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Abstract The stability and bifurcation structure of a theoretical au-
toassociative network is studied. The network consists of randomly con-
nected excitatory neurons, together with an inhibitory interneuron that
sets their thresholds; both the degree of connectivity between the neu-
rons and the level of firing in the stored memories can be set arbitrarily.
The network dynamics are contained in a set of four coupled difference
equations. Their equilibrium properties are investigated, analytically in
certain limiting cases and numerically in the general case. The regions
of parameter space corresponding to stable and unstable behaviour are
mapped, and it is shown that for suitable parameter choices the network
possesses stable fixed points which correspond to memory retrieval.

1. Introduction

Most recent memory network research has been dominated by models based on
analogies with statistical mechanical systems [1]-[3]. This has provided powerful
tools for the study of a somewhat restricted class of networks. The basic model
[1] is very far from the biology, involving such assumptions as symmetric cou-
pling between ‘neurons’ which can be simultaneously excitatory and inhibitory,
high (50%) firing activity in memory states, artificially set firing thresholds, etc.
Although considerable work has been done in relaxing these assumptions (e.g.,
[4]) the models are still sufficiently unrealistic as to make comparison with bio-
logical systems difficult. Thus it is worthwhile returning to earlier models [5], [6]
and analysing them more rigorously. These models take their starting point from
an actual biological network, and analysis proceeds by conventional statistical
and probabilistic methods, not by analogy with another system.

Our basic network consists of randomly connected excitatory neurons, together
with an inhibitory interneuron that sets their thresholds. Both the degree of
connectivity between the neurons and the level of firing in the stored memo-
ries can be set arbitrarily. The memories are stored via a two-valued Hebbian,
and evolution from an arbitrary initial state is by discrete, synchronous steps.
The theory [7] takes into account both spatial correlations between the learned
connection strengths and temporal correlations between the state of the system
and these connection strengths. (These correlations were neglected in the earlier
theories mentioned above.) Our theory has been applied to the CA3 region of
the hippocampus, using parameter values based as far as possible on the known
physiology of the CA3 region [§].

The theory leads to a set of four coupled difference equations which describe
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the full dynamics of the recall process. For a given set of network parameters,
it is easy to simply iterate these equations and hence follow the timecourse of
the system. However, it is desirable to understand the network behaviour at
a deeper level, and in particular to investigate the conditions under which the
memories are stable fixed points of the dynamical system and also to analyze
the bifurcations which can occur when parameters are varied. Since our network
involves non-symmetric connectivity, it is not possible to use Lyapunov functions;
instead, we have used a combination of conventional nonlinear analysis, coupled
with numerical methods (in particular, AUTO86) to provide a comprehensive
picture.

In this presentation, we limit our analysis to two cases. The first is that of a
randomly connected network which does not store memories. In this case, it
is possible to give an almost complete picture of the stability and bifurcation
structure by purely analytic means. For the case of a network storing memories,
the analysis becomes much more complex and we concentrate on the case of a
large network storing a limited number of memories; a number of analytic results
can be obtained if we further work in an approximation which neglects temporal
correlations - numerical work can then be used to demonstrate that the addition
of these temporal correlations does not cause a drastic change in the qualitative
behaviour of the system, although the precise quantitative details may change.

2. Network

The basic network is shown in Figure 1. The total connection strength from
neuron j to neuron i is W;;Ji; where Wj; is the intrinsic contribution given by
P(W;;=1) = ¢ and J;; is the learned contribution given by the clipped Hebbian
prescription Ji;; = max{ZfZ} : p = 0,1,---,m} where ZP are the memory
vectors, with elements 1 or 0 according to P(Z' =1) = a.

In the recall of a typical stored pattern, which without loss of generality can
be taken to be Z°, the network starts from state X(0) (which typically is a
random distortion of Z°) and updates synchronously to generate a sequence
X(t),t = 0,1,..., according to X;(t + 1) = H(h;(t) — T(t)). Here, H() is the
unit step function, nh;(t) = E;=1 Wi;Jij X;(t) is the input to the ith neuron and
T(t) is the threshold which is set by the total activity in the network according
to T(t) = go + g1 Y Xi(t)/n where go, g1 are constants.

At any point in the recall process, the state of the network is characterised by
the quantities z; and y;, where z; is the fraction of neurons in the target memory
Z° which are active at time ¢ (the “valid” firings) and y; is the corresponding
quantity for all active neurons outside Z° (and thus measures the “spurious”
firings). For exact recall, we require z; — 1 and y; — 0 as £ — oo.

3. Theory

The theory has been developed at three levels [7]. Level 0 neglects all correlations
(and in this respect is equivalent to earlier theories [5], [6]). Level I includes the
correlations between the learned connection strengths J;; which arise because
the J;;’s are computed from a common set of memories {Zf}. Level 2 also



ESANN'1994 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 20-21-22 April 1994, D-Facto public., ISBN 2-9600049-1-4, pp. 7-12

AN
‘1

1 = 44

~
~
N
N

® ‘

QO excitotory neuron
@ hiitory neueon
—a  effect itatory
——q Inhibitory synapse
—)——  direction of signol
Fig. 1. The basic network, consisting of n excitatory neurons (open circles) and one
inhibitory interneuron (filled circle). The excitatory neurons make random connec-
tions with each other, the probability of any one connection existing being c. Before
learning, these connections are ineffective; after learning, a subset of them becomes
effective and in the final state of the network there are excitatory synaptic connections
whose strengths are taken to be unity (open triangles) and others whose strengths have
remained at zero {open circles). The inhibitory interneuron receives input from all the
active excitatory neurons, and in turn sends an inhibitory signal to each of them; no
learning occurs here, and all synaptic strengths are fixed. The initial state of the sys-
tem is set by a firing pattern coming onto the excitatory neurons from some external
source, shown by the lines entering from the left. Once the initial state has been set,
the external source is removed. The network then updates its internal state cyclically
and synchronously.
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includes the correlations which build up between the state vector X(t) and the
Ji;’s, due to the progressive recall process. The full theory is given in [7]; here
we give only the Level 1 theory, which involves two coupled difference equations:

El(t)) (E,,(t))

2 =0 —2 ], =¢ | —-+

t+1 (Ul(t) Yi+1 (Tn(t)

where ®(-) is the normal distribution function and z; and y; are the average
firing levels, for correct and spurious cells respectively, at time-step ¢. All the

quantities on the right-hand sides can be expressed in terms of z; and y;. The
expectations are

El(t)
En(t)

aczy + (1 — a)epy: — ET(t)
acpz; + (1 — a)epy, — ET (1),
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where p =1 — (1 —a?)™ and
ET(t) = go + g1az¢ + 91(1 — a)ys,

and the standard deviations o;(t) are given by somewhat more complicated
expressions [7]. The Level 2 approximation is similar to the above, but introduces
two further (non-observable) quantities x} and y, and consists of a set of 4
coupled equations [7].

4. No memories

We commence our stability analysis by treating the case where all J;; = 1, so the
system stores no memories. However, the neurons are still randomly connected
through W;;, and we can show that parameter space can be divided into three
regions: extinclion, where the only stable fixed point corresponds to all firing
activity zero; stable, where there is a stable fixed point with non-zero activity;
unstable, where there can be a variety of behaviours, ranging from orbits of
period 2 to chaos.

5. Memories

In the case of a network storing memories, it is only possible to do a reasonably
full analysis of the equations in certain simplified cases. One such case is the
Level 1 equations for a network containing a large number of neurons. Taking
the limit n — oo (and also for simplicity setting go = 0), the Level 1 theory
reduces to a single equation for the equilibrium number of valid firings (¢ =
limz, as t — oo):
z = ®(Az + p),
where
_ -9 _(—g) _a 1
N Ve (1—a)®(p)’

and v is a known function of m and a. This equation is formally similar to
one studied by Amari [9], so a parallel analysis can be applied. (Note, however,
that aithough the equations are formally similar, the interpretation of the results

is different, since Amari’s network does not store memories.) Some results are
summarized in Figure 2, where the bifurcation lines are given by

uy = ++/log(A2/27) — \® (:}:\/log(/\2/27r)) .

Memory recall can only occur for parameter values in the hatched region.

Some further insight into the recall region can be obtained by plotting 4 and z
as functions of the inhibition strength parameter g;. Figure 3(a) shows the ap-
pearance and subsequent disappearance of a bistable region (two stable and one
unstable branches) as g, is increased; the upper branch corresponds to memory
retrieval (the spurious activity, y, is small throughout this region). Figure 3(b)
relates this to the behaviour of g, with bistability for py < p < p_.
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Fig. 2. The stability regions for a network storing memories. The analysis is based
on the Level 1 equations in the limit as the number of neurons n becomes large. The
intrinsic threshold go is taken to be zero, and the quantities A and u are not free to
vary, but are related to the remaining parameters in the model as given in the text.
The regions are: MONOSTABLE, in which z (the average valid firing activity in a
memory) has only one stable fixed point; BISTABLE, where z has two stable fixed
points; PERIODIC, where = has a stable cycle of period 2 and there are no other
attractors. Memory recall can only occur in the hatched region A > V27, py < 4 <0,
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Fig. 3. The behaviour of the fixed points as a function of the inhibition strength
parameter g; for the case m = 100, a = 0.11, ¢ = 0.5, according to the Level 1 theory
in the large-n limit. The upper figure (a), produced using AUTO86, shows the locus of
the fixed points of z, with the solid lines corresponding to stable fixed points and the
broken line to unstable ones. The upper solid line represents memory retrieval. The
lower figure, (b), shows g, along with g_ and g4, on the same g;-scale. Comparison of
(a) and (b) shows that a change from monostable to bistable behaviour occurs when
4 enters the region between g and py.
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6. Conclusion

We have investigated the stability properties of a particular autoassociative neu-
ral network which incorporates a number of biologically realistic features. The
network dynamics is contained in a set of coupled difference equations which
govern the time evolution of the firing activity. For the network to store and
retrieve memories, it is necessary to establish that in the long-time limit these
equations possess equilibrium solutions which are stable fixed points with firing
activity close to that of the stored memory patterns. This has been achieved ana-
lytically in the limiting case of an infinitely large network storing a finite number
of memories, if temporal correlations are neglected. This analysis also indicates
that, because of uniform convergence, a large network will have a behaviour
which is similar to that of the infinite one. Numerical work has confirmed this,
and has also shown that the stability and bifurcation structure is similar when
temporal correlations are included.
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