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Abstract. The storage capacity of a neural network with binary
synaptic weights and a reversed wedge transfer function is studied both
theoretfcally and numerically. Remarkably, for a particular width of the
wedge, the storage capacity reaches a value equal to 1, which is the
maximal value it can attain as follows from simple information theoretic

considerations.
1. Introduction

In this paper we study the storage properties of a fully connected network
with N2 binary synaptic weights {J;;}, 1 < 4, < N, ie Jij = £1. The
network’s units S;, 1 < 7 < N are restricted to values =1, and are updated
according to

Si(t+1) = sgn(f(ﬁ > 7S5 (0) 1)

where f() is an arbitrary function, and g(z) = sgn(f(z)) is called the trans-
fer function. -

The problem we will adress can be stated as fgllows: which is the maximum num-
ber Pssor. of independent random patterns £, 1 < i < Psior. which are fixed
points of the dynamics. These patterns are said to be stored by the network,
and their number determines the storage capacity & = 25‘;\‘,’—’" of the system.
The study of the storage capacity of neural networks has progressed strongly in
recent years. Storage capacities were studied for various types of networks. For
the particular case of binary synaptic coefficients, and f(m) = z, leading to
g(z) = sgn(x) as a transfer function, which is implemented often in engineer-
ing applications, the storage capacity is known to be a ~ 0.83 [1].
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This is not the optimal value since the upper limit for the storage capacity is
o = 1, since one bit of information can be stored in each binary synaptic weight.
The purpose of this contribution is to show that by changing the transfer func-
tion this maximum storage performance may be obtained. In particular we are
thinking of a transfer function referred to as ”reversed wedge” and described by
9(z) = sgn((z+K)z(z— K)) where K is an arbitrary constant [2], see fig. a.
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Fig. a Reversed wedge transfer function

b

N = 15: ¢) and the extrapolation N — 00 (dashed curve) are shown as well as
the theoretic result (solid line)

Fig. b Storage capacity vs. width of the wedge: some simulations (N = 9 : o;

For K = 0 the simple ”sgn(x)” transfer function is recovered, while for K # 0
a wedge of width 2K has been inserted around £ = 0. The idea is that by
an adequate choice of K a neural network with a better storage capacity may
be realised in the case of binary synapses. The storage capacity of a network
with such a transfer function has already been studied by several authors in
the case of continuous synaptic weights using the replica formalism of statistical
mechanics [3, 4]. Calculations based on the replica symmetric Ansatz [3] show
a highly increased storage capacity o =~ 10.5 for K = 1.18, compared to the
usual value of @ = 2 as determined by Gardner and Derrida [5]. As the validity
of the replica symmetric assumption in this case is seriously in doubt; a one step
replica symmetic calculation was made afterwards [4] and it was shown that the
storage capacity could be at most & = 4.9 for a value of K = (.8.

In this contribution we perform in the case of binary synaptic coefficients a zero
entropy replica symmetric calculation, which is generally assumed to be equiva-
lent to a one step replica symmetry breaking calculation. Moreover, simulations
are carried out to see if the quantitative result is correct.
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2. Zero entropy replica symmetric calculation

To study the storage capacity we cons1der a perceptron with N inputs in
which we want to store P training patterns {f“ &¢} for p=1...p. Using the
by now standard statistical mechanical technique of Gardner and Derrida [5] we .
calculate the quantity

= < {log®) o

which is called the entropy per synaps of the network. The brackets represent the
average over the p random patterns chosen to be stored in the network and {2 is
the number of synaptic coupling vectors which satisfy the p storage conditions.
This number is given by:

P j'gu
Q= 0(g( )139)) (3)

with 6(z) the usual Heaviside function. From this definition the value of {} is
a non negative integer. For given N, when the number of patterns p increases,
the possibility to store all the patterns will decrease and so will Q. Aslong as at
Jeast one set of synaptic coefficients will be found to store the patterns, Q will
be larger then one and the entropy will be positive. The critical storage capacity
is reached when S becomes equal to zero.

A replica symmetric calculation [1, 6] yields the following expression for the

entropy per synaps:
s = Extr (Go(g,4) — aGr(9)) (4)
{a,4}

where Go(q, §) and G;(g) are given by:

1.2
—35%

Go(g,q) = l—q)q+/

log (2COSh( \/_)) (5)

400 e 2
Grla)= [ dt S= log (H(w:) ~ H(w) + H(u 6
r(q) oo \/57? g( ( 1) ( 2) ( 3)) ( )
with the shorthand notations U1, Ug, U3:

t7— K ti  t/i+K 0
T

C Uy =
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and
1,2
e 2

H(z) = /:odt g (8)

The values of the order parameters ¢ and § which extremise Go(g, §) —aG,(q)
in (4) are found from:

1,2 2

1,2 1,2 1,2
a +o0 e 2 €72 — 72U 4 73U}

21(1 — q) J- at V21 \ H(u1) — H(ug) + H(us) 9)

+o0 e_%z2 9, 7
g = / dz Nors tanh (\/c;z) (10)

L=}

-—00

Substituting the solutions for ¢ and ¢ into (4) allows to trace out the entropy
as a function of & and K. The storage capacity is found for the value of ¢ for
which the entropy is zero for fixed K. The so calculated storage capacity versus
K is shown in fig. b. For K = 0 we find o & 0.83 as required, for larger K
values the storage capacity increases, attains a rather flat maximum of 1.0 for
K = \/2log2 = 1.18 and decreases again towards o = 0.83 for larger K
values. So the theoretical treatment predicts an enhanced storage capacity for
the reversed wedge model. It should be stressed that although the accuracy of
this calculation depends on the replica symmetry Ansatz, the result is thought
to be quite reliable. Due to the zero entropy condition this approach is known
to be equivalent to a first step replica symmetry breaking calculation.

3. An upper bound for the storage capacity

The question for the-replica formalism is the validity of the replica symmetric
Ansatz, certainly for this type of problems. To a certain extent one may check
this validity by independently calculating an upper bound for the storage capac-
ity. This is done using the annealed approximation, i.e. in (2) not log {2, but
() is averaged over the patterns. Following [1, 6] the expression for the entropy
per synaps in the annealed approximation is given by:

Sann. (0 K) = - 108(0) = clog (H(~K) — H(0) + H(K)) +log?

(11)
Since H(—K) = 1 — H(K) and H(0) = 1 we find Sgnn. (0, K) =
(1 — a)log2. As this annealed entropy is negative for all & > 1, it fol-

lows immediately that storage capacities larger than 1.0 are in error. Actually
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this result was expected from information theoretic arguments since in each bi-
nary synaptic weight only one bit of information can be stored [6]. This upper
bound is clearly satisfied in our calculation as can be seen from the plot and so
there is much confidence in these zero entropy replica symmetric calculations.

4. Simulations

To check further the theoretical results we performed simulations for a network

with 9, 11, 13, 15 and 17 neurons. Although this is still far from the ther-
modynamic limit N — 00 as assumed in the theoretical derivation, previous
experience has shown that for networks of this size simulations give already the
correct quantitative result [1]. The simulations were run using an enumeration
technique [7], i.e. given the training examples we check numerically by enu-
meration of all possibilities whether a set of synaptic coefficients exists which
stores the patterns. Because this enumeration method is time consuming, it is
limited to a rather low number of neurons. Consequently the number of training
examples which should be stored is slightly dependent on the particular choice
of the patterns and we have to consider an average value of the storage capacity
obtained after averaging over many choices of training examples (typically of the
order of 10%). ’
The resulting storage capacity as a function of the width of the wedge is shown
in fig. b, we clearly observe a maximum storage capacity of & & 1 at K ~ 1.18
which is in qualitative agreement with the replica symmetric calculation. The
lack of precise agreement is thought to be a finite size effect, as for an increasing
number of neurons the storage capacity decreases, and the extrapolated results
for an infinite number of neurons are equal to the theoretical result up to a few
percent. Furthermore the deviation from the theoretical result is systematic,
which is explained by the correlations between the patterns for networks of this
size. These tend to decrease the information content.

5. Conclusions
A replica symmetric calculation is performed for the storage capacity of a re-
versed wedge transfer function and an important increase of storage capacity is

found. The stored information per synaps in this type of network is equal to the
maximum set by information theory. This result is confirmed by simulations.
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