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Abstract. The Bayes theory gives the ultimate performances that can
be reached in a classification problem. We present in this paper a method
that allows to estimate these performance bounds given any finite data
set, by building a classifier based on two successive estimations of prob-
ability densities, which asymptotically converge to the optimal Bayesian
classifier.

1 Introduction

To judge the performances of a classifier, it is necessary to compare them with
the ultimate ones given by the Bayes theory. But latter ones are in general
unknown because in practice the true data probability density distributions are
never known, and only a finite number of training samples (patterns) is available.

This paper presents a method, the “Rough-Refined Estimation” (RRE),
that estimates the “best” probability density distributions by proceeding in two
stages.

Neural Networks supervised learning techniques generally lead to overfitting
if the size of the learning set is small compared to the number of free parameters
in the network: even if the Quadratic Error is low, nothing ensures that classifica-
tion errors are small [3, 7). On the contrary, the method proposed here provides
remarkably good generalization properties versus the size of the learning set.

After a brief summary of the Bayesian theory and kernel density estimators,
the trade-off between performance and number of patterns is presented. The
RRE algorithm is presented in section 4, and the last section is dedicated to
experimental results.

2 Bayesian Framework and Probability Density Kernel
Estimators

Assume the problem consists of classifying an observed vector z of IR? among ¢
classes denoted w;. Assume that z is random and that its d components admit
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a joint density p;(u). If all wrong decisions are given the same penalty, the
Bayesian decision will be:

Decide u € wy, & s = Argll\élkaxc {P; po(u/wi)} 1)

where p,(u/w;) is the density of the vector  under the hypothesis that it belongs
to class w; and P; is the a priory probability that class w; occurs.

It is quite obvious that such an ideal Bayesian solution can be used only
if distributions p,(u/w;), and the ¢ a priori probabilities P; are known. In the
problems we are interested in, it is rarely the case. We rather have at disposal a
set of patterns, Ay = {z(n), w(n), 1 < n < N}, where each pattern z(n) belongs
to a known class w(n). Denote N; the number of available patterns in class w;,
1<j<e, Z;'::lNJ' = N.

One way of performing Bayesian classification is to compute the best estimate
of each density p;(u/w;) in the Mean Square sense with the help of the N;
patterns available. Thus the goal will be to minimize for each class w; the error

) = [ el ufus)d, ©)
with e(N;, u/w;) = E{[p-(Nj, u/w;) — Px(“/“’j)]z}- 3)

Because of their nice properties [1], kernel estimators of density have been chosen.
The kernel estimate of a density p,(u) of a random variable z takes the
following general form:

N
Ps(N,u) = %2% K (t};@l) (4)

where {z(n),1 < n < N} denote available patterns in a given class. The parame-
ter h is called the width factor of the kernel. If h is not allowed to depend on index
n, the kernel is referred to as fized, whereas it is referred to as variable when the
width factor may be different for each z(n). Sufficient and necessary conditions
on the series h(N), in order to get the fixed kernel estimator to converge to p,(u)
in the mean square sénse may be found in [1, 3].

The kernel is said to be radialif K is a function of the norm of its argument
only. Better estimates are obtained when the kernel function is not radial, but
the computational load is in general much too high, even in moderate dimension.
That’s why only radial kernels are usually chosen.

3 Large Dimensions and Small Data Sets
An important issue for finite learning sets is to know how many patterns are

necessary to reach a given quadratic error, say e(N) = O(e). One can prove in
particular that the minimal error in the fixed kernel case is [3]:

€e=0 (J—b-;%;) ()
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Since the optimal value of h is itself of order N=1/(4+4) this yields an order of
N ~O(et -4/ 4) required patterns. The number of patterns required is thus an
exponential function of the dimension, d. But the coefficient of proportionality
cannot be obtained by this approach.

Dimensioa d

Fig. 1. Sizes of sample required as a function of dimension; solid curve: values given
by Silverman; dashdotted; exponential approximation.

Silverman gives, based on extensive experiments [10], the values that are
reported in figure 1. This report corresponds to a constant relative error on the
density of about 10%, for a fixed Gaussian kernel and a Gaussian underlying
density. A simple and sufficiently precise rule can be obtained by the affine
approximation:

log;o N =~ 0.6 (d — 0.25). , (6)

A data set that does not reach the bound (6) will be referred to as small, or
conversely, the dimension will be said to be large.

This value could be thought to be optimistic since the majority of real-
world densities to be estimated are non-Gaussian. However, the variable kernel
option may considerably diminish the minimal number of patterns. For real-
world problems, it can appear that a classifier still performs well even if the
number of patterns does not reach (6). In such a case, this simply means that
the data set is located in the vicinity of a manifold of dimension smaller than
d. A solution that often works if this manifold is linear consists of performing a
Principal Component Analysis of the data set; this would reduce the number of
attributes while keeping the performances intact.

4 Optimal Kernel, RRE algorithm

Since our concern is mainly to deal with finife databases, asymptotic results
[6, 4, 5] are not sufficient. Our goal is to design consistent estimators that perform
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correctly for limited learning set sizes. In particular, the positivity of the function
K will be assumed, whereas it is not required in asymptotic theorems [1, 6]. It
will be for instance also required for the kernel function to be concentrated about
the origin, and have a variable width factor. The quality of kernel estimators is
very sensitive to the width factor when data sets are of moderate size. Previous
works have proposed optimal values of h for fixed kernels by approximating the
error e(N), resorting to a Taylor expansion of p,(u) [1, 3, 2].

But since essentially variable kernels will be used in our case, an optimal
value that is dependent on u has been calculated, and minimizes e(N,u) for
each point u: 4 (@)

dtd _ Pz(U 2
h(N, u) = —]\7 W Re K(w) dw, (7)
where Ap,(u) denotes the Laplacian of p,(u). Of course, this expression is not
directly applicable, even if it allows in principle to obtain optimal kernel width
in the least squares sense, because it involves again the true function p,(u) which
is unknown. ~

This problem is solved in two steps. First it is resorted to a rough estimator
whose width factors are not optimal to compute an estimate of pz(u) and its
Laplacian. Then, this estimates are used to compute the optimal variable width
in equation (7).

One simple and efficient solution is to use a k-Nearest Neighbors method
to obtain the width factors of the rough kernel estimator : h(n) = Dy(z(n)),
the distance between vector z(n) and its k** nearest neighbor. This estimate
satisfies all the expected properties for the width factor. In practice, k has been
empirically chosen as k = round (N °'4).

Assume radial kernels of the form

K(w) = B e-lAv'ul’ (®)

where g is a real number in (0.5, 00) setting the rate at which the kernel function
drops off and coefficients A and B are determined so as to have a unit sum of
the density and a unit variance [5]:

b gab¥? .
A= cd’ T T I+dlZ(rd)dl? ©)

with @ = I'(d/2), b = I'((d + 2)/29), ¢ = I'(d/29).

The Gaussian kernel (g = 1) has been for instance one of our choices.
An estimation of Ap,(u) can then be obtained by calculating the Laplacian
of the rough density estimator p,(N, u) via:

1 & 994
N hd+2

n=1

Ap(N,u) = [29{Av*v}?9~ — (d+ 29 — 2) {Av'v}e] K(v)
- (10)

where v = “—_%Q'-l
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The last term in (7) is called the asymptotic variance coefficient, and takes
the following form for kernels (8):

/R . K(w)? dw=2"4% B. (11)

The refinement procedure may be run more than once. A few simulation
examples have shown convergence for less than four runs.

5 Experimental results
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Fig. 2. Errors versus refinement level for the complete database (683 patterns).

A number of simulations have been carried out on a real-world dataset publically
available for classification problems [9, 8]. The data are obtained from a clinical
study of breast cancer. There are 2 classes (with a 65.5%-34.5% class distribu-
tion) and 9 numerical attributes (integer range 1-10) per pattern. The reported
studies [8] obtain an error rate of 7.8% to 4.1% with the holdout method on
selected testset ranging from 33% to 50% of the patterns.

Figure 2 shows the leave-one-out and resubstitution errors versus the refine-
ment level for the whole database. Since these methods respectively provide an
upper and a lower bound of the error probability, the true performance lies in
between. This can be verified on figure 3, where the holdhout error averaged for
five different partitions is very near from the leave-one-out results averaged on
the five learnsets. The generalisation properties of our method are illustrated in
table 1 where the average holdout errors, computed after four refinement steps,
are reported for decreasing learnset sizes. This shows that variable Gaussian
kernel classifiers based on the refinement technique presented here can indeed
perform very well even for very small databases.

Table 1. Averaged Holdout error versus the size of the learning set

Size |/300{200}100} 50 | 30 | 20 | 10
Error|[3.15]3.35{3.73]4.12{4.66{4.90(6.03
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Fig. 3. Errors versus refinement level averaged over five different partitions (learnset:
283 patterns; testset: 400 patterns).

6

Conclusion

The goal of the algorithm presented was to estimate the ultimate classification
bounds that can be achieved given a finite data set (containing both learning and
test patterns). The excellent generalisation properties also encourage its use to
devise classifiers with limited memory capabilities. For the moment, the major
inconvenience of the RRE algorithm is its rather heavy computational load.
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