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Projection Learning: Alternative Approaches to
the Computation of the Projection
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Abstract. We introduced in [13] {14] [15] the paradigm of considering
a feedforward neural network with one hidden layer as a non-orthogonal
base in a function space and have derived a new learning algorithm,
Projection Learning: It consists simply in shifting the manifold spanned
by the base in such a way that the distance to the function to be ap-
proximated is minimized. We have used up to now the metric tensor of
the base to compute the projection of the function to be approximated
onto the manifold. In the present paper we show alternative approaches
to that computation: An approach via recursive least squares, which is
also an approach used in system identification and by the Kalman filter
algorithm, and two approaches postulated to exist in the primate visual
system, and implementable via an auxiliary neural network.
Keywords: Tensor Theory, Projection Operators, Metric Tensors, Ra-
dial Basis Functions, Multi-layer perceptrons

1 The general approach

In the present paper we shall concentrate on the mathematical aspects. Refer
to the papers above and [16] for the paradigm. Our aim is to teach a network
to approximate as well as possible a function F given by examples F(zi),k €
{1,.., M}, where M is the number of examples. Let g;,i € {1,.., N} be the set of
arbitrary differentiable functions computed by the N hidden-layer neurons, and
gi(ze), k€ {1,..,M},i € {1,.., N} be the output values computed by the hidden-
layer neurons for given inputs z;. We shall assume a linear output neuron?. The
problem belongs to the class of separable non-linear least squares [4] [5] [6]. For a
given set of weights from input to hidden layer, we can then express the problem
of computing the optimal set A*,i € {1,.., N}3, of hidden-to output layer as a
least-squares problem, assuming the number of examples greater or equal to the
number of hidden-layer neurons:

3 Algi(zi) = F(zi) ,Vk (1)
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? We have shown in [16] the extension to a non-linear output neuron with invertible
activation function; extension to multiple output neurons is trivial

3 The superscripts do not indicate power exponents!
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Since the system is overdetermined, there will be no exact solution; however,
the solution found A(zi) = 3_; A'gi(zx) will be the orthogonal projection of
the function F(z;:) to be approximated unto the linear submanifold in function
space spanned by the hidden-layer neurons. Since we want the function A(z)
to be as close as possible to the function F(z;), all that remains to be done is
to shift the submanifold by changing the input weights in such a way that that
distance is minimized, using e.g. gradient descent. Let D be the distance to be
minimized, usually a mean-squared error, and v the vector of all the input to
hidden-layer weights:

D(F,A(M) = L. (F(2) = A(r,2)) = L (F(2) - &, A9,(=))’ —  (2)
4D(RA) - d(Z,(F(z)—d;,A"gum)’) = T [~2(D(F, A(7)) Lo

)

= S-20(E A E (o) + e ay

dD(F A(‘/))

iy av . o
The term —Z;:;— involves computing the derivative of every component of a
matrix w.r.t. every component of its inverse and goes thus with N* if N is

the rank of the matrix. We have shown in [16] that D(F, A(-y))—z:-h- simply
cancels out, leaving the final formula:

B =2y Sae@ et

We compute usually A =3 2 9" Ay, which is the direct solution of the normal
equations: g#¥ are the components of the coniravariant metric tensor, the inverse
of the covariant metric tensor g,,,, which in turn is defined as: g, =< gy, 9, >,
<, >denoting the scalar product, summing over all z;. The covariant components
A, are computed by: 4, =< F,g, >

Here, however, we shall introduce two other options, which are of interest because
they shows links to other neural network approaches resp. to other estimation
algorithms.

2 Computation of the hidden to output layer weights by °
gradient descent

One option is the approach used by Daugman, Pattison and Pece [2] [9] [8]* to
compute expansions of Gabor functions or Poggio [10] for Hyperbasis functions
of fixed shape: They compute A” using the minimization of an energy expression,
and implement it via neural networks of different topologies: Vu

<Fgu>=3 02, A9(2) — < Fg9u>=3, g A’ (6)
* See also [3]
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which gives the energy:

E= Z(< Fiogu> _ZguVAu(t))Q (7)
b v

and thus the following expression:

M) o B 9% (< Frgu> =T, GuwA”())go ®)

The algorithm can be implemented as above, i.e. via gradient descent; since
the energy is convex, a deterministic approach is sufficient.

3 Computation of the hidden to output layer weights by
recursive least squares

Another approach is recursive least squares computation, such as is used in
the Kalman filter or generally in system identification [12]: We compute A”
iteratively, which avoids the need to invert a matrix, except once at the start,
to initialize the system: We take directly the approach from [12], pg. 322 ff.:
Writing the covariant metric tensor as a function of a variable t:

gur(t) = Zgu(s)gu(s) , 9)
s=0

Once t is equal to the total number of dimensions of our system, thus in our case
the number of examples we have, we obtain: g, (t) = g..
We can also write:

Iuw(t) = 9 (t = 1) + 9u(t)94 (1) (10)
We define g#”(t) as the components of the inverse of g,,(t), and generally:
A(t) = L, 9w (A4 (H) and A7 (1) = 30, 9*" (1) Au(t) (11)

where
Au(t) = Lo gu(9)F(s) Thus : A(t) = T, ¢* ()[Au(t = 1)+ F (t)gu(t)(]m)

Inserting from above:

Aty =) g* (gt — DAt — 1) + F(t)gu(t)] (13)
m
since we have:
guv(t - 1) = guu(t) - g,,(t)g,,(t) (14)

we can write:

A ) =) " (Olgu)A (E ~ 1) — (A ( — 1) + F()gu(®)]  (15)
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Contracting g** with g,; to 8/ 3, g#*g,i = &}, where 8! is the kronecker
delta, we obtain:

AV () = A (t=1)=) D g . (B)m A (E- 1)+ F(t) Y g**(t)gu(t)] (16)
J7 ) b

From which we obtain:

A(@) = A (- 1)+ g"(OIF () - Zys(t)A‘(t - 1) (17)

which allows us to compute A recursively, by letting t run through all the
examples. A result from [12] allows for recursive computation of the inverse

gr(t):

i X5 9%t = gij(t)g?* (2 — 1)

g’“’(t) = gl"’(t - 1) - 1 + E” zy g,,(t)y“”(t - l)g,,(t) (18)
From that equation we obtain an equation for g#(t), also in [12]:
_ 2, 9" (= 1)gu(t)
AL B S SO Y 9

4 Comparison of methods used to compute projection

The method is generally faster than backpropagation by one order of magnitude
or more (Cf. fig. 2 and [16]), but the choice of fastest implementation depends on
circumstances: The direct inversion is definitely the fastest if the number of nodes
is not too big, since the complexity of the method increases with the complexity
of the matrix inversion; The neural-network approach via the computation of
the contravariant components is suitable if we already have a neural-network
architecture, furthermore it might be more suitable if we want the network to
be fault-tolerant; the approch via recursive least squares is interesting if we have
little storage space w.r.t. the number of samples we want to train or if we simply
want to train online, i.e. we process the data as it comes in, and delete it after
having used it once ®. It is also possible to apply recursive least squares in
parallel, while the base itself moves, if we introduce a suitable forgetting factor.

5 Conclusion and outlook

We believe that the approaches outlined here will provide further options to the
application of the projection learning paradigm: It demonstrates the flexibility
of implementation of the algoritm, giving it another interesting facet, besides
its superior speed and its lack of parameters to adjust as compared to classical
approaches.

® See {[11] for such an application with backpropagation
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We have applied our algorithm to the detection of inhabited sites on satellite
images, with remarkable results [17]. We show in fig. 1 the general behaviour of
the algorithm, and in fig. 2 a comparison of projection learning to backpropaga-
tion, both implemented with standard gradient descent.

We are of the opinion that the general paradigm presented, along with other
approaches [1] [7], will shed new light on the intrinsic nature of neural mapping
systems, and will thus deepen our understanding of such systems.
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Fig. 1: Evolution of the system; two sigmoidal filters, four samples; top left
image shows the original XOR-function; the remaining images, top left
linewise to bottom right, show the evolution of the system. Data: 188
iterations, 760 msecs on Sparc 10

Fig. 2: Time to convergence, averaged over 20 runs each: Projection
learning on left, backpropagation on right: Both same initial
random weights, convergence time in secs
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