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Abstract: In this paper we rigorously derive and prove the stability
bounds of the momentum coefficient @ and the learning rate n of the
" backpropagation updating rule in multilayer neural networks. The bounds of
« is found to be -1<o<+1 rather than O<a<l as stated in most literature. The

theoretical upper bound of 7 is derived and its practical approximation is
obtained, which can serve as a convenient guide for choosing 7 in

applications. It is shown that the upper bound of n is proportional to 1+t
These properties are verified in simulation studies of the XOR problem.

1.Introduction

Backpropagation algorithm is a popular updating rule for multilayer neural networks
and its performance has been widely reported in the literature for various applications.
The backpropagation algorithm was derived using the gradient descent method. To
achieve stability, it is well known in practice that the learning rate 1 in the
algorithm should be positive and the momentum coefficient & should be in the
interval [0,1). However the stability bounds of a and | have never been rigorously
derived. Thus it is of great interest to neural network researchers to know the
stability bounds of these two parameters when applying the backpropagation
algorithm, Otherwise, one has to resort to a trial-and-error method to find a pair of a
and n which are stable. - In this paper we present a stability analysis of
backpropagation algorithm which establishes the necessary conditions of stability for
o and 1. The main results are (1)The stability bounds of a is -1<o<1 rather than
0<a<1; (2)The bounds for 7 is O<n<B(k,o), where B(k,a) is a time-varying upper
bound dependent on «; (3)An computable approximation of B(k,a) is given as
2(1+0)b(k), where b(k) can be computed at each iteration step k; (4)These results are
verified in simulation of the XOR problem.

This paper is organized as follows. In Section 2 we describe the neural network and
the weight updating rule. The stability bounds of o are proven in section 3. The
bounds of 1} are derived in Section 4. In Section 5, we present an approximation to
the theoretical upper bound of 1 which is easily computable. Simulation study on the
XOR problem is presented in Section 6. Section 7 provides the conclusion.

2.Neural Network and Updating Rule
Let us define the following notations:

P pattemn index, p=1,2,....L;

L: number of patterns;

m: dimension of input of a neural network;
n: dimension of output of a neural network;
N: number of all weights;
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k: weight updating step;
w: vector containing all weights in a multilayer neural network;
xp. input pattern of a neural network;
yp: output of a neural network;
(). function formed by a multilayer neural network, yp=-f(w, xp);
fi(.): element of vector f(.);
d: desired output of a neural network for the input xp;
w*:  an equilibrium point of the weight vector such that dp=f(w"‘. xp).
A muliilayer neural network can be used to approximate an unknown nonlinear
mapping whose inputs and outputs are observable. The original theoretical basis for
the approximation is the Kolmogorov[1957] theorem. It has been proven by
Cybenko[1989] that any continuous function can be approximated by a two-layer
neural network to any desired accuracy. The weight adaptation method is the back-
propagation ‘algorithm independently proposed by Werbos[{1974], Parker{1985) and
Rumethart[1986]. For an objective function E(w) to be minimized, the updating rule
for adjusting weights in neural network is expressed by
&E

wk+1) = w(k) + n(- 5 + aw(k)-w(k-1)) Q)
where 1] is the leaming rate and a is the momentum coefficient. It is well known in
the literature (Rumelhart{1986)) that 7 is positive and @ is in [0,1). No proof is
given however.
Suppose that the structure of a multilayer feedforward neural network is determined
and it can represent the unknown nonlinear mapping exactly with proper weights w*.
That is, for a given input pattern x P the desired output dp can be obtained from the
neural network output yp=f(w,xp) with weight w=w* , or dp=f(w*. x).
The objective function E(w) is usually defined as the sum of squared error between the
actual output Yp of neural network and the desired output dp for all training patterns:

o TR ®
=224y Gy
Then the updating rule (1) will have the following form:

wik+1) = wik) + 1 }';rp(k)Tep(kna(w(k)-w(k-l)) )

P
df(w(k),x )

where M P(k) =_Tw(k)-p_ and ep(k) =d p—yp(k)=f(w". xp) - f(w(k), x P)

In this paper, we will derive the necessary conditions of i and o which ensure the
stability and convergence of the updating rule (3).

3.Bounds of Momentum Coefficient
Updating rule (3) can be written as
w(k+1) = w(k) +ns(k)+a(w(k)-w(k-1)) @

L T
wheresk) = XM (k) e (k).
=1 P P

P
Defining v(k)=w(k)-w(k-1), we get from (4)
v(k+1) = av(k) +ns(k) ®)
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The solution of (5) is
v(k+l) = o v(1)+11 Zak 's(i) ©

Recalling the assumption that dp-f(w‘ xp). we get following Lemma:

Lemma 1. If w(k)-->w*, then v(k)-->0 and e (k)-->0

Proof: v(k)=w(k)-w(k-1)-->0 asw(k)-->w". ep(k)-d P-yp(k)-f(w"’ x )
f(w(k),x_), and f(w,x) is a continuous function of w. Hence, e (k)-->0 for all

p=1.2...L, as w(k) --> w*. QED
Theorem 1. A necessary condition for the convergence of the updating rule (3) is
that lod<],

Proof: By Lemma 1, v(k) --> 0 and ep(k) --> 0 as w(k) --> w*, That is, for any

£>0, there exists an integer K such that liv(k)ll<e and lle (k)lke for all k>K. For k=
K+1, Eq.(6) can be tewntten as:

oK ly(1) +q za'“" () = v(K+2) - Ns(K+1) )
In view of (7), the followmg inequality can be easily derived:
1+ (1) +n Za"s(l)ll < IVE+2) + qlis(K+ 1)l t)
i=]

As w(K+1)-->w*, v(K+2)-->0, and s(K+1)-->0 because e p(K+1)-->0, w(K+1) is
bounded, and all elements of MP(K+1) are bounded. Therefore, the right hand side of
(8) goes 10 zero. So the left hand side also goes to zero.

Howeve, liv(1) +1 {a’is(i)ll cannot be zero in general, therefore, la<*! should go

to zero as K->0. Consequently lal<]1 is required. QED
This theorem shows that lal <1 is a necessary condition. If 21, then the updating
rule is unstable. The momentum coefficient a is thus bounded by -1<a<1.

4.Theoretical Lower and Upper Bound of Learning Rate N
We will establish the bounds for 7 in two cases:a=0 and O<lof1.

4.1 The case a=0
When 0=0, (3) can be written as ¢

w(k+1) = w(k) +ns(k) )]
Define u(k)=w*-w(k), (9) is the same as u(k+1) = u(k) -ns(k). One way to show the
convergence of w(k) is to require that llu(k+1)ll < lln(k)ll2 Then the following
inequality must be true:

||u(k+l)l|2=llu(k)“2+n ®s)-2nuT ©sT &) < I (10)
nst(k)s(k)Smn (k)s(k) for all k. an
2u (g}sgk) lim
Lemma 2. Let Bk, o)= when a=0, the N B(k,0)=2b, where
T 0s(0) wo->w
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~ 1ij
b= gy MM [ty lpey=MM", M= zM (w*),
an p=!
Ual"
daf(w* x ) f(w*,x)
M(W)=—-—9-.M Zm(W)andm(W‘ [a ]]

Proof: For simplicity, we only prove the case with L=1.
T T
lim o (KM
"> TaomaoM” (e
Sa;
_lim e 0hKuT (M) 4—11
N> ToMuMT©e® );,
i j:
where h(k)=[(f, (#*, X)-£, (W), X)), ...(€ (W*, %)- £ (w(k), X)) '1T. QED
Theorem 2. A necessary condition for the convergence of the updating rule (9) is
that i be positive.
Proof: When'q=0 meupdaungmlelsmvmlbecansetherewdl not be any weight
updating in (9). When 1 is negative, we will show it is impossible by contradiction.
For the simple case of n=1 and L=1, the inequality (11) becomes (13) when both sides
of (11) are divided by 1,
nel MRM ©e220 WM W) 13
where M(k) -—d—r‘%%& is a 1 x N vector, and e(k) = d-y(k)=f(w*, x) - f(w(k), x)
is a scalar, Then fmm (13), we get
27 Q)M (k)ek)

% T oMM ®e
By Lemma 2, after lakg\N the limit w(k)->w* on both sides of (9), (14) becomes

(12)

(14

lim
n2 ——F as)
W(k)‘>w‘ MMT ‘
df(w* x
where MW'Q. That means 1120, which contradicts the assumption that 7 is
negative. Therefore, | must be positive. QED

Theorem 2 claims that the lower bound of 1 is zero when a=0. Given that >0, the
upperboundofn for a=0 can be derived from (11) as follows:

2—-@3@ =B(k,0) when o=0. (16)
sT®s(k)

4.2.The case O<|a]<1
Making use of the definition u(k) = w* - w(k), we get from (3)

u(k+1) = u(k) -nsk)+o(u(k) - uk-1)) an
Multiplying both sides of (17) by s' (k) yields
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ns (k)s(k) (I+a)s ®u(k) - as (k)ll(k 1)-s (k)ll(k+1) (18)
Funhennore we can obtmn the following mequahty from (18)
isT ®s(k) < (1+a)is™ ®u) + los! (K)u(k-1) + 8T @u(k+1)! (19)
Therefore, the upper bound of | is given by
i € Bk,a) T for O<lad<l (20)
where B(k, a)=-L-2!§ 0‘)“0‘)“"’5&)(:)(:;“'1“ ®uk+Dl open oclal<l.
st

When 11=0, (3) becomes w(k+1)=(1+a)w(k)-aw(k-1), which is a system with
eigenvalues 1 and a. The system is marginally stable. Hence, 1} should be positive
for O<lai<1.

The above results can be summarized by the following theorem:

Theorem 3. A necessary condition for the convergence of updating rule (3) is that )
should be O<n<B(k,a) for -1<ax<l, QED

5.Computable Upper Bound of Learning Rate 1

Theorem 3 gives the theoretical upper bounds of | which cannot be easily evaluated
because w* is not known a priori so that u(k) = w* - w(k) cannot be computed as
required by B(k,a). Thus it would be helpful for us to find computable bounds which
are approximations to the theoretical bounds.

By Lemma 2, as w(k)-->w¥*, the limit of B(k,a) is 2b for a=0, and the limit of
B(k,a) is 2b(1+a) for O<lal<1. Because 2b(1+q) is equal to 2b when a=0, we can
say that for all & in (-1,+1), the limit of B(k,o) is 2b(1+¢) at convergence.

Note that

l\:(“k‘)ow* bk)=b @n

Zq i -
where b= b= [958 1 =MOOM' @0 15,0, = MEOMT ),

$r

i j—l"‘
M= SM.®) and 3 = S, (WO,
p=1 p=1
Hence, we can use b(k) as an approximation to b at each iteration step k in the

learning process. In summary, we have the following theorem:
Theorem 4, For all @ in (-1,+1), an approximation of the upper bound of 7 is

]"“Zii'[ 2b(k)(1+a)}. The upper bound can be computed at each step k as the weights

are updated. QED
Theorem 4 states that the upper bound of 1 is proportional to 1+a. Since the upper
bound is only a necessary condition, a more conservative value of 7 should be used
in applications.

6.Simulation Results

The exclusive OR (XOR) problem is investigated here to verify the results obtained
above. A two-layer neural network with 2 neurons at hidden layer can represent the
XOR function as shown by Rumelhart[1986]. With the biases added, there are 9
weights to be adjusted. The activation function at the hidden layer is a sigmoid

function y=l/(l+e'x). The activation function at the output layer is linear y = x.
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The update rule Eq.(3) is applied for a range of a values, and for each o, a small  is
chosen to insure convergence. As shown in Table 1, 9 simulation runs were made.
For each case, the number of iterations (NI) required to reduce the error E in Eq.(2)
below 0.001 is given. In addition the upper bound 2b(k)(1+a) for each case was
computed at each iteration, and the minimum value denoted as B, is listed. It is noted
that the minimum values for all cases occur at convergence. The data of a and Bc in
Table 1 satisfy the relation Bc= 0.445+0.434a=0.44(1+0a) as predicted by Theorem
4. This bound Bc allows us to choose any pair (c.,n}) which guarantees convergence.
Table 1.Computed Bounds B¢ vs O.

al 091 071 -05}1-021001]021}05] 07109
1.} 002 ]005]0081013}0.16] 02 | 0.25] 0.28 ] 0.31
NI | 24843 | 8892 | 4905 | 2416 ] 1638 | 1050 | 531 | 293 ] 124
Bc 100451 0.14 § 023 {1 0.36 ] 045 ] 0.54 } 0.67 | 0.76 | 0.81

On the other hand, we can experimentally determine the actual stability bounds of n
for different o in the following way. For each a in the range (-0.9,0.9), we ran the
neural network program with different learning rates 7). The maximum value of 1| that
can be used before the objective function E starting to diverge is taken as the actual
stability upper bound denoted as Ba. The results so obtained are shown in Table 2.
These Ba data satisfy the relation Ba= 0.4940.50~0.49(1+c). Comparing Bc and Ba,
we see that Be is close to Ba, and yet Be is more conservative. Thus Bc is a practical
and easily computable upper bound for 0.

Table 2.Actual Bounds Ba vs o
a |09}107]05]1-02100})02]051]07]}]09
Ba | 0.04§0.14 1024 10.39 | 048 ] 0.59 | 0.74 ] 0.84 | 0.94

7.Conclusions
Stability bounds for the momentum coefficient a and the leaming rate 7 for the
backpropagation algorithm have been derived. These bounds are -1<a<1 and

0<1\<g‘2'i‘{2b(k)(l+a)}. The validity of these bounds are verified in simulation studies
of XOR problem.
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