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Abstract. We perform a one-stage Replica Symmetry Breaking cal-
culation of the storage capacity of the annealed-dilution network with
binary couplings and show that a Replica Symmetry calculation with
the additional condition that the entropy vanishes at 7' = 0 gives the
same result. This generalizes a result previousty obtained by Krauth and
Mézard for the non-diluted case.

The network is a perceptron with N input and 1 output neurons. Each neuron
is a two-state unit described by an Ising variable. The network will function as
a memory device for storage of p = N random patterns or input-output pairs
{€*,¢*} (u=1...p) provided N coupling coefficients J; can be found such that

N .
¢H=sgn |y JiEl (k=1...p). (1)

=1

The annealed-dilution network with binary couplings is specified by the two
constraints [2] :

Jj =0,%1 ()
N
> JE=fN. (3)
J=1

The parameter f € [0, 1] determines the degree of dilution. For f = 1, the model
reduces to the fully-connected network studied by Krauth and Mézard [1]. The
storage capacity a.(f) is defined in the thermodynamic limit N — oo, p — o0

as the largest value of o = 2 for which coupling coefficients J; can be found
that fulfill all conditions (1) (2) (3)

Following the approach of Gardner-Derrida [3], an energy function is defined
on the space of coupling vectors J that counts the number of stability condi-

tions (1) that are violated. The associated free energy F(T) = ——% <lnzZ{T) >
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can then be calculated using the replica method.This has been done in ref (2]
using the replica symmetry ansatz and the ad hoc assumption that the vanishing
of the entropy marks the critical storage capacity.Here we go one step futher and
use the first-stage replica symmetry breaking ansatz [4]. This yields

FI(-ZI.S)'B(T) =-T Extr GRSB(q()»ql?m QO,Q1, f,a T f) (4)
{g091mdod1 f}

where

1 . 1 . :
Ghip = 31— m)ards + 5 fmaodo — 1

+00 +00
+% / Dzgln / Dz [1 + e/~ % 2cosh (\/(j—ozo +vVa - (jozl)]m
—00 —00

+00 m
— R B[K - 2| — A=Tz0 =51 "doen)?
+— / Dzoln/Dz1 / 2(1-a1) (5)
27’ 1 —-q1
-0

The extremum yields six complicated saddle-point equations and finding a so-
lution — different from the RS solution — turns out to be a daunting numerical
task. We have concentrated on this problem for quite some time but, in spite of
considerable effort, have failed to find a new solution that satisfies all equations.
This situation resembles that encountered by Krauth and Mézard [3].

Trying to understand the behaviour of the free energy we studied the value
of the function

G(@)= Extr GYlg (6)
{gomdodr f}

on the interval ¢; € [0.1]. Extensive numerical calculations for different value
of f,a and T show that for high o and low T, the lowest values of G(qy) is sys-
tematically found at g; = 1. This result is illustrated in figure 1 for two choices
of (f,a@). The left figure, for f = 0.6, a = 1.4, shows the function TG(q) in

the interval ¢; € [0.4,1] for two values of the temperature.! The lower curve,
at the temperature T = 0.14, is typical for the case when only the RS solution
exists. At low values of ¢, the extremum in (6) yields go = q1. The value of
é(ql) rapidly decreases with increasing ¢; until the minimum value is reached
at g1 = 0.67. This is the RS solution. A further increase in g; does not alter
the value of G(g1). This constancy is achieved as follows. For g; > 0.67, the
extremum in (6) systematically yields m = 1 and go = 0.67, thereby keeping the
Parisi order parameter function [4] unchanged. The upper curve, at the lower
temperature T = 0.05, shows a similar behaviour at low values of ¢;. The RS

1The extra temperature factor added to G has the effect that the lowermost value of each
curve equals minus the free energy at the corresponding temperature (see (4}).

56



ESANN'1994 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 20-21-22 April 1994, D-Facto public., ISBN 2-9600049-1-4, pp. 55-60

solution is reached now at g; = 0.81. It is followed by a plateau along which
go stays close to 0.81 and m close to 1. At high values of ¢;, though, the func-
tion G(q;) begins to slope down again and, very close to the boundary g; = 1, it
plunges towards its lowest value at g; = 1. We have calculated Glq) numenca.llv
up to g; = 0.998 (solid curve) and have extrapolated (dotted curve) to ¢; = 1.
It is clear from the figure that the derivative G’(q1) does not vanish at q; = 1,
which explains our lack of success in solving the siz saddle-point equations for
the extremum of (4). The right part of figure 1 shows the same behaviour for
the non-diluted case f = 1. a = 1, at the temperature T = 0.19 (lower curve)
and at the lower temperature T = 0.1 (upper curve). Similar figures have been
obtained for other values of f.
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Figure 1: a) The function TG(g,) for f = 0.6, @ = 1.4 for T = 0.14 (lower
curve) and T = 0.05 (upper curve). b) The function TG(q) for f=1,a=1for
T = 0.19 (lower curve) and T = 0.1 (upper curve)

As suggested by the numerical results, we have searched for an extremum of
G(}%_)g 5 Within the hyperplane ¢; = 1 at finite temperature. Since g; = 1 is at the
boundary of the domain of g;, its conjugate ¢, must tend to infinity. The crucial
point now is to notice that, as §; — oc, there must be a concurrent growth
of f in order to keep the dilution degree intermediate between 0 and 1. More
explicitly, the combination

mf;__m(l;m)

T‘:

¢ : (7)

has to retain a finite value. Once this is noted, it becomes straightforward to
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calculate the limit of Ggg. B

=1 m
g1 — o0

+o00
191 i m?g
Gg.)SB . - {'2'me§0(10 - ff+ / DzyIn[l +€e"~~7 2cosh(m (jozo)]}
-0

+00 +00 \ '(A 2
+a / Dzln / B per-N-Cml | )
27r(1 - qo)
-0 —00
Comparison with the RS expression Grs shows
1 T
G(l) ___G , 22 e —_— .
RSB q:l m RS[QO m=qo,T; Q, maf] (9)
g — o

Plugging the expression (9) into (4) yields

T . . T
F,(ils)B(T)= Extr [—EGRS[qo,m%o,r;a,E,f]}. (10)

{gomdgo?}

The main difference with the expression for Frg(T) is the occurrence of the
extra variable m in the Extremum operation. However, if we rewrite (10) as

' T T
F(l) T -_—EXt {EXt [——G L] 2'.,*; v T }}7 11
rsB(T) Xtr P Rrslgo, m*do, F; cx — T (11)
we find that
F _(T) = Extr Frs z (12)
RSB X m)

This yields as equation for m
T
/
=0
RS ( m) (13)

T
which means that the RS entropy must vanish at g Study of the function

Frs(T), shows that it does not display a stationary point as long as o is smaller
then a special value o,(f). Hence, no RSB solution exists in this case. When
a > as(f), on the other hand, Frs(T) displays a maximum at T,(c, f), which

Tc(aa f )
0 < m < 1, this solution is acceptable only when T" < T,(e, f). The RSB free
energy (12) becomes

vields the solution m = of equation (13). Since m is constrained by

Fiop(T) = Frs(Te) (> as(f);T < Teles f)) (14)
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As Fgrs(Te) is a positive constant, the RSB entropy vanishes and the energy
remains positive for all T < T,. Thus, for o > o,(f), part of the stability con-
ditions (1) always remains violated. By contrast, for a < a,(f), where the RS
solution is the sole solution, cooling the system will bring it to its ground state
which now has zero energy i.e. all patterns are safely stored. The transition
point a,(f), characterized by the vanishing of the RS entropy at T = 0, thus
determines the storage capacity a.(f) of the annealed-dilution network with bi-
nary couplings. :

To conclude, we present in figure 2 our result for the storage capacity a.(f)
for the case where the stability parameter K is chosen equal to zero. Here,
we have added some numerical estimate of a.(f) as determined through a full
enumeration, for a system of N = 17 neurons, of all possible coupling vectors.
Choosing a set of p = aN random input-output pairs, we scan all possible
coupling vectors to find out whether or not a vector exists that stabilizes all
patterns. Repeating this process for many samples determines the probability
of success which then determines the storage capacity. The overall agreement
with the theoretical curve is quite good in spite of the small number of neurons
for which a full enumeration of all coupling vectors can be carried out.
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Figure 2: The storage capacity o.(f) as function of the fraction of non-zero
couplings for K = 0. The little squares are obtained from a full enumeration of
coupling vectors for a network with N = 17.
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