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Abstract. In this work we present a new methodology for describing the
functioning of artificial neurons, including new, as yet untested, types of
behaviour. It also provides the possibility of defining artificial neurons of
any order, not only first and second, and a wide range of functions from
which to choose. As illustration of the new formulation, a practical
realization of the new formulation is analyzed, consisting of a multilayered
neural network applied to the image processing of black and white scenes,
making manifest the possibilities of this new type of neuron in the field of
cellular logic but with new types of processing.

This is just an early stage in the development of the new neurons, so that
many of their possible applications have yet to be initiated. Among them,
one can already foresee those related to fuzzy models, analogue models, and
many others. Now, for these applications, it will no longer be necessary to
make any change in the network design, but just to make a choice from the
proposed library of functions.

1. Introduction

With the evolution of neural networks, new, ever more complex, fields of
applications have been opening up. Many problems are beginning to be approached
by comparing how they are solved by means of neural networks with their resolution
using classical methods (when they exist). For instance, in the partitioning of
hypercubes, nets of linear threshold neurons have been compared with classical logical
implementations (Andree et al.).

In other cases, the solution has consisted in developing second and even higher order
functions (Simpson; Xu and Tsai ), which have received extensive theoretical trea-
tement but present serious difficulties in their practical implementation (Lopez et al.).
Nonetheless, despite their potential lack of ease of handling, models of higher order
(mainly second) offer clear advantages over those of first order as to their learning
capacity and practical interest.

In next sections of this paper, we therefore present a new mathematical approach to
these higher order models remembering that they have already allowed image trea-
tement processes to be performed in the first stages of practical application when they
had previously seemed reserved for other methodologies such as cellular logic (Rosen-
feld). The latter has currently been the object of attention because of its possible syn-
thesis by means of neural networks (Chua & Yang; Chua), in which there has also
been a powerful incidence of the use of higher order neural models (Schmidt & Davis;
Seiler et al.), given the evident similarity between the two structures.
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2. A General Neural Model

In most problems which one attemps to solve by means of neural networks,
the road to the solution is always by way of establishing the function describing the
behaviour of the system or the structure of the connections between the different
blocks of the system: external inputs to the layer, lateral interaction (intra-layer con-
nectivity) and connections between layers (feedforward, feedback, ..., etc.) or, finally,
the learning schemes used.

Here, we shall centre on the first aspect, presenting a general mathematical model of
the neuron's behaviour. The said model can be molded to whatever practical realization
one likes, so that each application will be the result of specifying the values that cor-
respond to a series of coefficients. In addition, many new neural functions can be built
with this model, so that these neurons present an interesting new set of properties
reserved, until today, to other fields of data processing.

As a starting point, our model must enable one to set up equations of second order or
higher in such a way that, having chosen the desired order, we can decide whether one
wishes to include the factors of lower order than that chosen or not, and, in the affir-
mative case, to be able to include them with the most convenient mathematical
expression so that no a priori restriction is established.

The conventional formulation of the mathematical models as a function of their order
is in the following form:

First order:
N .
— 1 -

yi(t+1)_‘P{Cnrm[j2=1mj xJ el} )]

Second order:
N .
y.(t+1)= ¥ { C [ ¥ m . x x -0} )
' M=t iy

where the function ¥ is usually chosen to be either nonlinear and monotonically
increasing, such as the popular sigmoid function, or with a sharp change, such as the
threshold function, depending on the type of inputs being dealt with (continuous,
binary, etc.). The constant Cn rm 1S chosen to normalize the function, and can in

many cases be taken equal to unity. In practical applications, this formulation is
found to be excessively rigid, so that we have to define clearly both the type of
interconnections and the learning algorithm chosen to modify the coefficients "m" .
This rigidity can be avoided if we use, for all orders, the following definition:
N i P P -
FOI‘dP = CordP [ . 2 - _{n .]1,.]2’-”’.]P(pJl[le’(pjz[xj2,.“]] ) eP] ( ’ )
Jl,jz,...,_]P—

Thus, we can take as neuron function
YD =¥ 0541 [Forgq - Porgn [Foraz - 111 (-2

where the elements "¢" in the two expressions correspond to a function that can be
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chosen from among a wide group of the same, corresponding to the functions that are

usually employed in neural networks, as listed in Table L.

Unit : If x;, X; € [0,1], ® UNIT [x; ,xj] X;

Binary AND : If Xi’xj e {0,1}, PBAND [xi ’,Xj] X * xj
Binary OR : If Xi» X € {0,1}, (pBOR [x ,xj] = x5+ X;
Binary EXOR: If xi,xj e {0,1}, PRXOR [xi ,xj] = X @ xj
Analog MULT: If Xi o X e [0,1], PAMUL [xi,xj] = X+ X
Analog ADD: if X; o Xj e {0,1], ®AADD [x; ,xj] = X + X;
Fuzzy AND: If X ,xj e [0,1], PEAND [xi ,xj] min (xi ,xj)
Fuzzy OR : If X ,xj € [0,1], PFOR [xi ,xj] = max (xi ,xj)
Fuzzy EXOR: If Xj» % e [0,1], PEXOR [x; » X; 1] = Ix. - X; [

Table I. The set of different functions ¢@.

In almost all cases developed up to the present, the second order neural model
formulations have been performed by using exclusively the analogue multiplication
(AMUL), setting the whole burden of the specific implementation to be simulated on
either the calculation of the coefficients (weights) "m" by means of different adaptive
processes or on the structure of the networks. This is, of course, a case that the pre-
sent formulation also includes, so that a conventional first and second order model is
obtained by simply choosing the following selection :

Pord1 = PAADD Pord2 = PUNIT: Pordp ADItrary V P>2

1 1 2 2 2
(pl = (pUNIT > (pP = arb. V P>1; (Pl = (PAMUL, (92 = (PUNIT, (PP = arb. V P>2

¥ = sigmoid function ¢
N . N .
i i
Yi t+1 = o Cordl [jglmj xj- 91] +C0rd2[j,kz={njk xj(t) xk(t)-e2 )} @

As to the coefficients "m" and connectivity diagram that are used, they will have to
be chosen in a form that is suited to the case at hand.

Equations 3.1. and 3.2 together with the "library" of functions "@", permit the design
of neural networks which function in a wholly different way from those used up to
now. Thus, even while keeping a given connectivity scheme and having a learning
algorithm for the "m" coefficients, it will be enough to change some of the ¢'s for
the network to execute totally different functions. This situation is particularly inte-
resting when one is dealing with a software implementation of high complexity
networks. The end program is unique, and the functions are assigned arbitrarily to the
different parts into which the network is to be subdivided. Consequently, an
indefinitely repeated neural structure can perform quite different functions with no
more than choosing the @'s from among those described above.
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3. Cellular Neural Networks

Using the notation proposed by Chua and Yang, it is possible to construct
cellular neural networks with the formulation that we present here with no more than
choosing the functions suitably. In principle, we employ the same concept of
neighborhood of any cell for the conventional type of rectangular pixel arrangement.
We choose the functions ¢ from Table I to work with the pixel values. For the case
of the data of Table II,

Pord1 = PAADD’ Pord2 = PUNIT® Porgp 2bitrary V P>2

= arb. V P>1; (p% =arb. V P>2

1 1 _ 2 2
@1 = PyniT’ PP =®gx0oR’ 2= PynIT PP

Y = sigmoid function ¢
Table II. Functions choice for the imlementation of cellular neural logic

to obtain the function

N N

ACHER ZEM [j§1mj x;- 0,1+ Co [jk2=1m}k (50 ©x,01-6, 1 )

Observe that, in this equation, since xj € {0,1}, ?sxOR = PFXOR ° which will be

of great importance when it comes to dealing with fuzzy functions.

Applying this function to the neighborhood of radius 1 (nearest surrounding cells) so
that inputs to the neuron are taken to be the values of all the pixels of the
neighborhood, and using the coefficients of Table III,

0,=2,0

. =4, C

ord1 = 93 Cordn

Table II. Selected values for image processing

. i i
) = 5, ¥ = Threshold function, mjk = mj =1

one obtains a true celh;lar image processing system with noise filter capabilities and,
also, by modifying the connections structure trough "m", spatial filtering.

4. Stability of the Network

Grouping 61 and 92 in a unique ei term in (5) and makig Cor T Cor a= 1,
we get, in the case of second order, the following as the digital neuron function
ro. r .
i i
yi(t‘”) =¥ { _]El mj Yj(t) + J§1 mjk (P(Yj(t),yk(t)) - ei } (6)

Which, with the following restrictions, defines a convergent system:
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- The coefficients m; and m* are constants with the suffix "k" representing the next

neuron, proceedmg in a clockwise direction, within a determmed radius. The
connectlon scheme is the same for all the neurons.

- m; m and m = (. The coefficients mJk must be such that:

sign{m k) = s1gn(mk) = s1gn(m ) and m; ik = 0if sxgn(m ) # s1gn(mk) @)
- "@" is an increasing logic function, i.e.,

O(y;(t+ 1),y (1) 2 0y 0, y® if Ay;>0
<P(y {0y t+D) 2 (p(y {0y ) if Ayk >0

The energy function will be of the form:

yi(Oy;® - 2 2 m, k<p(y Oy Oy, + Z 6.y,  ®

t\)h—-
an

3 Znly

The increment in energy produced as the i-th neuron goes from a state at time "t" to
another at time "t+1" will be given by

) .
AE = - [Jg m ;) + E i GOOK D) - 014y - iy [0;+1.y, (®) -

T .
OO0 - 3 ml . [0, (O7;+1) - @Oy Oy ©)

where the suffix "h" represents the neuron before the i-th, counting clockwise as
J » . . .
before. The term Y, m} yj(t) is obtained by taking m; = mJi and m; = 0. The
=1

expression in brackets is the value of yi(t+1) which will be positive when Ay, is

positive (yi(t) =0and yi(t +1)=1) and negative when Ay, is negative (yi(t) =1and
(t + 1) = 0). Therefore, the term in brackets multiplied by Ay, will always be

positive and its contribution to the energy increment negative.

With respect to the other two terms, one must bear in mind that:

1.- Due to (7), the second-order term of ¥; .(t + 1) will have the same behaviour as the

first-order term, i. e. the two will increase or decrease together

2.- The sign of m; ik together with the fact that m; i = m and m = 0, means that an
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increase in the value of the Y; is transmitted to the other neurons to which it is

connected as an increase in the activity of those it excites and a decrease of those it
inhibits. This behaviour comes back onto y; asan increase in its activity. Likewise, a
decrease in the activity of the neuron being considered comes back on that neuron
from the others that it affects as a decrease in activity. Therefore, given that "¢" has
been defined as an increasing function, it can be stated that the aforementioned terms
in AE also contribute negatively. Since the function E is bounded (as can easily be
deduced from its definition) and decreasing, the system described by yi(t +1) will thus

evolve towards stable states.
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