

Balancing regulation and liberalisation in electricity markets

David Newbery

IAEE European Conference

Vienna 9 September 2009

http://www.electricitypolicy.org.uk

Outline

- Can Europe have liberalised electricity markets and meet its renewables and carbon targets?
- Economics of low-C electricity
- Criteria for market design
 - interconnection and CBT
 - implications of substantial wind
- Market integration and balancing
- Single Buyer or competitive markets?

Economics of low-C electricity

- Depends on EUA price: too low
- depends on electricity price: too risky
 - without FIT or long-term CfD
- depends on future energy policy: uncertain
 - which might favour chosen technologies
- depends on interconnection: inadequate
 - to reduce local volatility

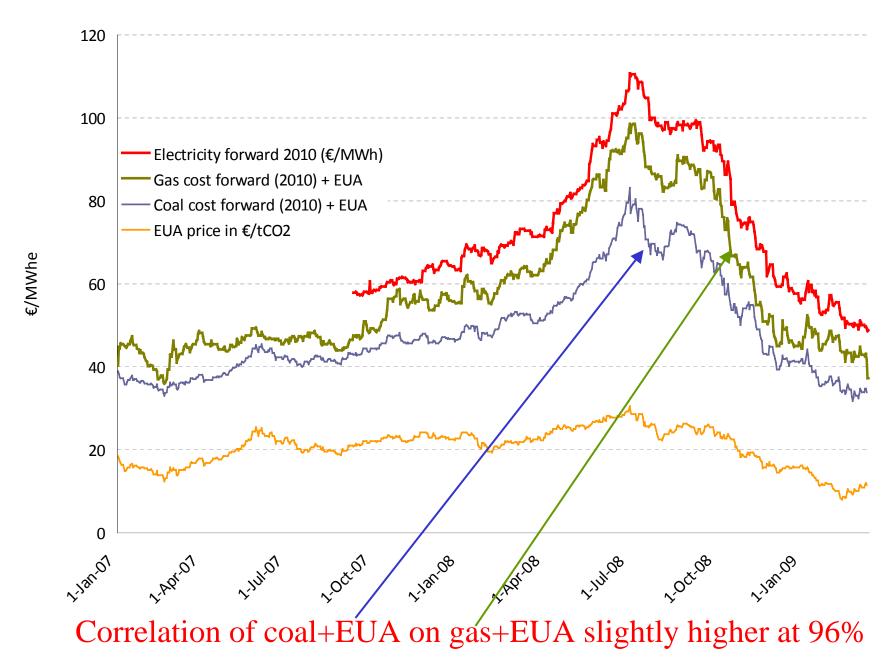
risks for market solutions

Table 7.6 Lifetime levelised costs of plant added by 2020 (£/MWh)

		2020 Renewable Scenarios		
Technology	Conventional	Lower	Middle	Higher
New coal	56.4	57.4	58.7	61.1
New CCGT	56.5	58.5	59.8	62.8
Nuclear	37.9	37.9	37.9	37.9
Onshore wind*	65.7	60.4	60.4	61.6
Offshore wind*	87.8	86.4	83.4	81.7
Biomass*	95.6	95.7	96.5	101.7

^{*}Before any ROC subsidy, currently around £40-45/MWh

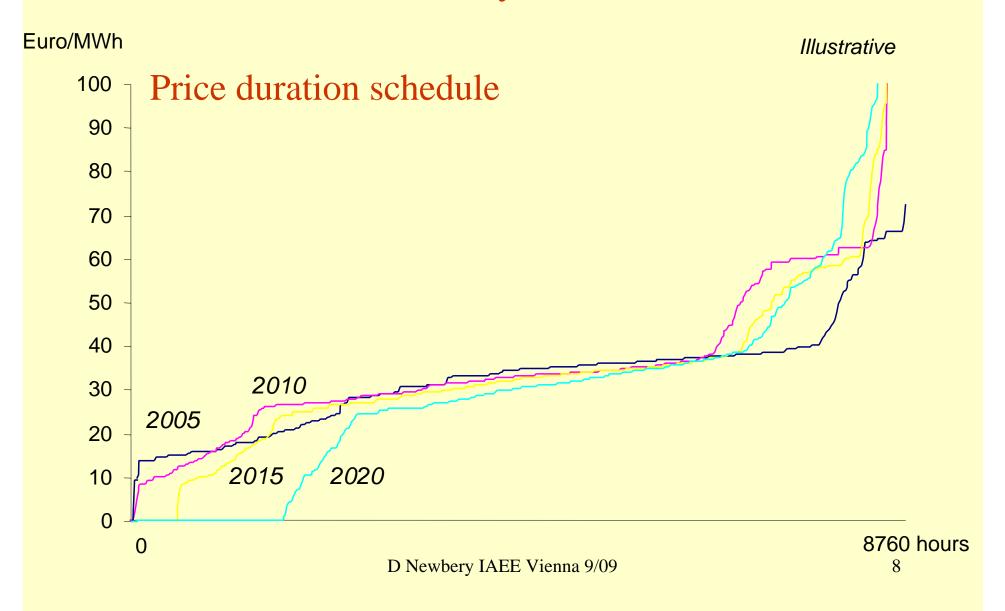
Table 7.2 2020 Price assumptions


Source: SKM/
BERR URN 08/102

Optimistic?

Туре	Price	
Gas (p/therm)	55	
Coal (\$/te)	110	
Oil (\$/barrel)	85	
Biomass fuel (£/GJ)	3.6	
Carbon permit (€/te CO2)	30	

EUA price 25 October 2004-7 August 2009



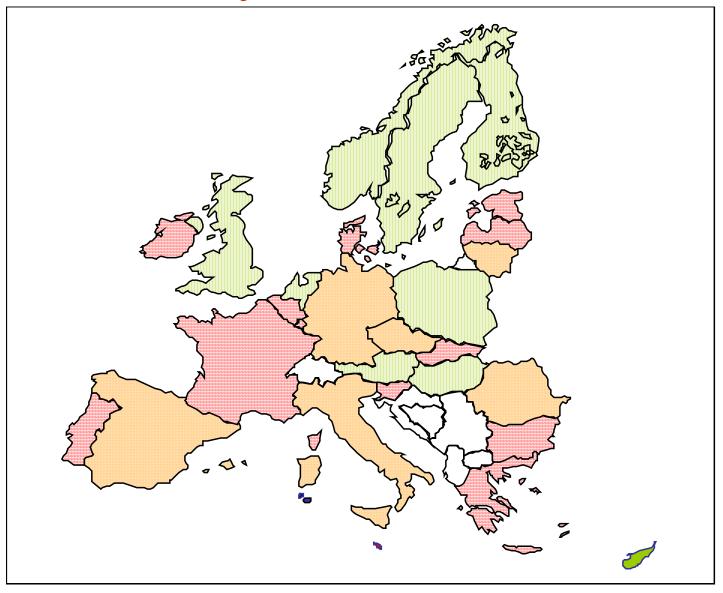
Implications of substantial wind

- Much greater price volatility
 - mitigated by nodal pricing => better dispatch
 - requires CfDs and nodal reference spot price
- Reserves (much larger) require remuneration
 - VOLL*LOLP capacity payment?
 - or contracted ahead by SO?
 - Or will spot price volatility induce contracts that cover availability costs?

Simulation – more volatility, harms baseload (nuclear)

Is nuclear viable in liberalised markets?

- Credit supply drying up
 - low risk free rate (indexed bonds)
 - but high cost of capital to most companies
- Low debt-equity needed for construction
- electricity price-cost margin very volatile
 - issue electricity indexed bonds?
 - or require long-term carbon price guarantee?


Is any electricity investment viable without an off-take contract?

Criteria for market design

- Foster competition and entry => efficiency
- Incentives for timely, efficient (location and type) and adequate investment in G and T
 - reflecting comparative advantage
- Reflect social cost of carbon
- allow RES/RD&D support without distortion
- deliver efficient dispatch
- at acceptable cost to final consumers

Many markets still concentrated

very highly concentrated
– HHI above 5000
highly concentrated –
HHI 1800-5000

moderately concentrated – HHI 750-1800

Implications for Europe

- European market operates as integrated whole
 - efficient Europe-wide dispatch
 - efficient SO/balancing across borders
- Renewables built where cheapest
 - but costs share equitably
- Cost-effective interconnection as needed
 - to reduce cost of intermittency

None of these currently guaranteed

Interconnection

- Under-investment in connecting markets
 - benefits of robustness, competition undervalued
- optimal transmission investment needs information on generation investment plans
 - when, where and what (wind or dispatchable?)
 - wind increases need for interconnection
- Hampered by vertical integration, opacity
- Who pays and how?

How well does cross-border tariffication work?

Inter-TSO compensation

- CBT for existing network is zero-sum game
 - unlikely to lead to efficient pricing
- New cross-border links should add value
 - issue: how to finance/build to deliver net gains
- => Leave agreed CBT for existing network?
- Design mechanism for new links
 - planning agency selects best projects
 - simulates gains, proposes charges to TOs
 - tenders for construction

Coupling and balancing

- Market coupling improves interconnection
 - Benelux as example
- Fight to run PX hinders co-operation?
 - APX and EEX cannot agree auction time
- Cross-border balancing reduces costs
 - supports liberalised competitive market
 - but inter-TSO rivalry thwarts?

Spatial and temporal optimisation

- => nodal pricing + central dispatch
- Nodal price reflects congestion & marginal losses
 - lower prices in export-constrained region
 - efficient investment location, guides grid expansion
- Central dispatch for efficient scheduling, balancing
- Market power monitoring benchmark possible
- PJM demonstrates that it can work
 - Repeated in NY, New England, California (planned)

Towards a Single Buyer?

- RES problematic without contracts?
 - Most markets have FITs
 - Balancing market works overtime with wind
- Reserves need adequate revenue to stay on system
 - or a contract
- Nuclear problematic without a long-term contract?
 - But then need a Single Buyer?
- Does this also solve market power issues?

What models for a viable market design?

Underwriting liberalised markets

- Ensure liquid transparent spot markets
 - to guide contracts, remove entry barriers
- Allow high scarcity prices
 - to offset zero prices from wind, encourage contracts
- Nodal pricing
 - => right location, S and D responses, contracting
- Interconnection, integration and C CfDs

Viable technologies compete in markets

Conclusions-1

- Renewables targets require and currently lack
 - adequate interconnection
 - efficient market design for dispatch and balancing
- => ideal: nodal pricing + pool/SO control
- transition arrangements
 - for new/old generation and for CBT
- => transition contracts to avoid excess rents

Conclusions-2

- Renewables and policy uncertainty undermine liberalised market
- => threatens *all* generation investment
- => Single Buyer +long-term contracting vs liquid markets and contracts for liberalised market

Nuclear power needs an attractive offering to compete politically with renewables:

Would a carbon floor price rescue the market?

Balancing regulation and liberalisation in electricity markets

David Newbery

IAEE European Conference

Vienna 9 September 2009

http://www.electricitypolicy.org.uk