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Abstract. Several systems following a concept of the dynamical sys-
tems approach to automatic speech recognition [10] have been devel-
oped so far. Most of the initial system evaluations have been ‘carried
out on smaller speech recognition tasks, such as speaker-independent
digit recognition experiments [4], or speaker-dependent continuous
speech recognition evaluations having constrained domains with identi-
cal training and test set vocabulariesN[Q]. Several extensions to the Hid-
den Control Neural Network (HCNN) architecture [4] have been pro-
posed and evaluated or such smaller tasks [5, 6, 7]. This paper reports
the initial performance analysis of the recently proposed acoustics-error
predictive context-dependent HCNN system [6] on a standarized task,
i.e., speaker-independent countinuous speech recognition tests using the
DARPA TIMIT acoustic-phonetic continuous speech corpora.

1 Introduction

Recently, a non-linear predictive approach has been proposed for automatic
speech recognition (ASR), and used in several systems, e.g., “Neural Prediction
Model”, NPM, by Iso and Watanabe [2, 3], “Hidden Control Neural Network”,
HCNN, by Levin [4] and “Linked Predictive Neural Networks”, LPNN, by
Tebelskis and Waibel [8, 9]. In these systems the connectionist networks, used
as acoustic models of speech, are trained to learn the temporal correlations be-
tween adjacent speech patterns, thus presenting a dynamical systems approach
to ASR [10]. Initial evaluations of these models were carried out on small vo-
cabulary recognition tasks, such as speaker-independent digit recognition [2, 4],
yielding high recognition performances, and large vocabulary continuous speech
recognition extensions (3, 9, 5].

One of the most important problems of these large vocabulary system ex-
tensions was found to be a poor discrimination among predictive models of the
system [9]. To address this problem, we have recently investigated if the predic-
tion error vectors generated by the acoustic HCNNs could be used to increase
the discrimination power of the system. Specifically, by using the results from
discriminant analysis, an acoustics-error predictive HCNN modeling has been
proposed to address the discriminatory problem of the system [6, 7].

Initial evaluations of the proposed HCNN system extensions have been car-
ried out on Slovenian translations of the CMU’s Conference Registration Di-
alogs using the speaker dependent continuous speech recognition experiments.
At perplexity 100 without using the grammar, the proposed solutions yielded
an increase in word recognition accuracy from 76% (baseline system) to 87%
(extended system, i.e., using the acoustics-error predictive HCNN modeling)
on the test set database [7].

In order to make more general judgement about a maturity of the extended
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HCNN system, this paper presents its evaluation on the standarized TIMIT
speech database. The reported speaker independent continuous speech recog-
nition experiments used the Core Test Set of the TIMIT database.

The paper is organized as follows. The Section 2 presents a brief overview
of the concept of acoustics-error predictive HCNN modeling and the current
training and testing procedures used. Descriptions of the task, the training
and test sets used in the experiments are given in Section 3. Next, the Linear
Discriminant Analysis (LDA) results are presented and discussed. By using
the insights from the LDA, a dimensionality of the error predicting part of the
extended HCNN model is determined and the performance evaluation of the
system on the core test set is given. Finally, the conclusions and the future
work are summarized in the Section 4.

2 Acoustics-Error Predicting HCNN Model

It is well known that a variance modeling may improve the performance of a
speech recognition system. In contrast to the traditional technique of variance
modeling we proposed a different, i.e., predictive approach [6]. We supported
each of the acoustic predicting HCNN models with a separate, squared error
predicting HCNN network. This composite model now models dynamics in
acoustic and in error signal space (Figure 1).

HONN
dt

Figure 1: Acoustics-error predictive HCNN modeling.

The dimensionality of the vector in the error predicting part of the HCNN
model (i.e., the parameter m in Figure 1) is determined by the LDA. First,
the error vector signal of the acoustics predicting HONN model on an optimal
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alignment path using the training set is saved. All misrecognition alignments
are excluded from the LDA. Out of the d-component error signal only the
most important vector components which are identified by the LDA, (i.e., m of
them), are selected for modeling by the error predicting HCNN (see Figure 1).
The important vector components in the LDA are those which maximize the
separability among the phoneme classes.

The expected benefit of modeling the error signal dynamics is the follow-
ing. Since the current training algorithm enables learning to the HCNNs only
in a within class regions of the continuous speech utterances, several models
may undesirably develop very similar predictions of acoustic realizations of
the different classes. Despite producing similar acoustic predictions (i.e., sim-
ilar values of the Euclidean distances between the predicted and the observed
speech), the models are expected to produce different values of the prediction
error vector components. By virtue of modeling dynamics of the most important
error vector components, the discrimination power among the acoustics-error
predictive HCNNs is expected to increase. The experimental results reported
in [6] support this hypothesis.

2.1 Training and testing the HCNN system

A training of the HCNN system starts with the acoustic predicting parts of
the HCNN models. The error predicting networks start learning after the
convergence of the acoustic parts of the models (Figure 1). All error predicting
models are trained on the optimal alignment path determined by the acoustic
part of each model on the training token.

During testing, each acoustics-error predictive HCNN model outputs two
distortion scores at time t, i.e., one for acoustic prediction (denoted by d}) and
one for the error prediction (df)

& = sl

A 1
& = Jlee-a? g
where || - || denotes the Euclidean distance between the observed and predicted

vectors. The meanings of s, §, e, & are presented in Figure 1.

The final score of the acoustics-error predictive HCNN model, d#CNV | is
simply the sum of the distance scores of acoustic and error predicting parts,
ie., dFONN = @2 4 d¢ (Figure 1).

3 Experimental results

The acoustics-error predictive HCNN system was trained on the DARPA TIMIT
acoustic-phonetic continuous speech corpus. Out of the training portion of the
database, 4 male and 2 female speakers per dialect region were selected. There-
fore, the resulting training set consisted of 48 speakers (32 male and 16 female).
From each of the speaker, 5 SX and 3 SI sentences were used, thus yielding a
384 sentence training set containing 3159 words.

From the test portion of the database, 24 speaker Core Test Set was used for
the system evaluations. In this set, each of the 2 male and 1 female speakers
per dialect region contributes 5 SX and 3 SI sentences, thus yielding a 192
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sentence test set having 1570 words. SA sentences were excluded from either
the training or test set.

The acoustic prototype network consisted of 64 speech inputs (2 frames of
speech with corresponding delta frames), 5 hidden control inputs, 10 context
inputs, 30 speech/state units in the first hidden layer, 5 context units in the
first hidden layer, and 16 predicted speech output units (1 frame, d = 16 in
Figure 1). The error prototype network didn’t have a split first hidden layer.
The modeled error vector components were 2, e2, e2, e2, thus m = 4 (Figure 1
and Section 3.1). The networks were fully connected. Both networks had a
direct input-output connections (i.e., weights).

Speech input vector consisted of 16-dimensional mel-scale filterbank coeffi-
cients, corresponding to time frames (t-1) and (t-2), and first order difference
vectors for these two frames, computed using a 40 msec delta.

A total of 46 phoneme models (45 found in the pronunciation dictionary plus
a silence) were represented by a 92 acoustics-error predictive HCNNs (2 al-
ternates per phoneme model). Before beginning of the training, 61 different
phonetic notations found in the sentence label files were rewritten to the 46
- phoneme classes modeled by the HCNN system.

3.1 Discriminant analysis results

Initially, the LDA was carried out on the acoustics predicting HCNN system
using the training set data. In this experiment, the LDA was applied to the
squared prediciton error vector signal e? (Figure 1). The main goal of this

€? vector Stand. canon. | Structure

component coefficient coeflicient

e 0.56218 0.70298

e; ’ 0.16332 0.53274

e 0.09358 0.48643

€ -0.05877 0.45253

[ . 0.12024 0.53618

€; 0.16823 0.53976

€ 0.05664 0.49316

. €, 0.10968 0.51236

€; 0.10528 0.50047

' eio 0.05423 |  0.45958

e;l 0.08552 0.45149

852 0.03058 0.40911

353 0.13971 0.45065

i 0.10257 |  0.40456

355 0.04212 0.30926

e 0.04760 |  0.27855
Eigenvalue 0.1240
Canonical corr. 0.3322

Table 1: Summary of the LDA resulis on the squared prediction error signal
for the first canonical discriminant function, Fi.

analysis was to identify the most important components of the error vector
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to additionally support discrimination among the models. These components
were later modeled by the error predicting part of the expanded HCNN model.
Only the first canonical discriminant function among statistically significant
functions found by LDA, Fj, was considered. These LDA results are sum-
marized in Table 1. The canonical correlation coefficient found by the LDA
experiment is statistically significant (Table 1). Its value is rather high for the
assumption on e? being the white noise. This justifies the use of prediction
error to additionally support discrimination power of the system.

The highest loadings were found to be on €2, €2, €2, e2 prediction error vector
components (Table 1). The LDA results therefore suggest that the dimensional-
ity of the modeled error vector signal should be reduced, e.g., m = 4 (Figure 1).

3.2 Recognition results

A separate word-pair grammar experiments have been completed in each of the
8 dialect regions. The size of the vocabulary in each region was determined by
the number of unique words found in the Core Test Set utterances within the
particular dialect region. This information together with the word recognition
accuracy results is summarized in the Table 2.

{ Vocabular
” fé;:;;: Speakers gg:%ls ocsize Y | 5 l D I I I acgﬁrgcy “
mdab0,mwbt0
1 felcO 193 146 8% | 2% | 2% 88%
mtasl,mwew0
2 fpas0 206 158 4% | 2% | 1% 93%
mjmp0,mInt0
3 fpkto 205 170 0% | 0% | 0% 100%
mlll0,mtls0
4 fjlm0 187 . 152 5% | 1% | 2% 92%
mbpmO,mkit0
5 fnlp0 177 147 5% | 1% | 1% 93%
mcmj0,mjdh0
6 fmgd0 211 163 ™% | 3% | 0% 90%
mgrt0,mnjm0
7 fdhco 190 149 ™% | 0% | 1% 92%
mjIn0,mpam0 )
8 fmld0 201 154 3% | 2% | 0% 95%

Table 2: Performance scores of the HCNN system on the TIMIT Core Test ~
Set. (S = Substitutions, D = Deletions, I = Insertions)

4 Discussion

The acoustics-error predictive HCNN modeling has been discussed and evalu-
ated on the standarized task, i.e., in speaker-independent countinuous speech
recognition experiments using the DARPA TIMIT acoustic-phonetic contin-
uous speech corpora. The word-pair grammar results obtained on this stan-
darized task are encouraging, given the fact that no optimizations on either the
acoustics or the error predicting HCNN model architectures were investigated
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so far. The performance analysis results comparing the baseline and compos-
ite (i.e., error predicting) HCNN modeling on a smaller task can be found in
references [6, 7).

Future work should therefore address the optimal HCNN architecture is-
sue with the emphasis on a higher perplexity performance evaluations. More
theoretical work is also needed on the optimal integration of the acoustic and
the error predicting parts of the HCNN model. Finally, one of the most im-
portant remaining issues is the application or development of a more efficient
(and discriminant) training procedure for the systems following the concept of
dynamical systems approach to ASR. The current corrective training proce-
dures tend to be too task specific and lead to generalization problems when
porting the system from one task (or vocabulary) to another. Thus, the most
appropriate way appears to be the use of efficient learning (e.g., such as [1]).
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