign of weak incentives.
- Overall utilities responded to incentive regulation and reduced their prices and costs.
- However, efficient IOUs firms have behaved strategically, and
 - increased their prices.
 - increased their costs.
- IOUs more responsive to incentives, and
 - inefficient IOUs improve QoS and energy losses.
 - efficient IOUs utilities reduce QoS (outage length).

Conclusions 2

- General observations on norm models:
 - Static/deterministic as opposed to dynamic benchmarks
 - Don't reflect the evolution of the network
- Less likely to promote innovation
- Interesting example of differences between engineering vs. economic approach to regulation
- Not most useful in their current application
 - But, offer scope as regulatory tool
 - When samples are very small
 - Investment assessment and analysis
 - ...

References

- House of Commons (1882). Bill to Facilitate and Regulate Supply of Electricity for Lighting in Great Britain and Ireland: As Amended by Select Committee, 1882 (200), House of Commons, London.
- Jamasb, T. and Söderberg, M. (2009). Yardstick and Ex-Post Regulation by Norm Model: Empirical Equivalence, Pricing Response, and Firm Performance, Cambridge Working Papers in Economics 0908 / Electricity Policy Research Group 0906, Faculty of Economics, University of Cambridge.
- Larsson, M. B-O (2004). Nätnyttomodellen Från Insidan, Report prepared for The Swedish Energy Agency by MML Analys & Strategi AB. [in Swedish].
- Littlechild, S. (1983). Regulation of British Telecommunications' Profitability. London. Department of Industry.
- Shleifer, A. (1985). A Theory of Yardstick Competition, *Rand Journal of Economics*, Vol. 16, 319-327.

