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Abstract.

A basic neural network is built keeping the real neural connectivity around the
Purkinje cell of the cerebellar cortex. The output of a neuron is the transformation, by a
linear or non-linear firing function, of the summation of weighted inputs. Covariance
leamning rules are used for synaptic weights. It is assumed that only synapses between mossy
fibers and granule cells, and between parallel fibers and Purkinje cell, are modifiable. The
output range of such a unit is studied in the linear and non-linear case searching extremas
of the output with respect to mossy fiber inputs. Asymptotic stability is then shown for an
isolated linear unit with conditions on several parameters, studying solutions of an
associated time-delay equation. This result can be applied to a non-linear unit.

1. Introduction

The study of learning and memory in the cerebellar cortex involves
various topics such as, for example, nets acting like pattern associator (Marr 1969;
Albus 1971; Fujita 1982), or the identification of circuits to implement classical
conditioning (Thompson 1990).

In this paper, the preliminary study of the stability of a functional unit
built around a Purkinje cell, and called for this reason a Purkinje unit (Chauvet,
1986), is offered. The Purkinje unit is defined as a hierarchical neural network with
external inputs (mossy fibers, climbing fiber and "external context"), and a unique
output. The global neural network is thus a network of neural networks. This
hierarchy allows us to demonstrate and to anticipate certain comportments of the
network at the higher level from the study of the lower levels, specifically from
interactions between Purkinje units and their own individual properties (Chapeau-
Blondeau and Chauvet, 1991).

Regarding learning and memory abilities, it is shown that Purkinje units
are asymptotically stable. Therefore, construction and study of networks composed
of Purkinje units is possible with biological constraints, i.e., (i) real connectivity,
(ii) specific activating or inhibiting synaptic property, (iii) anatomical hierarchical
structure. Stable properties of the network suggest a mathematical interpretation of
the functional properties of the cerebellar cortex. However, neurons in a Purkinje
unit are assumed to satisfy covariance learning rules (Sejnowitz, 1977; Chauvet,
1986).
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2. Representation of a Purkinje unit

2.1 Description of a Purkinje unit

Output activity along the Purkinje cell axon and input activity along the
climbing fiber are respectively denoted as Y and V. Fig. 1 shows a Purkinje unit
with notations as follows: the input pattern U is a vector with g elements (the
number of granule cells) 1 or O that represent information propagated along the
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Figure 1:A Purkinje unit. GC represent the Gol‘gi cell, PC the Pu;kinje cell, GrC

the Granule cells and BC the basket cells.

g mossy fibers. External context is defined by X, and X, , ie. activities
propagated along the parallel fibers that are connected with the Golgi cell or with
the star cells or basket cells that belong to the unit but do not issue from this unit.
X, is the activity on the parallel fiber that originates in granule cell i. Other neurons
in the unit are the Golgi cell and b star or basket cells. All the synaptic weights are

positive and are included in the following equations. ¢,¥ and M are assumed to
be modifiable and positive.

The output S of aneuronis S =F(s, +E aE) where thereare n synaptic
inl
weights a; and inputs E, and s, a basic activity . F is a firing function that is taken
equal to identity or equal to a sigmoid defined by: F(s)=(1+e “n1 with a>0.
With this model of neuron, equations which give Y as a function of inputs and unit
parameters are deduced from figure 1 (Chauvet, 86).
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2.2 Definition of a symmetrical unit

We call a symmetrical unit a simplified Purkinje unit, for which:

Vlale {1”8) s 03200’ 6?20{’ G;qu, ﬂ;’ﬂp Tl;”\p B.’,'=Bj' 11'2%’ %-"Yos Y(’Yl
We then obtain: )

P : e
X = F(0,+Y 0\U;-0,F(n,+gn X +n X +n,V +n,Y U)) , m

= =l
. g . R

and Y = Fy+ Y0 X 41V -bi, F(Y,+ 21X +1; x/)) )
With a firing function'equal to identity, the expressions of X and Y are:

X = 1+g<52"11 (6,-1,0, +,):-,: (o]0 n)U;-n,0X,-00,V) , 3)
and Y = hy- buﬂo+2 (5 -BIYX 1V -biLY, X, “)

iwl
Learning rules are: ___...(t) = B.(X(0) -X(0)U,- 'f) (5)
du;

and --—(t) = o, (X(0) -X(0)(Y() -T (1)) (6)

with o,,B<0 for 1<i<g ,where X and ¥ are the weighted means of X and
Y. For a time-dependent function  S(¢), S() is defined by:

S=L [ Sa-te Tdrwith M=TE€D
M e

All results obtained for a symmetrical unit are valid for a Purkinje unit.
3. Mathematical study of retrieving

3.1 Output range in a linear symmetrical unit

We may now search extrema of function U—X(U) in E defined
by E=lve® /v,=0oul, 1<i<g} . The graph of X is a hyperplan for which the
derivative with respect to U; is (6,/-0,1,). If E is bounded then the function X(U)
admits one minimum, denoted X..n» and one maximum, denoted X,,,.: Because the

min

positivity constraint implies X(U=0)>0 and denoting E, the function such that
(E.(x)=1if x>0 and E,(x)=0 if x<0), X is at maximum for :

= XCUZ) with U= (E(0]-0) g, - a.1)

Similarly, denoung E the function such that E (x)=0 if x>0 and E (x)=1 if x<0,
X is at minimum for:

Xp= X(U) with U= (E(01-0;1) )igs, - (12)
This result shows the interest of the loop {granules-Golgi-granules}. The
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value (6/ - 6,M,) can be either negative or positive, As a consequence, the
difference between two outputs of X for two different patterns of U is greater than
if X depended only on 6,7 .

The function Y: X —Y is defined in [X,,;,.X..J and is an affine function.
Therefore it takes its extrema only in X, and X,....

In this case, the loop {parallel fibers-Basket cells-Purkinje cell} has the

same application as in the Granule cell subsystem: the (p,-by,) value
increases the differences between different inputs of X.

We note that only one pattern of U can represent either the best or the
worst performance.

32 Output‘range in a non-linear symmetrical unit

For such a unit, X and Y are non-linear with respect to U;. The number of
local extrema of functions X(U) and Y(U) are more numerous than in the linear
case because the derivatives of these two functions vary about zero. Indeed, the
derivative of X(U)) is:

dX - 7 £ j i ) dX
7 = F (0, o0, F@)-(01-0,F ' @-E, 1)
j i'l U;
dax F'(x)

therefore .= (6, -o,n,F (z)) where x and z depend of U,
dU, T+gnoF ®F@) nF !
F’ is a strictly positive gaussian function so that the sign of the derivative of X(U)

takes the sign of (o] -o,M,F'(z)) . We see thatif o,n, is not too far from o/, or
z and F'(z) vary sufficiently (i.e F is non-linear), the derivative varies about 0. The
same holds for Y(U). The derivative depends on the sign

' .
of (E 1, -bgu,y, F'(w)) and on the derivative of X(U)). Plotting functions X and
isl
2 N
Y of z U, with different sets of parameters, we find graphs with two or three

j=1
local minima and two or three local maxima, including the bounds.

3.3 Intrinsic stability of a symmetrical unit

In this section we study the asymptotic stability of variables X, Y, and
modifiable synaptic weights, when all entries are constant. The only sources of
time variation are learning differential equations. In such a case, it has been proved
that a unit with linear transfer function is asymptotically stable. Numerical
simulations have yielded the same result for a unit with a transfer function.

‘ .
Equation (1) is rewritten as X(f)=A,+Y_ A0\(1) . Because the weighted
inl
mean is linear and equal to identity when applied to constants, using equation (5),
do, £ -
we obtain: 71.(1) = B, EAJ.(OJl(I) o) (U, -%) for 1<igg . ®)

Jj=l
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Still using equation (5) and setting k=1, it is possible to deduce all the synaptic
welghts o/(1) from o,/(1). Let z-l in equanon (8):

_(o = K (olyoi0) K -EA BU ) and Vie[-TO), i)~ ©)
We have to note that K=0 if U-O and in all other cases K<0,

It is clear that if K=0 then 0,‘ is constant and equal to its initial value.
Similarly, if 6,°@0) is constam then 0,° is a solution of equation (9) because the
weighted mean of o, is 6,°. This, together with equations (8), implies that the
efficacies 6,' do not vary and that X is therefore constant.

Let us now assume that K<0 and 6,°(t) are not constant. We need
additional transformations to solve this case. First we have introduced an auxilliary

function g such that: oi(t) = .fjﬁ(t)e T . After putting g in equation (9) and
applymg the change of variable u=¢-1 in the mtegral we obtain:
1
(z) = (22800 + (- 50) (10)

The initial function go is ca]culated by LA
It is possible to show the convergence of o,' using the three following
steps (P. Chauvet et al., submitted).

(i) The characteristic equation P for (10) is calculated:
PO = A=K+ )A+K f{ e =0,

where A is a complex number. The complex roots of P are pairwise conjugated and
the set of zeros is infinite, countable and all zeros of P can be ordered in a
sequence A, A,, ..., such that |A, |0 when k—ec. For any real a, the number of
zeros whose real parts are greater than a is at most finite. All zeros have finite
multiplicities (Gorecki, 1989).

(i) The complex roots of P are localized using asymptotic formulas. We deduce
that real parts x, of complex roots of P are strictly negative if:

|K|Te < 4k*n*(e-1) . (11)

(iii) g is expressed as a linear combination of terms (Wk(’)e 1") , where w, is a
polynomial of degree equal to the multiplicity of the root A, minus one. Then,
because the two real roots are of multiplicity 1, we
obtain &,() =q, +___.(t)e where g, is built with complex roots only. With

condition (11), o, converges with time. As a consequence, synaptic weights &,
and output X converge. From this result and using the same method we have

shown that synaptic weights u'; and Y converge.
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4. Discussion and conclusion

In this paper a Purkinje unit has been swdied in two cases: (i) when
formal neurons are linear, (i) when formal neurons fire with a sigmoid transfer
function. The condition of stability for an isolated unit has been mathematically
determined in the linear case. The capacity of the memory of a simplified unit has
been studied by searching for the number of local extremums of the function that
associates the output of the unit with an element of the input pattern. In the case
of a linear unit, the explicit values of the patterns are obtained for the global
minimum and maximum. In the case of a non-linear unit, the number of local
~‘extrema can be very high if the transfer function is sharply no-linear. The capacity
of classification and separation of patterns is highly increased.

However, further numerical simulations have shown that the results of
stability can be extended to the case of a Purkinje unit with non-linear transfer
functions (P. Chauvet et al., submitted). The mathematical study of linear neurons
in the Purkinje unit is of great interest because of the possible prediction of the
sense of variation of synaptic weights. Specifically, they have been determined
together with the outputs X and Y as a function of inputs X, , X, and V. The sense
of variation of synaptic weights of a unit depending of other units that are
connected with it, via outputs X and inputs X, and X,., can be calculated, leading
to specific logical variational learning rules for the network of Purkinje units.

The condition of asymptotic stability for the network of Purkinje units has
been determined using mathematical method. The same condition of stability has
been found for one unit plus a set of conditions on those parameters that are
included in the global connectivity of the unit. The network including the delays
of transport of activity between units has been implemented on a parallel computer
system with transputers. All these different methods lead to a better and more
coherent interpretation of the ability of the cerebellar cortex to store and retrieve
patterns of activity.
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